Soft Riemann-Hilbert problems and planar orthogonal polynomials

Haakan Hedenmalm

26 October 2022

Bergman kernel asymptotics and microlocal analysis

The Bergman (Hilbert) space $\mathcal{H}=A^2(\Omega,w)$ consists of the holomorphic functions $f:\Omega\to\mathbb{C}$ with

$$||f||_{\mathcal{H}}^2 = \int_{\mathbb{C}} |f|^2 w \mathrm{dA} < +\infty$$

where dA denotes (normalized) are measure. Here, $\Omega\subset\mathbb{C}$ and $w:\Omega\to\mathbb{R}_+$ is a continuous weight function. We could consider later on Ω as a subdomain of a Riemann surface, or a higher-dimensional complex manifold. The Bergman kernel associated with $\mathcal H$ a domain Ω and a weight $\omega>0$ is the function $k_{\mathcal H}(\cdot,\cdot)$ with

$$\forall f \in \mathcal{H}: f(z) = \langle f, k_{\mathcal{H}}(\cdot, z) \rangle_{\mathcal{H}}, \quad z \in \Omega.$$

The study of Bergman kernels has a nontrivial intersection with microlocal analysis (Boutet de Monvel, Sjöstrand, Berman-Berndtsson-Sjöstrand et al). Here, we consider a nonlocal instance when the analysis takes place along a *loop* in place of a point.

Commentary on the microlocal methods

In the work of Berman-Berndtsson-Sjöstrand the following operator identity is central:

$$S\nabla = 2mM_{z-w}S,\tag{1}$$

where

$$abla = \partial_{\theta} + 2mM_{z-w}, \quad S = \exp\left(\frac{1}{2m}\partial_{w}\partial_{\theta}\right).$$

Here, w and θ are the variables, and we may fix wlog that z:=0. The identity (1) permits us to test for the *negligible amplitudes* $a=\nabla A$ by applying the diffusion operator S. In this setting, m is a positive parameter which tends to infinity, M_{z-w} is multiplication by z-w, and (w,θ) is a deformation of (w,\bar{w}) as holomorphic coordinates. This works well in the local setting of a point z=0, but to handle the nonlocal setting of a loop we skip the search for S and look directly for the potential A for a given amplitude a. This search fits in with the matrix $\bar{\partial}$ -problem of Its and Takhtajan [6], which explicitly asks for a potential.

The setting: the confining potential Q

Growth requirement

We require that $Q:\mathbb{C}\to\mathbb{R}$ is C^2 -smooth, and that

$$Q(z) \geq (1 + \varepsilon_0) \log(1 + |z|) + \mathrm{O}(1)$$

holds in the complex plane \mathbb{C} , for some $\varepsilon_0 > 0$.

Subharmonic function classes

For $\tau > 0$, we let $\mathrm{Subh}_{\tau}(\mathbb{C})$ stand for the collection of subharmonic functions $u : \mathbb{C} \to \mathbb{R} \cup \{-\infty\}$ with growth controlled by

$$u(z) \le \tau \log(1+|z|) + \mathrm{O}(1)$$

at infinity.

Obstacle problem

For $0 < \tau < 1 + \varepsilon_0$, let \check{Q}_{τ} be given pointwise by

$$\check{Q}_{ au}(z) := \sup \big\{ q(z) : \ q \in \mathrm{Subh}_{ au}(\mathbb{C}), \ q \leq Q \ \ \mathsf{on} \ \ \mathbb{C} \big\}.$$

Properties of the solution to the obstacle problem

Growth

Trivially, $\check{Q}_{\tau} \leq Q$ everywhere. Also,

$$reve{Q}_{ au} = au \log(|z|+1) + \mathrm{O}(1)$$

at infinity.

Smoothness

The function \check{Q}_{τ} is $C^{1,1}$ -smooth on \mathbb{C} , and harmonic in $\mathbb{C}\setminus\mathcal{S}_{\tau}$, where

$$\mathcal{S}_{ au} := \{ z \in \mathbb{C} : \ \check{Q}_{ au}(z) = Q(z) \}$$

is the *contact set*, also called the *droplet*. The droplet is a compact subset of \mathbb{C} .

Our setting

We will concentrate on the parameter value $\tau = 1$.

Our assumptions

The set \mathcal{S}_1 is diffeomorphic to the closed disk $\bar{\mathbb{D}}$, where $\mathbb{D}:=\{z\in\mathbb{C}:|z|<1\}$. Moreover, the boundary $\Gamma_1:=\partial\mathcal{S}_1$ is a closed real-analytically smooth loop. In a neighborhood of Γ_1 , Q is real-analytically smooth, and $\Delta Q>0$ holds on the same neighborhood.

Remark

It is good to put these assumptions in perspective. If, e.g., we were to assume that Q is real-analytically smooth on \mathbb{C} , with $\Delta Q>0$ everywhere, it would not follow from this that \mathcal{S}_1 is simply connected with real-analytically smooth boundary loop. Instead, a theorem of Sakai (Acta Math 1991) guarantees that under those conditions, the boundary consists of isolated points and pieces of real-analytic arcs which may meet at classified singularities (cusps or kissing points).

Exponentially varying weights

Exponentially varying weights

We consider the weights $w_{mQ} := e^{-2mQ}$ and the weighted spaces $L^2_{mQ} := L^2(\mathbb{C}, w_{mQ} \mathrm{dA})$.

Then by the growth assumption on Q,

$$\int_{\mathbb{C}} (1+|z|)^{2n} \mathrm{e}^{-2mQ(z)} \mathrm{dA}(z) \leq C \int_{\mathbb{C}} (1+|z|)^{2n-2(1+\varepsilon_0)m} \mathrm{dA}(z),$$

which gives that if p is a polynomial of degree n, then $p \in L^2_{mQ}$ provided that $n < (1 + \varepsilon_0)m - 1$. We recall that a polynomial is said to be *monic* if its leading coefficient equals 1.

Orthogonal polynomials in L_{mQ}^2

We let P_0, P_1, P_2, \ldots denote the monic orthogonal polynomials in L^2_{mQ} . This may be a finite sequence.

The problem

Asymptotic analysis of $P = P_m$

We focus on degree n=m, and ask for an asymptotic formula for $P=P_m$ as $m\to +\infty$.

We notice that $m < (1 + \varepsilon_0)m - 1$ holds if and only if $\varepsilon_0 m > 1$, which is the case for big enough m.

The soft Riemann-Hilbert problem

The soft Riemann-Hilbert problem

Y = Y(z) is the 1×2 matrix

$$Y := (P, \Phi)$$

and W_{mQ} is the soft jump matrix

$$W_{mQ} := \begin{pmatrix} 0 & \mathrm{e}^{-2mQ} \\ 0 & 0 \end{pmatrix}.$$

The soft Riemann-Hilbert problem is the equation

$$\bar{\partial}Y = \bar{Y}W_{mQ} \tag{2}$$

coupled with the asymptotics at infinity

$$Y = (z^{n} + O(|z|^{n-1}), \quad O(|z|^{-n-1})).$$
(3)

Analysis of the soft Riemann-Hilbert problem

We calculate

$$ar{Y}W_{mQ} = \left(ar{P}, \quad ar{\Phi}\right) \left(egin{matrix} 0 & \mathrm{e}^{-2mQ} \ 0 & 0 \end{matrix}
ight) = \left(0\,, \quad ar{P}\,\mathrm{e}^{-2mQ}
ight).$$

On the other hand,

$$\bar{\partial}Y = (\bar{\partial}P, \bar{\partial}\Phi),$$

so the relation (2) amounts to

$$\bar{\partial}P = 0$$
, $\bar{\partial}\Phi = \bar{P}e^{-2mQ}$.

In particular, P is entire. Actually, from (3) we see that P is a *monic polynomial of degree n*. The second condition in (3) asserts that

$$\Phi(z) = O(|z|^{-n-1}) \quad \text{as } |z| \to +\infty.$$

We shall see that this condition expresses that P is orthogonal to all polynomials of lower degree than n in the space L_{mQ}^2 .

Analysis of the soft Riemann-Hilbert problem, II

We know that P is a monic polynomial of degree n, and that

$$\bar{\partial}\Phi = \bar{P} e^{-2mQ}$$
.

This equation is solved by convolution with the fundamental solution for the $\bar{\partial}$ operator:

$$\Phi(z) = \int_{C} \frac{\bar{P}(\xi) e^{-2mQ(\xi)}}{z - \xi} dA(\xi).$$

Finite geometric series expansion gives that

$$\frac{1}{z-\xi} = \frac{1}{z} + \frac{\xi}{z^2} + \dots + \frac{\xi^n}{z^{n+1}} + \frac{\xi^{n+1}}{z^{n+1}(z-\xi)},$$

so that

$$\Phi(z) = \int_{\mathbb{C}} \frac{P(\xi) e^{-2mQ(\xi)}}{z - \xi} dA(\xi) =$$

$$\sum_{j=0}^{n} z^{-j-1} \int_{\mathbb{C}} \xi^{j} \bar{P}(\xi) e^{-2mQ(\xi)} dA(\xi)$$

$$+ z^{-n-1} \int_{\mathbb{C}} \frac{\xi^{n+1} \bar{P}(\xi) e^{-2mQ(\xi)}}{z - \xi} dA(\xi).$$

Analysis of the soft Riemann-Hilbert problem, III

Proposition

If $n \leq (1 + \varepsilon_0)m - 2$, then

$$\Phi(z) = O(|z|^{-n-1})$$
 at $\infty \Longleftrightarrow \forall j = 0, \dots, n-1 : \langle z^j, P \rangle_{mQ} = 0.$

In other words, under the decay condition on Φ , P is the monic degree n orthogonal polynomial in L^2_{mQ} .

Ad-hoc ansatz for P

Let $\mathcal Q$ be the bounded holomorphic function in $\mathbb C\setminus\mathcal S_1$ with $\operatorname{Re}\mathcal Q=\mathcal Q$ on Γ_1 and $\operatorname{Im}\mathcal Q(\infty)=0$. It extends analytically across Γ_1 . Also, let $\phi:\mathbb C\setminus\mathcal S_1\to\mathbb D_{\operatorname{e}}$ be the conformal mapping that preserves infinity with $\phi'(\infty)>0$.

The ansatz for P

We fix n = m, and put

$$P = c_m \phi^m e^{mQ} F,$$

where $c_m:=(\phi'(\infty)^{-m-1}\mathrm{e}^{-m\mathcal{Q}(\infty)}>0$. We normalize $F(\infty)=\phi'(\infty)$.

Remark

The functions on the right-hand side are not well-defined in the entire plane, while P is. The expressions on the right-hand side are all holomorphic in $\mathbb{C} \setminus \mathcal{S}_1$ and extend across Γ_1 .

The ansatz for Φ

The function \check{Q}_1 is harmonic in $\mathbb{C}\setminus\mathcal{S}_1$. In our setting the restriction to $\mathbb{C}\setminus\mathcal{S}_1$ possesses a harmonic extension across Γ_1 , which we call \check{Q}_1 . Then

$$\breve{Q}_1 = \operatorname{Re} \mathcal{Q} + \log |\phi|.$$

We put $R := Q - \check{Q}_1$, which has quadratic growth around Γ_1 . Let

$$\operatorname{erf}(x) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^{2}/2} dt$$

be the standard Gaussian error function.

The ansatz for Φ

We put

$$\Phi = c_m \, m^{-\frac{1}{2}} \phi^{-m} e^{-mQ} \left\{ A \operatorname{erf} \left(2m^{\frac{1}{2}} V \right) + (2\pi m)^{-\frac{1}{2}} B \chi_1 \, e^{-2mR} \right\},\,$$

where $V^2=R$ near Γ_1 . V is positive in the exterior to Γ_1 , and negative in the interior. Moreover, A is holomorphic in $\mathbb{C}\setminus\mathcal{S}_1$ and across Γ_1 .

Asymptotic expansions

The functions F, A, B are supposed to have asymptotic expansions in m^{-1} :

$$F = F_0 + m^{-1}F_1 + m^{-2}F_2 + \dots,$$

where each F_j is fixed independently of m. The same for A and B of course. No convergence is assumed, however. What is meant is that for each positive integer N,

$$F = F_0 + m^{-1}F_1 + \ldots + m^{-N}F_N + O(m^{-N-1}).$$

Here, each F_j is holomorphic and bounded in $\mathbb{C} \setminus S_1$ and across Γ_1 . Likewise, in the expansion

$$A = A_0 + m^{-1}A_1 + \ldots + m^{-N}A_N + O(m^{-N-1}),$$

each A_j is holomorphic and bounded in $\mathbb{C} \setminus \mathcal{S}_1$ and across Γ_1 . However, the corresponding terms B_j associated with B are only smooth in a neighborhood of Γ_1 .

The basic equation

The function χ_1 is a C^{∞} -smooth cut-off function, which equals 1 in a fixed neighborhood of Γ_1 , and vanishes off a slightly bigger neighborhood. We put $B^1=B\chi_1$, and calculate:

$$\bar{\partial}\Phi = (2/\pi)^{\frac{1}{2}}c_m\,\phi^{-m}\mathrm{e}^{-m\mathcal{Q}}\big(A\bar{\partial}V - B^1\bar{\partial}R + \tfrac{1}{2}m^{-1}\bar{\partial}B^1\big)\mathrm{e}^{-2mR}$$

in a neighborhood of Γ_1 . On the other hand, we observe that

$$\bar{P} e^{-2mQ} = \bar{F} \phi^{-m} e^{-mQ} e^{-2mR}.$$

Equality of these two expressions reduces to the equation (since $V^2 = R$)

$$A\bar{\partial}V - 2BV\,\bar{\partial}V + \frac{1}{2}m^{-1}\bar{\partial}B = (\pi/2)^{\frac{1}{2}}\bar{F} \tag{4}$$

in a small neighborhood of Γ_1 , as $B^1 = B\chi_1 = B$ there.

The first equation

We restrict to Γ_1 and use that V=0 there:

$$A\bar{\partial}V + \frac{1}{2}m^{-1}\bar{\partial}B = (\pi/2)^{\frac{1}{2}}\bar{F}$$
 on Γ_1 . (5)

where it is given that

$$F(z) = \phi'(\infty) + O(|z|^{-1}), \quad A(z) = O(|z|^{-1}).$$

Remark

The equation (5) amounts to a Riemann-Hilbert problem in an alternative coordinate chart (where the unit circle \mathbb{T} replaces Γ_1).

The second equation

For the moment we observe that the first equation involves an unknown B, but luckily it is of higher order, so it does influence the first terms A_0 and F_0 which get determined right away by the Riemann-Hilbert problem. The original equation (4) contains more information than (5) alone. Suppose for the moment we were able to solve the equation (5). Then we may solve for B using (4):

$$B = \frac{A\bar{\partial}V + \frac{1}{2}m^{-1}\bar{\partial}B - (\pi/2)^{\frac{1}{2}}\bar{F}}{2V\bar{\partial}V}.$$
 (6)

Since V vanishes only to degree 1 with $\bar{\partial}V \neq 0$ along Γ_1 , the division produces a smooth function, and if the numerator is real-analytic across Γ_1 , so is the ratio and hence B.

The iteration

The combination of the Riemann-Hilbert "jump" problem (5) and the smooth division problem (6) supplies the full algorithm. We may liken it to the Newton algorithm for finding the zeros of polynomials: once we are in the ballpark the algorithm gets us ever closer to the solution. We use (5) with B=0 to get the initial A and F. Next, we apply (6) with the previous choices of A, F, and B to get an updated choice for B. This new B is then implemented into (5) to get improved A and F. Proceeding iteratively we obtain the full asymptotic expansion.

Transfer to the unit circle

We write $\varphi = \varphi_1 := \varphi_1^{-1} : \mathbb{D}_e \to \mathbb{C} \setminus \mathcal{S}_1$ for the indicated conformal mapping, tacitly extended across \mathbb{T} , and consider

$$R := R \circ \varphi, \quad V := V \circ \varphi, \quad \Psi := \Phi \circ \varphi,$$

and the associated functions

$$A := A \circ \varphi, \quad B := B \circ \varphi, \quad F := \varphi' F \circ \varphi.$$

Here, A and F are holomorphic functions in a neighborhood of $\bar{\mathbb{D}}_e$ with asymptotics in accordance with the *first equation*:

$$F(z) = 1 + O(|z|^{-1}), \quad A(z) = O(|z|^{-1}),$$

as $|z| \to +\infty$. In particular, F is bounded with value 1 at infinity, while A is bounded and vanishes at infinity.

The first and second equations in new coordinates

In terms of these functions, the equation (4) reads

$$\mathrm{A}\bar{\partial}\mathrm{V} - 2\mathrm{B}\mathrm{V}\,\bar{\partial}\mathrm{V} + \tfrac{1}{2}m^{-1}\bar{\partial}\mathrm{B} = (\pi/2)^{\frac{1}{2}}\bar{\mathrm{F}}.$$

Just as before, we split the equation in two separate steps:

$$A\bar{\partial}V + \frac{1}{2}m^{-1}\bar{\partial}B = (\pi/2)^{\frac{1}{2}}\bar{F}$$
 on \mathbb{T} ,

and

$$\mathbf{B} = \frac{\mathbf{A}\bar{\partial}\hat{\mathbf{R}} + \frac{1}{2}m^{-1}\bar{\partial}\mathbf{B} - (\pi/2)^{\frac{1}{2}}\bar{\mathbf{F}}}{2\mathbf{V}\bar{\partial}\mathbf{V}}.$$

Remark

We refer to these as steps I and II, which we analyze below in some detail.

The solution algorithm: preliminaries

Local analysis around the circle ${\mathbb T}$ shows that

$$\bar{\partial} V = 2^{-\frac{1}{2}} (\Delta R)^{\frac{1}{2}} \zeta \quad \text{on } \mathbb{T}. \tag{7}$$

Here and in the sequel, ζ stands for the coordinate function $\zeta(z)=z$. Let $\mathbf{H}_{\mathbb{D}_{\mathrm{e}}}$ be the *exterior Herglotz operator*

$$\mathbf{H}_{\mathbb{D}_{\mathrm{e}}}f(z) := \int_{\mathbb{T}} rac{z+\zeta}{z-\zeta} f(\zeta) \mathrm{d} s(\zeta), \qquad z \in \mathbb{D}_{\mathrm{e}},$$

where $\mathrm{d}s$ is arclength measure, normalized so that the circle \mathbb{T} gets mass 1. The characterizing property is that the real part of $\mathbf{H}_{\mathbb{D}_{\mathrm{e}}}f$ has boundary value equal to f. We will also need the projection operators

$$\mathbf{P}_{H_{-}^{2}}f = \frac{1}{2}\mathbf{H}_{\mathbb{D}_{e}}f + \frac{1}{2}\langle f \rangle_{\mathbb{T}}, \quad \mathbf{P}_{H_{-,o}^{2}}f = \frac{1}{2}\mathbf{H}_{\mathbb{D}_{e}}f - \frac{1}{2}\langle f \rangle_{\mathbb{T}},$$

where $\langle f \rangle_{\mathbb{T}}$ is the mean of f with respect to arc length measure.

The solution algorithm: preliminaries II

We introduce the function H_{R} given by

$$H_R := \pi^{-\frac{1}{4}} \exp\left(\frac{1}{4} \mathbf{H}_{\mathbb{D}_e}[\log \Delta R]\right),$$

which is a bounded (and bounded away from 0) holomorphic function in \mathbb{D}_{e} with holomorphic extension across $\mathbb{T}.$ Then $|H_{\mathrm{R}}|^2=\pi^{-\frac{1}{2}}(\varDelta R)^{\frac{1}{2}}$ holds on $\mathbb{T},$ and the value at infinity equals

$$H_{R}(\infty) = \pi^{-\frac{1}{4}} \exp(\frac{1}{4} \langle \log \Delta R \rangle_{\mathbb{T}}) > 0.$$

It now follows that

$$\bar{\partial} V = 2^{-\frac{1}{2}} \zeta (\Delta R)^{\frac{1}{2}} = (\pi/2)^{\frac{1}{2}} \zeta |H_R|^2 \quad \text{on } \mathbb{T}.$$

The solution algorithm: step I

The step I equation may be written as

$$\frac{\mathrm{F}}{\mathrm{H}_{\mathrm{R}}} = \overline{\zeta} \mathrm{A} \mathrm{H}_{\mathrm{R}} + (2\pi)^{-\frac{1}{2}} m^{-1} \frac{\partial \bar{\mathrm{B}}}{\mathrm{H}_{\mathrm{R}}} \quad \text{on } \ \mathbb{T}.$$

From the data, we see that F/H_R is bounded and holomorphic in \mathbb{D}_e , so that $F/H_R \in \mathcal{H}_-^2$, whereas $\overline{\zeta A H_R}$ extends by Schwarz reflection to a bounded holomorphic function on \mathbb{D} , so that $\overline{\zeta A H_R} \in \mathcal{H}^2$. This means that the step I equation is a Riemann-Hilbert problem with jump $(2\pi)^{-\frac{1}{2}} m^{-1} \partial \bar{\mathbb{B}}/H_R$, a situation which can be handled.

Step I solution

We have, for a constant a_1 ,

$$\frac{\mathrm{F}}{\mathrm{H}_{\mathrm{R}}} = a_{1} + \frac{(2\pi)^{-\frac{1}{2}}}{m} \mathbf{P}_{H_{-,0}^{2}} \left[\frac{\partial \bar{\mathrm{B}}}{\mathrm{H}_{\mathrm{R}}} \right],$$

and

$$\zeta A H_{R} = \bar{a}_{1} - \frac{(2\pi)^{-\frac{1}{2}}}{m} \mathbf{P}_{H_{-}^{2}} \begin{bmatrix} \bar{\partial} B \\ \bar{\mathbf{H}}_{R} \end{bmatrix}.$$

The constant a_1

The constant a_1

$$a_1 = \left\langle \frac{F}{H_R} \right\rangle_{\mathbb{R}} = \frac{F(\infty)}{H_R(\infty)} = \frac{1}{H_R(\infty)} = \pi^{\frac{1}{4}} \exp\left(-\frac{1}{4} \langle \log \Delta R \rangle_{\mathbb{T}}\right) > 0,$$

since $F(\infty)=1$ is our assumed normalization and $H_R(\infty)$ is known.

The solution algorithm: step II

We write

$$\bar{\partial}V = (\pi/2)^{\frac{1}{2}} \zeta |H_{R}|^{2} + 2W_{R}V\bar{\partial}V, \qquad (8)$$

where the expression W_R is real-analytic near \mathbb{T} . We let $\mathbf{U}_{\mathbb{D}_e}$ stand for the harmonic extension to \mathbb{D}_e of the restriction to \mathbb{T} of a given smooth function. We now find from Step I that

$$\zeta \mathrm{AH}_{\mathrm{R}} = \mathbf{U}_{\mathbb{D}_{\mathrm{e}}}[\zeta \mathrm{AH}_{\mathrm{R}}] = \frac{\bar{\mathrm{F}}}{\bar{\mathrm{H}}_{\mathrm{R}}} - (2\pi)^{-\frac{1}{2}} m^{-1} \mathbf{U}_{\mathbb{D}_{\mathrm{e}}} \left[\frac{\bar{\partial} \mathrm{B}}{\bar{\mathrm{H}}_{\mathrm{R}}} \right]$$

holds in a neighborhood of the closed exterior disk $\bar{\mathbb{D}}_{e}$, in the sense that each term extends harmonically across \mathbb{T} .

Step II solution

$$\mathrm{B} = \mathrm{A} \textit{W}_\mathrm{R} + \frac{1}{2m} \frac{\bar{\partial} \mathrm{B} - \bar{\mathrm{H}}_\mathrm{R} \textbf{U}_{\mathbb{D}_\mathrm{e}} (\bar{\partial} \mathrm{B} / \bar{\mathrm{H}}_\mathrm{R})}{2 \mathrm{V} \bar{\partial} \mathrm{V}}$$

Combining Steps I and II

We first apply Step I with B=0 to get candidates for A and F. The next step is to apply Step II with the given A to get a better B. This better B we again implement in Step I, to get new and improved A and F. Again we apply Step II to get an even better B. We intermittently apply steps I and II and zoom in on the solution.

The equation for the function B alone

It is more convenient to work with a single equation for the function B alone (get rid of A).

The equation for B

$$\mathrm{B} = a_1 \frac{W_\mathrm{R}}{\zeta \mathrm{H}_\mathrm{R}} + m^{-1} \left(\frac{\bar{\partial} \mathrm{B} - \bar{\mathrm{H}}_\mathrm{R} \mathbf{U}_{\mathbb{D}_\mathrm{e}} [\bar{\partial} \mathrm{B} / \bar{\mathrm{H}}_\mathrm{R}]}{4 \mathrm{V} \bar{\partial} \mathrm{V}} - (2\pi)^{-\frac{1}{2}} \frac{W_\mathrm{R}}{\zeta \mathrm{H}_\mathrm{R}} \mathbf{P}_{H^2_-} \left[\frac{\bar{\partial} \mathrm{B}}{\bar{\mathrm{H}}_\mathrm{R}} \right] \right).$$

This is an operator equation of the type

$$\mathrm{B}=\mathrm{B}_0+\mathit{m}^{-1}\mathsf{T}[\mathrm{B}],\quad \text{where}\quad \mathrm{B}_0:=\mathit{a}_1\frac{\mathit{W}_\mathrm{R}}{\zeta\mathrm{H}_\mathrm{R}}\quad \text{and}\quad \mathsf{T}[\mathrm{B}]:=\mathsf{L}[\bar{\partial}\mathrm{B}/\bar{\mathrm{H}}_\mathrm{R}],$$
 and the operator L is given by

$$\mathbf{L}[f] := \bar{\mathbf{H}}_{\mathrm{R}} \frac{f - \mathbf{U}_{\mathbb{D}_{\mathrm{e}}}[f]}{4 \mathrm{V} \bar{\partial} \mathrm{V}} - (2\pi)^{-\frac{1}{2}} \frac{W_{\mathrm{R}}}{\zeta \mathrm{H}_{\mathrm{R}}} \mathbf{P}_{H_{-}^{2}}[f].$$

Iterative solution for B

We may attempt to solve the equation for \boldsymbol{B} by iteration, that is, by finite Neumann series approximation.

Approximate solution B

We put

$$B^{\approx} = B_0 + m^{-1}T[B_0] + ... + m^{-\kappa+1}T^{\kappa-1}[B_0],$$

for some appropriately chosen $\kappa = \kappa_*(m) \asymp \sqrt{m}$.

Then

$$\mathbf{B}^{\approx} = \mathbf{B}_0 + m^{-1} \mathbf{T}[\mathbf{B}^{\approx}] + \mathcal{E}_m, \quad \mathcal{E}_m := -m^{-\kappa} \mathbf{T}^{\kappa}[\mathbf{B}_0].$$

Since we want to minimize the error \mathcal{E}_m , it is natural to study the growth of the norm of $\mathbf{T}^k[B_0]$ as k grows. This can be done using the methods of the Nishida-Nirenberg theorem. We obtain A^\approx and F^\approx from Step I using B^\approx in place of B.

Main result

Theorem

We put $P^{pprox}:=c_m\phi^m\mathrm{e}^{m\mathcal{Q}}F^{pprox}$, where $F^{pprox}=\varphi'\mathrm{F}^{pprox}\circ\varphi$. Then each F_j extends holomorphically to a fixed neighborhood of $\mathbb{C}\setminus\mathrm{int}\,\mathcal{S}_1$ for each $j=0,\ldots,\kappa_*(m)$, while $\log F_0$ is bounded and holomorphic in the same neighborhood. Then there exists a fixed C^{∞} -smooth cut-off function $\chi_{1,1}$ on \mathbb{C} , with $0\leq\chi_{1,1}\leq 1$, which equals 1 in an open neighborhood of the closure of $\mathbb{C}\setminus\mathcal{S}_1$, and vanishes off a slightly larger neighborhood, such that $\chi_{1,1}P^{pprox}$ becomes globally well-defined. Moreover, it is close to the monic orthogonal polynomial P of degree n=m in L^2_{mQ} :

$$\|P - \chi_{1,1} P^{pprox}\|_{mQ} = \mathrm{O}(c_m m^{\frac{1}{2}} \mathrm{e}^{-\epsilon \sqrt{m}}), \quad \text{where } \|\chi_{1,1} P^{pprox}\|_{mQ} \asymp c_m m^{-\frac{1}{4}}.$$

Here, $\epsilon>0$ is a constant that only depends on $\it Q$. It follows that

$$P = c_m \phi^m e^{mQ} \left(F^{pprox} + O(m e^{-\frac{1}{2}\epsilon\sqrt{m}}) \right), \quad \text{on } D_m,$$

holds in the uniform norm as $m \to +\infty$, where D_m is the union of $\mathbb{C} \setminus \mathcal{S}_1$ and a certain band of width $\asymp m^{-\frac{1}{4}}$ around the loop $\Gamma_1 = \partial \mathcal{S}_1$.

Commentary

The proof of the theorem is based on Hörmander's L^2 methods for the $\bar{\partial}$ -equation using suitably chosen smooth cut-off functions, as well as the Bernstein-Walsh type pointwise growth estimate based on weighted area-integrability.

Comparison with the Hedenmalm-Wennman theorem

The first result of this type is the recent work [5]. There, no effective growth control of the asymptotic expansion for F was obtained, so the result was somewhat weaker, in particular regarding the domain where the expansion holds. In addition, the foliation method of [5] is technically more demanding. The algorithm presented here is more transparent.

Bibliography

- 1. Ameur, Y., Hedenmalm, H., Makarov, N., *Fluctuations of random normal matrices*. Duke Math. J. **159** (2011), 31-81.
- 2. Berman, R., Berndtsson, R., Sjöstrand, J., A direct approach to Bergman asymptotics for positive line bundles. Ark. Mat. 46 (2008), 197-217.
- 3. Carleman, T., Über die Approximation analytischer Funktionen durch lineare Aggregate von vorgegebenen Potenzen. Ark. Mat. Astron. Fys. 17 (1923), 1-30.
- 4. Hedenmalm, H., *Soft Riemann-Hilbert problems and orthogonal polynomials.* Submitted.
- 5. Hedenmalm, H., Wennman, A., *Planar orthogonal polynomials and boundary universality in the normal matrix model*. Acta Math. **227** (2021), 309-406.

Bibliography, cont

- 6. Its, A. R., Takhtajan, L. A., Normal matrix models, $\bar{\partial}$ -problem, and orthogonal polynomials on the complex plane. arXiv:0708.3867
- 7. Klein, C., McLaughlin, K., *Spectral approach to D-bar problems*. Comm. Pure Appl. Math. **70** (2017), no. 6, 1052-1083.
- 8. Nishida, T., *A note on a theorem of Nirenberg*. J. Differential Geometry **12** (1977), no. 4, 629-633.
- 9. Szegő, G., Über orthogonale Polynome die zu einer gegebenen Kurve der komplexen Ebene gehören. Math. Z. **9** (1921), 218-270.