Transformers in Computer Vision

Sergey Zagoruyko

October 7, 2024

Course contents:

- 1. Transformers in Computer Vision
- 2. Transformers in Object Detection
- 3. Transformers in Autonomous Driving

What is convolution?

Input:

1	4	-1	0	2	-2	1	3	3	1
---	---	----	---	---	----	---	---	---	---

Filter:

1	2	0	-1

Output:

Output.											

Input:

1 4 -1 0 2 -2 1 3 3 1

Filter:

1	2	0	-1

Output:

o aspass											
9											

Input:

1	4	-1	0	2	-2	1	3	3	1
---	---	----	---	---	----	---	---	---	---

Filter:

1	2	0	-1

Output:

o a spa s.								
9	0							

Input:

Filter:

Output:

Outpu				
9	0	1		

Input:

1	4	-1	0	2	-2	1	3	3	1	
---	---	----	---	---	----	---	---	---	---	--

Filter:

1 2 0 -1

Output:

9	0	1	3		

Input:

1	4	-1	0	2	-2	1	3	3	1
---	---	----	---	---	----	---	---	---	---

Filter:

1 2 0 -1

Output:

Q.	n	1	3	-5	
3	0		9		

Input:

P										
1	4	-1	0	2	-2	1	3	3	1	

Filter:

1 2 0 -1

Output:

9	0	1	3	-5	-3	
		-				

Convolutions in 2D

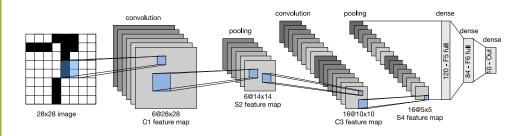
1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0,,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

4

Image

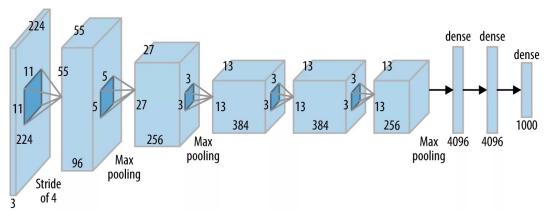
Convolved Feature

LeNet



LeNet-5 in 1998

https://en.wikipedia.org/wiki/LeNet



AlexNet in 2012

▶ Definition:

Inductive bias refers to the set of assumptions a learning algorithm makes to generalize from the training data to unseen data.

▶ Definition:

Inductive bias refers to the set of assumptions a learning algorithm makes to generalize from the training data to unseen data.

Importance:

- Helps in guiding the learning process and making predictions.
- Determines the types of patterns a model can learn.

Definition:

Inductive bias refers to the set of assumptions a learning algorithm makes to generalize from the training data to unseen data.

Importance:

- Helps in guiding the learning process and making predictions.
- Determines the types of patterns a model can learn.

Examples in Neural Networks:

- Convolutional Neural Networks (CNNs): Assumption of spatial hierarchies in images.
- ► Recurrent Neural Networks (RNNs): Assumption of sequential dependencies in time-series data.

Definition:

Inductive bias refers to the set of assumptions a learning algorithm makes to generalize from the training data to unseen data.

Importance:

- Helps in guiding the learning process and making predictions.
- Determines the types of patterns a model can learn.

Examples in Neural Networks:

- Convolutional Neural Networks (CNNs): Assumption of spatial hierarchies in images.
- Recurrent Neural Networks (RNNs): Assumption of sequential dependencies in time-series data.

Trade-offs:

- Stronger biases can lead to faster learning but may reduce flexibility.
- Weaker biases increase flexibility but may require more data.

Two pillars of deep learning:

Two pillars of deep learning:

► Large amounts of rich diverse data

Two pillars of deep learning:

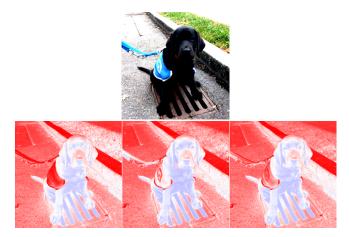
- ► Large amounts of rich diverse data
- ► Large amounts of compute

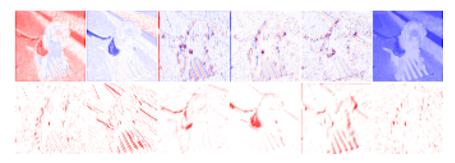
Visualizing parameters

Francois Fleuret's Deep Learning Course

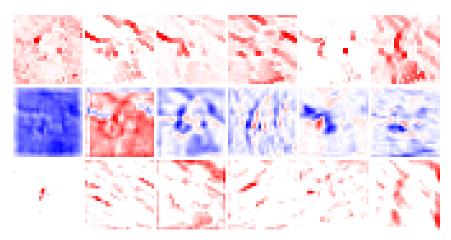
Visualizing activations

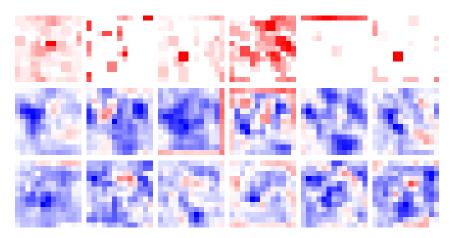
Francois Fleuret's Deep Learning Course

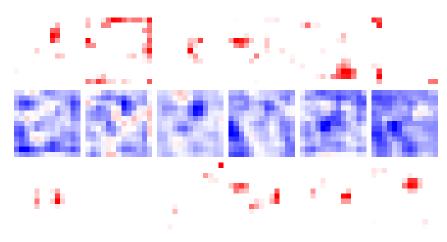


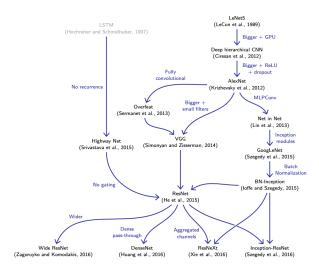


Francois Fleuret's Deep Learning Course

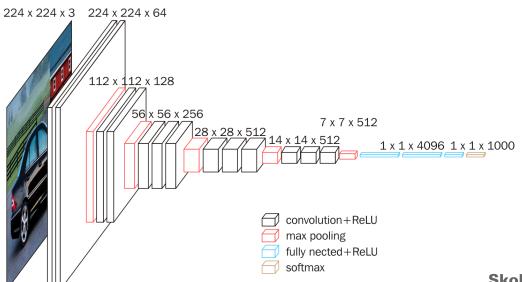




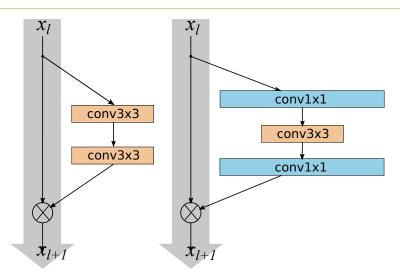


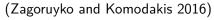


VGG



ResNet





What is a Transformer?

Self-attention

Core operation in the Transformer:

$$Q = W_q X$$
$$K = W_k X$$

$$V = W_v X$$

$$Z = \operatorname{softmax}(\frac{QK^T}{\sqrt{d}})\,V$$

Self-attention

Core operation in the Transformer:

$$Q = W_q X$$

$$K = W_k X$$

$$V = W_v X$$

$$Z = \operatorname{softmax}(\frac{QK^T}{\sqrt{d}}) \, V$$

- Quadratic cost
- ► Input order equivariant

Multi-head attention

Scaled Dot-Product Attention

Multi-head Attention

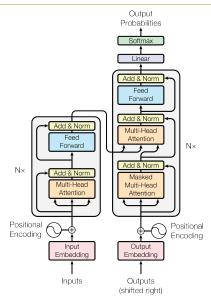
$$Attention(Q, K, V) = softmax(\frac{QK^{T}}{\sqrt{d_k}})V$$

$$MultiHead(Q, K, V) = Concat(H_1, ..., H_h) W^O$$

$$H_i = Attention(QW_i^Q, KW_i^K, VW_i^V), i = 1, ..., h$$

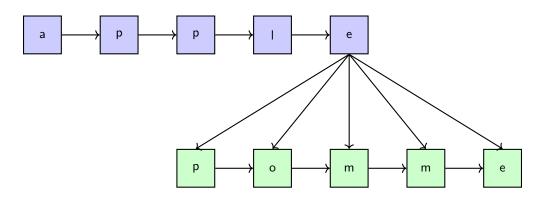
$$W_i^Q \in \mathbb{R}^{d_{model} \times d_k}, W_i^K \in \mathbb{R}^{d_{model} \times d_k}, W_i^V \in \mathbb{R}^{d_{model} \times d_v}, W_i^O \in \mathbb{R}^{hd_v \times d_{model}}$$

Original Transformer (Vaswani et al. 2017)



Seq2Seq Translation: Apple to Pomme

Encoder

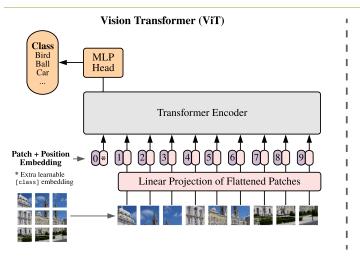


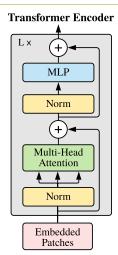
ViT: Vision Transformers

Vision Transformer, **ViT** (Dosovitskiy et al. 2020) -

Inspired by the Transformer scaling successes in NLP, we experiment with applying a standard Transformer directly to images, with the fewest possible modifications. To do so, we split an image into patches and provide the sequence of linear embeddings of these patches as an input to a Transformer. Image patches are treated the same way as tokens (words) in an NLP application. We train the model on image classification in supervised fashion. (Dosovitskiy et al. 2020)

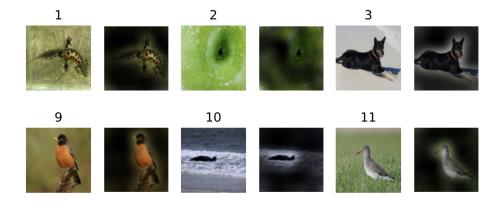
ViT: Vision Transformers





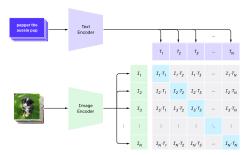
(Dosovitskiy et al. 2020)

ViT attention



What is CLIP?

1. Contrastive pre-training

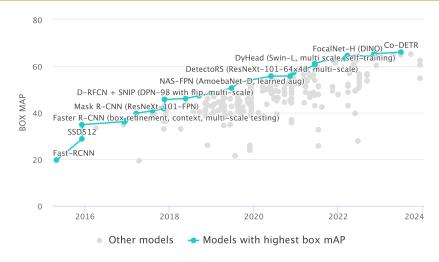


- ► CLIP stands for Contrastive Language—Image Pretraining.
- Developed by OpenAI, it combines text and image understanding.
- Utilizes a large dataset of text-image pairs for training.

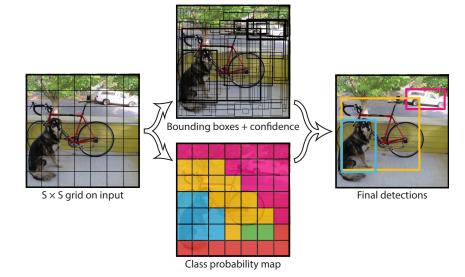
Object Detection

Object Detection

Object Detection



YOLO



▶ Popular approach: detection := classification of boxes

- ▶ Popular approach: detection := classification of boxes
- Requires selecting a subset of candidate boxes

- ▶ Popular approach: detection := classification of boxes
- Requires selecting a subset of candidate boxes
- Regression step to refine the predictions

- Popular approach: detection := classification of boxes
- Requires selecting a subset of candidate boxes
- Regression step to refine the predictions
- Typically non-differentiable

DETR: Rethinking object detection

Neural machine translation from features to boxes

transformer encoder-decoder

set of image features

set of box predictions

DETR: Rethinking object detection

Neural machine translation from features to boxes



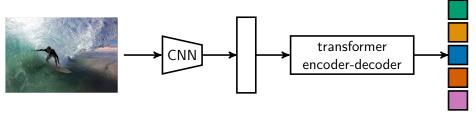
set of image features

set of box predictions

End-to-end parallel set prediction

DETR: Rethinking object detection

Neural machine translation from features to boxes

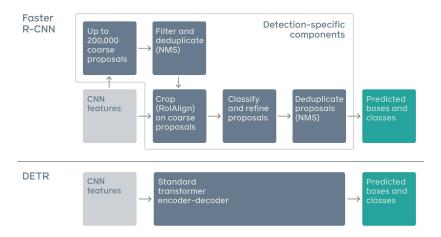


set of image features

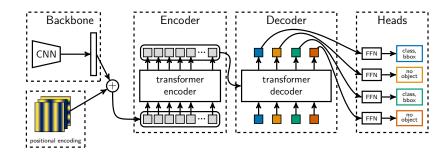
set of box predictions

- End-to-end parallel set prediction
- Global scene reasoning

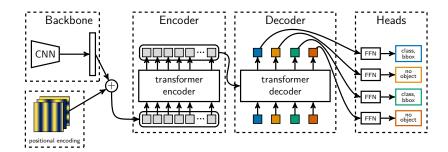
Streamlined detection pipeline



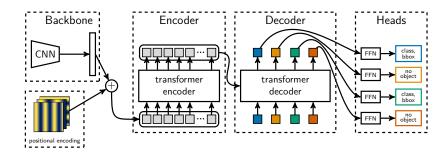
► We use standard ResNet from torchvision



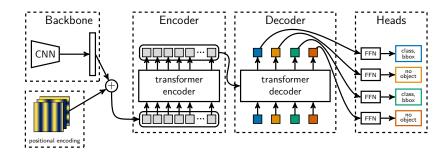
- ► We use standard ResNet from torchvision
- Pretraining on Imagenet is key (labels or SSL)



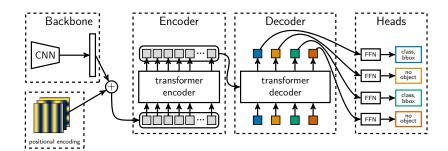
► We use 2D sine/cosine embeddings



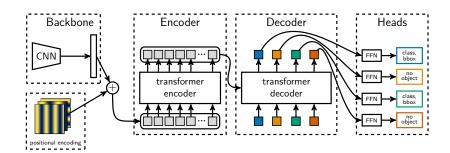
- ▶ We use 2D sine/cosine embeddings
- ► Embeddings are added to features



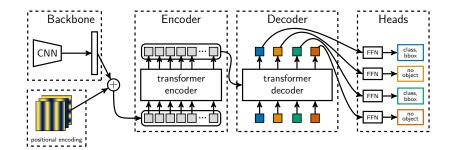
We use 6 layers of transformer encoder



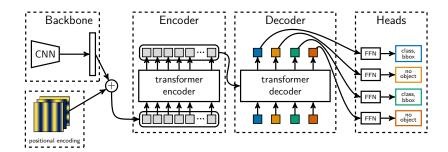
- We use 6 layers of transformer encoder
- ► Global reasoning through attention



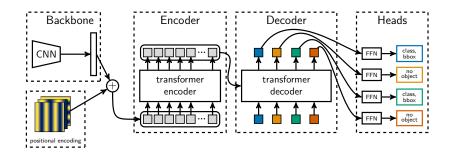
- We use 6 layers of transformer encoder
- ► Global reasoning through attention
- Starts separating instances



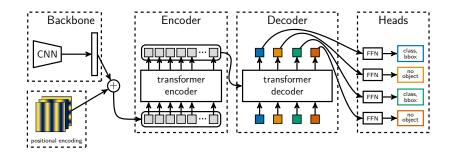
We use 6 layers of transformer decoder;



- We use 6 layers of transformer decoder;
- ► Attention focuses on extremities



- We use 6 layers of transformer decoder;
- ► Attention focuses on extremities
- Predictions are refined at each layer in parallel



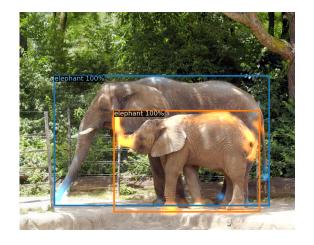
Decoder attention weights

6 decoder layers of:

- self-attention
- enc-dec attention
- ► FFN
- LayerNorm

All outputs are decoded in parallel

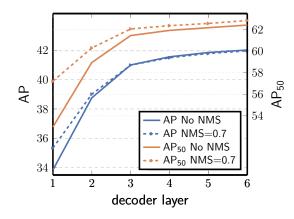
Attention focuses on extremities



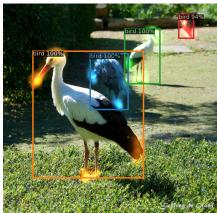
Decoder: no NMS needed

- ► AP/AP₅₀ goes up in lower layers (no communication)
- ► AP goes down in the last layers
- ► AP₅₀ goes up slightly

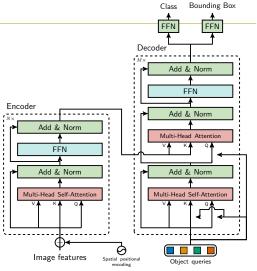
There is no need for NMS in DETR



Decoder attention weights



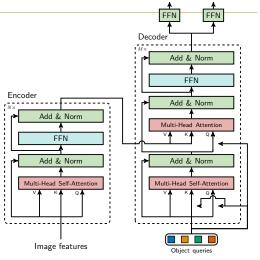
▶ Base transformer 39.2 AP^a



^aAshish Vaswani et al. (2017). "Attention is All you Need". In: *NeurIPS*.

► Base transformer 39.2 AP^a

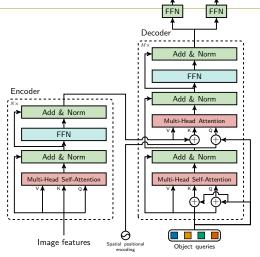
No input positional encoding 32.8 AP



^aAshish Vaswani et al. (2017). "Attention is All you Need". In: *NeurIPS*.

Bounding Box

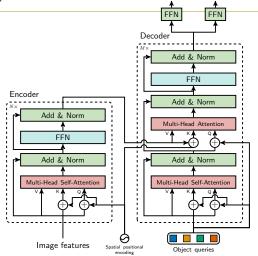
- ► Base transformer 39.2 AP^a
- No input positional encoding 32.8 AP
- ► Encodings in decoder attentions only 39.3 AP



^aAshish Vaswani et al. (2017). "Attention is All you Need". In: *NeurIPS*.

Bounding Box

- ► Base transformer 39.2 AP^a
- ► No input positional encoding 32.8 AP
- ► Encodings in decoder attentions only 39.3 AP
- Encodings in all attentions40.6 AP



^aAshish Vaswani et al. (2017). "Attention is All you Need". In: *NeurIPS*.

Bounding Box

- ► Base transformer 39.2 AP^a
- ► No input positional encoding 32.8 AP
- ► Encodings in decoder attentions only 39.3 AP
- Encodings in all attentions40.6 AP

All transformer parts are contributing!

^aAshish Vaswani et al. (2017). "Attention is All you Need". In: *NeurIPS*.

