Quantization of irregular Riemann-Hilbert maps

Xiaomeng Xu Peking University

Sino-Russian Interdisciplinary Mathematical Conference-2 Steklov Mathematical Institute of RAS Lomonosov Moscos State University November 25-29, 2024

• linear ODE for a complex function f(z)

$$f^{(n)}(z) + a_{n-1}(z)f^{(n-1)}(z) + \dots + a_0(z)f(z) = 0$$

where $a_i(z)$ are rational functions on complex z plane.

• linear ODE for a complex function f(z)

$$f^{(n)}(z) + a_{n-1}(z)f^{(n-1)}(z) + \dots + a_0(z)f(z) = 0$$

where $a_i(z)$ are rational functions on complex z plane.

Example

- $f'(z) \frac{a}{z}f(z) = 0$. One solution is $f(z) = z^a = e^{a\log(z)}$.
- $f''(z) + \frac{c (a+b+1)z}{z(1-z)} f'(z) + \frac{ab}{z(1-z)} f(z) = 0$, One solution is given by the hypergeometric function that has singularities at z = 0, 1.

• linear ODE for a complex function f(z)

$$f^{(n)}(z) + a_{n-1}(z)f^{(n-1)}(z) + \dots + a_0(z)f(z) = 0$$

where $a_i(z)$ are rational functions on complex z plane.

Example

- $f'(z) \frac{a}{z}f(z) = 0$. One solution is $f(z) = z^a = e^{a\log(z)}$.
- $f''(z) + \frac{c (a+b+1)z}{z(1-z)} f'(z) + \frac{ab}{z(1-z)} f(z) = 0$, One solution is given by the hypergeometric function that has singularities at z = 0, 1.

Proposition

Any solution f(z) is a multivalued meromorphic function on \mathbb{C} that can only have singularity at z_0 , where z_0 is a pole of some $a_i(z)$.

• linear ODE for a complex function f(z)

$$f^{(n)} + a_{n-1}(z)f^{(n-1)} + \dots + a_0(z)f = 0$$

where $a_i(z)$ are rational functions on complex z plane.

• linear ODE for a complex function f(z)

$$f^{(n)} + a_{n-1}(z)f^{(n-1)} + \dots + a_0(z)f = 0$$

where $a_i(z)$ are rational functions on complex z plane.

Question: what is the asymptotics of f(z) as z approaches to a singularity (in terms of $a_i(z)$)?

• linear ODE for a complex function f(z)

$$f^{(n)} + a_{n-1}(z)f^{(n-1)} + \dots + a_0(z)f = 0$$

where $a_i(z)$ are rational functions on complex z plane.

Question: what is the asymptotics of f(z) as z approaches to a singularity (in terms of $a_i(z)$)?

Example

Consider $f'' - \frac{zb-1}{z^2}f' - \frac{a}{z^2}f = 0$. Its solution ${}_1F_1(a,b;z) = \sum_{n\geq 0}^{\infty} \frac{a^{(n)}}{b^{(n)}} \frac{z^{-n}}{n!}$, with $a^{(n)} := a(a+1)\cdots(a+n-1)$ has the asymptotics

$$_1F_1(a,b;z) = \begin{cases} \frac{\Gamma(b)}{\Gamma(a)}e^{-z}z^{b-a}, & as \ z \to 0 \ from \ left \ half \ plane \\ \frac{\Gamma(b)}{\Gamma(b-a)}(-z)^a, & as \ z \to 0 \ from \ left \ right \ plane. \end{cases}$$

• linear ODE for a complex function f(z)

$$f^{(n)} + a_{n-1}(z)f^{(n-1)} + \dots + a_0(z)f = 0$$

where $a_i(z)$ are rational functions on complex z plane.

- (1) what is the asymptotics of f(z) as z approaches to a singularity (in terms of $a_i(z)$)?
- (2) For a small parameter ε , consider

$$\varepsilon f^{(n)} + a_{n-1}(z)f^{(n-1)} + \dots + a_0(z)f = 0$$

what is the behaviour of $f(z;\varepsilon)$ as $\varepsilon \to 0$?

• linear ODE for a complex function f(z)

$$f^{(n)} + a_{n-1}(z)f^{(n-1)} + \dots + a_0(z)f = 0$$

where $a_i(z)$ are rational functions on complex z plane.

- (1) what is the asymptotics of f(z) as z approaches to a singularity (in terms of $a_i(z)$)?
- (2) For a small parameter ε , consider

$$\varepsilon f^{(n)} + a_{n-1}(z)f^{(n-1)} + \dots + a_0(z)f = 0$$

what is the behaviour of $f(z;\varepsilon)$ as $\varepsilon \to 0$?

• Although appearing in many subjects, only known for second order ODE.

• linear ODE for a complex function f(z)

$$f^{(n)} + a_{n-1}(z)f^{(n-1)} + \dots + a_0(z)f = 0$$

where $a_i(z)$ are rational functions on complex z plane.

- (1) what is the asymptotics of f(z) as z approaches to a singularity (in terms of $a_i(z)$)?
- (2) For a small parameter ε , consider

$$\varepsilon f^{(n)} + a_{n-1}(z)f^{(n-1)} + \dots + a_0(z)f = 0$$

what is the behaviour of $f(z;\varepsilon)$ as $\varepsilon \to 0$?

- Although appearing in many subjects, only known for second order ODE.
- \bullet Idea: to "solve" ODE from a moduli viewpoint, via symplectic geometry and its quantization.

• Liner system of ODEs with d fixed simple poles at $z_1, ..., z_d$, i.e.,

$$\frac{dF}{dz} = \left(\frac{A_1}{z - z_1} + \dots + \frac{A_d}{z - z_d}\right) \cdot F(z).$$

Here $A_1, ..., A_d \in \mathfrak{gl}_n$. Thus de Rham space is $\mathfrak{gl}_n \times \cdots \times \mathfrak{gl}_n$.

• Liner system of ODEs with d fixed simple poles at $z_1, ..., z_d$, i.e.,

$$\frac{dF}{dz} = \left(\frac{A_1}{z - z_1} + \dots + \frac{A_d}{z - z_d}\right) \cdot F(z).$$

Here $A_1, ..., A_d \in \mathfrak{gl}_n$. Thus de Rham space is $\mathfrak{gl}_n \times \cdots \times \mathfrak{gl}_n$.

• Analytic continuation of any solution F(z) around loops gives a representation of fundamental group $\pi_1(\mathbb{C} \setminus \{z_1, ..., z_d\}, GL_n)$.

• Liner system of ODEs with d fixed simple poles at $z_1, ..., z_d$, i.e.,

$$\frac{dF}{dz} = \left(\frac{A_1}{z - z_1} + \dots + \frac{A_d}{z - z_d}\right) \cdot F(z).$$

Here $A_1, ..., A_d \in \mathfrak{gl}_n$. Thus de Rham space is $\mathfrak{gl}_n \times \cdots \times \mathfrak{gl}_n$.

- Analytic continuation of any solution F(z) around loops gives a representation of fundamental group $\pi_1(\mathbb{C} \setminus \{z_1, ..., z_d\}, GL_n)$.
- Such correspondence is called a RH map

$$\mathfrak{gl}_n \times \cdots \times \mathfrak{gl}_n \to \operatorname{Hom}(\pi_1, GL_n) \cong \operatorname{GL}_n \times \cdots \times \operatorname{GL}_n$$

 $(A_1, ..., A_d) \mapsto (M_1, ..., M_d)$

• Liner system of ODEs with d fixed simple poles at $z_1, ..., z_d$, i.e.,

$$\frac{dF}{dz} = \left(\frac{A_1}{z - z_1} + \dots + \frac{A_d}{z - z_d}\right) \cdot F(z).$$

Here $A_1, ..., A_d \in \mathfrak{gl}_n$. Thus de Rham space is $\mathfrak{gl}_n \times \cdots \times \mathfrak{gl}_n$.

- Analytic continuation of any solution F(z) around loops gives a representation of fundamental group $\pi_1(\mathbb{C} \setminus \{z_1, ..., z_d\}, GL_n)$.
- Such correspondence is called a RH map

$$\mathfrak{gl}_n \times \cdots \times \mathfrak{gl}_n \to \operatorname{Hom}(\pi_1, GL_n) \cong \operatorname{GL}_n \times \cdots \times \operatorname{GL}_n$$

 $(A_1, ..., A_d) \mapsto (M_1, ..., M_d)$

Theorem (Hitchin)

The RH map is locally analytic Symplectic/Poisson isomorphism.

• Linear system of ODEs with pole of degree $p_i > 1$ at z_i , i.e.,

$$\frac{dF}{dz} = \left(\sum_{i=1}^{d} \sum_{j=1}^{p_i} \frac{A_{i,j}}{(z - z_i)^j}\right) F,$$

where $A_{i,j} \in \mathfrak{gl}_n$.

• Linear system of ODEs with pole of degree $p_i > 1$ at z_i , i.e.,

$$\frac{dF}{dz} = \left(\sum_{i=1}^{d} \sum_{j=1}^{p_i} \frac{A_{i,j}}{(z - z_i)^j}\right) F,$$

where $A_{i,j} \in \mathfrak{gl}_n$.

• The monodromy is not enough to characterize the asymptotics of solutions F(z) as $z \to z_i$.

• Linear system of ODEs with pole of degree $p_i > 1$ at z_i , i.e.,

$$\frac{dF}{dz} = \left(\sum_{i=1}^{d} \sum_{j=1}^{p_i} \frac{A_{i,j}}{(z - z_i)^j}\right) F,$$

where $A_{i,j} \in \mathfrak{gl}_n$.

• The monodromy is not enough to characterize the asymptotics of solutions F(z) as $z \to z_i$.

Example $(n=2,d=1,p_1=2)$

Consider $f'' - \frac{zb-1}{z^2}f' - \frac{a}{z^2}f = 0$. Its solution ${}_1F_1(a,b;z) = \sum_{n\geq 0}^{\infty} \frac{a^{(n)}}{b^{(n)}} \frac{z^{-n}}{n!}$, with $a^{(n)} := a(a+1)\cdots(a+n-1)$ has the asymptotics

$$_1F_1(a,b;z) = \begin{cases} \frac{\Gamma(b)}{\Gamma(a)}e^{-z}z^{b-a}, & as \ z \to 0 \ from \ left \ half \ plane \\ \frac{\Gamma(b)}{\Gamma(b-a)}(-z)^a, & as \ z \to 0 \ from \ left \ right \ plane. \end{cases}$$

• Linear system of ODEs with pole of degree p_i at z_i , i.e.,

$$\frac{dF}{dz} = \left(\sum_{i=1}^{d} \sum_{j=1}^{p_i} \frac{A_{i,j}}{(z - z_i)^j}\right) F,$$

where $A_{i,j} \in \mathfrak{gl}_n$.

- The monodromy is not enough to characterize the asymptotics of solutions F(z) as $z \to z_i$.
- At each z_i , the ODE has internal monodromy data called Stokes matrices $(S_1^{(i)}, ..., S_{2p_i}^{(i)}) \in (B_- \times B_+)^{p_i}$.

• Linear system of ODEs with pole of degree p_i at z_i , i.e.,

$$\frac{dF}{dz} = \left(\sum_{i=1}^{d} \sum_{j=1}^{p_i} \frac{A_{i,j}}{(z - z_i)^j}\right) F,$$

where $A_{i,j} \in \mathfrak{gl}_n$.

- The monodromy is not enough to characterize the asymptotics of solutions F(z) as $z \to z_i$.
- At each z_i , the ODE has internal monodromy data called Stokes matrices $(S_1^{(i)}, ..., S_{2n_i}^{(i)}) \in (B_- \times B_+)^{p_i}$.
- The irregular RH map is an analytic map (fix pole degrees and positions)

$$\operatorname{Mat}_{n}^{p_{1}} \times \cdots \times \operatorname{Mat}_{n}^{p_{d}} \to (B_{-} \times B_{+})^{p_{1}} \times \cdots \times (B_{-} \times B_{+})^{p_{d}}$$

 $\{A_{i,j}\}_{i=1,\dots,j,j=1,\dots,p_{i}} \mapsto \{S_{j}^{(i)}\}_{i=1,\dots,d,j=1,\dots,2p_{i}}$

• Linear system of ODEs with pole of degree p_i at z_i , i.e.,

$$\frac{dF}{dz} = \left(\sum_{i=1}^{d} \sum_{j=1}^{p_i} \frac{A_{i,j}}{(z - z_i)^j}\right) F,$$

where $A_{i,j} \in \mathfrak{gl}_n$.

- The monodromy is not enough to characterize the asymptotics of solutions F(z) as $z \to z_i$.
- At each z_i , the ODE has internal monodromy data called Stokes matrices $(S_1^{(i)}, ..., S_{2n}^{(i)}) \in (B_- \times B_+)^{p_i}$.
- The irregular RH map is an analytic map (fix pole degrees and positions)

$$\operatorname{Mat}_{n}^{p_{1}} \times \cdots \times \operatorname{Mat}_{n}^{p_{d}} \to (B_{-} \times B_{+})^{p_{1}} \times \cdots \times (B_{-} \times B_{+})^{p_{d}}$$

 $\{A_{i,j}\}_{i=1,\dots,j,j=1,\dots,p_{i}} \mapsto \{S_{j}^{(i)}\}_{i=1,\dots,d,j=1,\dots,2p_{i}}$

• Known for n = 2, i = 1, $p_1 = 2$ (Kummer); for n = 2, i = 2, $p_1 = p_2 = 1$ (Riemann).

Irregular RH maps at pole of order k+1

• Consider the ODE for a function $f(z) \in GL_n$

$$\frac{df}{dz} = \left(\frac{u}{z^{k+1}} + \frac{A_k}{z^k} + \dots + \frac{A_2}{z^2} + \frac{A_1}{z}\right) \cdot f,$$

where u is diagonal matrix, and $A_i \in \mathfrak{gl}_n$.

Irregular RH maps at pole of order k+1

• Consider the ODE for a function $f(z) \in GL_n$

$$\frac{df}{dz} = \left(\frac{u}{z^{k+1}} + \frac{A_k}{z^k} + \dots + \frac{A_2}{z^2} + \frac{A_1}{z}\right) \cdot f,$$

where u is diagonal matrix, and $A_i \in \mathfrak{gl}_n$.

• For fixed u, the moduli space is the $A(t) \in \mathfrak{gl}_n(\mathbb{C}[t]/t^k)$

$$A(t) = A_1 + A_2 t + \dots + A_k t^{k-1}.$$

• The space of Stokes matrices is $(B_- \times B_+)^k$.

Irregular RH maps at pole of order k+1

• Consider the ODE for a function $f(z) \in GL_n$

$$\frac{df}{dz} = \left(\frac{u}{z^{k+1}} + \frac{A_k}{z^k} + \dots + \frac{A_2}{z^2} + \frac{A_1}{z}\right) \cdot f,$$

where u is diagonal matrix, and $A_i \in \mathfrak{gl}_n$.

• For fixed u, the moduli space is the $A(t) \in \mathfrak{gl}_n(\mathbb{C}[t]/t^k)$

$$A(t) = A_1 + A_2t + \dots + A_kt^{k-1}.$$

• The space of Stokes matrices is $(B_- \times B_+)^k$.

Theorem (Boalch)

For fixed regular u, the irregular Riemann-Hilbert map

$$\nu(u): \mathfrak{gl}_n(\mathbb{C}[t]/t^k) \to (B_- \times B_+)^k \; ; \; A(t) \mapsto (S_1, ..., S_{2k})$$

is a locally analytic Poisson isomorphism.

Poisson algebras and quantization

• The function algebras $Sym(\mathfrak{gl}_n(\mathbb{C}[t]/t^k))$ and $Fun(B_- \times B_+)^k$ are Poisson algebras.

Definition

(1) A Poisson algebra is a commutative algebra A, together with a bilinear map $\{\cdot,\cdot\}: A\times A\to A$, called a Poisson bracket, satisfying that for all $f,g,h\in A$,

$$\{fg,h\} = f\{g,h\} + g\{f,h\},$$

$$\{f,\{g,h\}\} + \{h,\{f,g\}\} + \{g,\{h,f\}\} = 0.$$

Poisson algebras and quantization

• The function algebras $Sym(\mathfrak{gl}_n(\mathbb{C}[t]/t^k))$ and $Fun(B_- \times B_+)^k$ are Poisson algebras.

Definition

(1) A Poisson algebra is a commutative algebra A, together with a bilinear map $\{\cdot,\cdot\}: A\times A\to A$, called a Poisson bracket, satisfying that for all $f,g,h\in A$,

$$\{fg,h\} = f\{g,h\} + g\{f,h\},$$

$$\{f,\{g,h\}\} + \{h,\{f,g\}\} + \{g,\{h,f\}\} = 0.$$

(2) A quantization of $(A, \{,\})$ is an associative algebra product \star on $A[\![\hbar]\!]$ such that

$$f \star g = fg + \{f, g\}\hbar + O(\hbar^2), \forall f, g \in A.$$

Poisson algebras and quantization

• The function algebras $Sym(\mathfrak{gl}_n(\mathbb{C}[t]/t^k))$ and $Fun(B_- \times B_+)^k$ are Poisson algebras.

Definition

(1) A Poisson algebra is a commutative algebra A, together with a bilinear map $\{\cdot,\cdot\}: A\times A\to A$, called a Poisson bracket, satisfying that for all $f,g,h\in A$,

$$\begin{split} \{fg,h\} &= f\{g,h\} + g\{f,h\}, \\ \{f,\{g,h\}\} + \{h,\{f,g\}\} + \{g,\{h,f\}\} = 0. \end{split}$$

(2) A quantization of $(A, \{,\})$ is an associative algebra product \star on $A[\![\hbar]\!]$ such that

$$f \star g = fg + \{f, g\}\hbar + O(\hbar^2), \forall f, g \in A.$$

Note that as $\hbar \to 0$, the (noncommutative) associative algebra $(A[\![\hbar]\!], \star)$ recovers the commutative algebra A.

Quantum RH maps

- Recall: the RH map $\nu(u): \mathfrak{gl}_n(\mathbb{C}[t]/t^k) \to (B_- \times B_+)^k$ is a map preserving the Poisson algebra structures.
- Problem: to find a quantization of $Fun((B_- \times B_+)^k)$, i.e., an associative algebra $U_{\hbar}^{(k)}$ and an associative isomorphism $\nu(u)_{\hbar}$ such that the following diagram commute

$$U_{\hbar}^{(k)} \xrightarrow{\nu(u)_{\hbar}} U(\mathfrak{gl}_{n}(\mathbb{C}[t]/t^{k})) \llbracket \hbar \rrbracket$$

$$h \to 0 \downarrow \qquad \qquad h \to 0 \downarrow$$

$$Fun((B_{-} \times B_{+})^{k}) \xrightarrow{\nu(u)^{*}} Sym(\mathfrak{gl}_{n}(\mathbb{C}[t]/t^{k}))$$

Quantum RH maps

- Recall: the RH map $\nu(u): \mathfrak{gl}_n(\mathbb{C}[t]/t^k) \to (B_- \times B_+)^k$ is a map preserving the Poisson algebra structures.
- Problem: to find a quantization of $Fun((B_- \times B_+)^k)$, i.e., an associative algebra $U_{\hbar}^{(k)}$ and an associative isomorphism $\nu(u)_{\hbar}$ such that the following diagram commute

$$U_{\hbar}^{(k)} \xrightarrow{\nu(u)_{\hbar}} U(\mathfrak{gl}_{n}(\mathbb{C}[t]/t^{k})) \llbracket \hbar \rrbracket$$

$$h \to 0 \downarrow \qquad \qquad h \to 0 \downarrow$$

$$Fun((B_{-} \times B_{+})^{k}) \xrightarrow{\nu(u)^{*}} Sym(\mathfrak{gl}_{n}(\mathbb{C}[t]/t^{k}))$$

• Application: use the representation theory of $U_{\hbar}^{(k)}$ to understand the highly transcendental irregular RH maps!

Second order pole case

Quantum group and the Stokes phenomenon at second order pole

Stokes matrices of ODEs with second order poles

• Consider the linear system on z-plane

$$\frac{dF}{dz} = \left(\frac{u}{z^2} + \frac{A}{z}\right)F,$$

where $F(z) \in \mathfrak{gl}_n$, $u = \operatorname{diag}(u_1, ..., u_n)$, and $A \in \mathfrak{gl}_n$.

Stokes matrices of ODEs with second order poles

 \bullet Consider the linear system on z-plane

$$\frac{dF}{dz} = \left(\frac{u}{z^2} + \frac{A}{z}\right)F,$$

where $F(z) \in \mathfrak{gl}_n$, $u = \operatorname{diag}(u_1, ..., u_n)$, and $A \in \mathfrak{gl}_n$.

• Any fundamental solution $F(z) \in GL_n$ has asymptotics

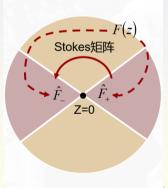
$$e^{\frac{u}{z}}z^{-[A]}\cdot F(z)\sim T_{\pm} \quad as \ z \rightarrow \ 0 \ in \ left/right \ planes \ \mathbb{H}_{\pm},$$

for some invertible constant matrices T_{\pm} .

ullet The different asymptotics of F(z) are measured by the ratio

$$S_{+}(A, u) = T_{+} \cdot T_{-}^{-1},$$

called Stokes matrix, similarly define $S_{-}(A, u)$.



Quantum groups

- RH $\nu(u): \mathfrak{gl}_n \to B_- \times B_+; A \mapsto (S_-(A), S_+(A)).$
- The quantization of the Poisson algebra $Fun(B_- \times B_+)$ is the quantum group (Drinfeld-Jimbo): $U_{\hbar}(\mathfrak{gl}_n)$ is associative algebra with generators $\{e^{\hbar h_i}, e_i, f_i\}_{i=1,\dots,n}$

Quantum groups

- RH $\nu(u): \mathfrak{gl}_n \to B_- \times B_+; A \mapsto (S_-(A), S_+(A)).$
- The quantization of the Poisson algebra $Fun(B_- \times B_+)$ is the quantum group (Drinfeld-Jimbo): $U_{\hbar}(\mathfrak{gl}_n)$ is associative algebra with generators $\{e^{\hbar h_i}, e_i, f_i\}_{i=1,\dots,n}$
 - for each $1 \le i, j \le n-1$,

$$[e_i, f_j] = \delta_{ij} \frac{e^{\hbar(h_i - h_{i+1})} - e^{\hbar(-h_i + h_{i+1})}}{e^{\hbar} - e^{-\hbar}};$$

• for
$$|i - j| = 1$$
,

$$e_i^2 e_j - (e^{\hbar} + e^{-\hbar})e_i e_j e_i + e_j e_i^2 = 0.$$

Quantum groups

- RH $\nu(u): \mathfrak{gl}_n \to B_- \times B_+; A \mapsto (S_-(A), S_+(A)).$
- The quantization of the Poisson algebra $Fun(B_- \times B_+)$ is the quantum group (Drinfeld-Jimbo): $U_{\hbar}(\mathfrak{gl}_n)$ is associative algebra with generators $\{e^{\hbar h_i}, e_i, f_i\}_{i=1,\dots,n}$
 - for each $1 \le i, j \le n-1$,

$$[e_i, f_j] = \delta_{ij} \frac{e^{\hbar(h_i - h_{i+1})} - e^{\hbar(-h_i + h_{i+1})}}{e^{\hbar} - e^{-\hbar}};$$

• for |i - j| = 1,

- $e_i^2 e_j (e^{\hbar} + e^{-\hbar})e_i e_j e_i + e_j e_i^2 = 0.$
- As $\hbar \to 0$, the algebra $U_{\hbar}(\mathfrak{gl}_n)$ becomes the ordinary $U(\mathfrak{gl}_n)$.

Quantization problem

To construct associative algebra isomorphism $\nu(u)_{\hbar}$ such that

$$U_{\hbar}(\mathfrak{gl}_{n}) \xrightarrow{\nu(u)_{\hbar}} U(\mathfrak{gl}_{n})[\![\hbar]\!]$$

$$h \to 0 \downarrow \qquad \qquad h \to 0 \downarrow$$

$$Fun(B_{-} \times B_{+}) \xrightarrow{\nu(u)^{*}} Fun(\mathfrak{gl}_{n})$$

Stokes matrices of ODEs in noncommutative rings

• $U(\mathfrak{gl}_n)$: generator $\{e_{ij}\}_{i,j=1,\dots,n}$, relation $[e_{ij},e_{kl}]=\delta_{jk}e_{il}-\delta_{li}e_{kj}$.

Stokes matrices of ODEs in noncommutative rings

- $U(\mathfrak{gl}_n)$: generator $\{e_{ij}\}_{i,j=1,\dots,n}$, relation $[e_{ij},e_{kl}]=\delta_{jk}e_{il}-\delta_{li}e_{kj}$.
- n by n matrix $T = (T_{ij})$ with entries valued in $U(\mathfrak{gl}_n)$

$$T_{ij} = e_{ij}, \quad \text{for } 1 \le i, j \le n.$$

 \bullet For any n by n diagonal matrix u with distinct eigenvalues, consider

$$\frac{dF}{dz} = \hbar \left(\frac{u}{z^2} + \frac{T}{z}\right) \cdot F,$$

for a function $F(z) \in \operatorname{Mat}_n \otimes U(\mathfrak{gl}_n)[\![\hbar]\!].$

Stokes matrices of ODEs in noncommutative rings

- $U(\mathfrak{gl}_n)$: generator $\{e_{ij}\}_{i,j=1,\dots,n}$, relation $[e_{ij},e_{kl}]=\delta_{jk}e_{il}-\delta_{li}e_{kj}$.
- n by n matrix $T = (T_{ij})$ with entries valued in $U(\mathfrak{gl}_n)$

$$T_{ij} = e_{ij}, \quad \text{for } 1 \le i, j \le n.$$

 \bullet For any n by n diagonal matrix u with distinct eigenvalues, consider

$$\frac{dF}{dz} = \hbar \left(\frac{u}{z^2} + \frac{T}{z}\right) \cdot F,$$

for a function $F(z) \in \operatorname{Mat}_n \otimes U(\mathfrak{gl}_n)[\![\hbar]\!]$.

• The quantum Stokes matrices $S_{\hbar\pm}(u) = (S_{\hbar\pm}(u)_{ij})$, with entries $S_{\hbar\pm}(u)_{ij}$ in $U(\mathfrak{gl}_n)[\![\hbar]\!]$.

Representations of quantum group from Stokes matrices

Theorem (Xu)

For any fixed u, the map

$$\nu_{\hbar}(u): U_{\hbar}(\mathfrak{gl}_n) \to U(\mathfrak{gl}_n) \; ; \; e_i \mapsto S_{\hbar+}(u)_{i,i+1}, \; f_i \mapsto S_{\hbar-}(u)_{i+1,i}$$

is an isomorphism between the Drinfeld-Jimbo quantum group $U_{\hbar}(\mathfrak{gl}_n)$ and $U(\mathfrak{gl}_n)$.

Representations of quantum group from Stokes matrices

Theorem (Xu)

For any fixed u, the map

$$\nu_{\hbar}(u): U_{\hbar}(\mathfrak{gl}_n) \to U(\mathfrak{gl}_n) \; ; \; e_i \mapsto S_{\hbar+}(u)_{i,i+1}, \; f_i \mapsto S_{\hbar-}(u)_{i+1,i}$$

is an isomorphism between the Drinfeld-Jimbo quantum group $U_{\hbar}(\mathfrak{gl}_n)$ and $U(\mathfrak{gl}_n)$. Furthermore, it leads to the following diagram

$$U_{\hbar}(\mathfrak{gl}_{n}) \xrightarrow{\nu(u)_{\hbar}} U(\mathfrak{gl}_{n}) \llbracket \hbar \rrbracket$$

$$h \to 0 \downarrow \qquad \qquad h \to 0 \downarrow$$

$$Fun(B_{-} \times B_{+}) \xrightarrow{\nu(u)^{*}} Fun(\mathfrak{gl}_{n})$$

Interpretations: Knot invariants, Yang-Baxter equation

• Equivalently, take standard R-matrix in $Mat_n \otimes Mat_n$,

$$R = \sum_{i \neq j, i, j=1}^{n} E_{ii} \otimes E_{jj} + e^{\hbar} \sum_{i=1}^{n} E_{ii} \otimes E_{ii} + (e^{\hbar} - e^{-\hbar}) \sum_{1 \leq j < i \leq n} E_{ij} \otimes E_{ji}.$$

Interpretations: Knot invariants, Yang-Baxter equation

• Equivalently, take standard R-matrix in $Mat_n \otimes Mat_n$,

$$R = \sum_{i \neq j, i, j=1}^{n} E_{ii} \otimes E_{jj} + e^{\hbar} \sum_{i=1}^{n} E_{ii} \otimes E_{ii} + (e^{\hbar} - e^{-\hbar}) \sum_{1 \leq j < i \leq n} E_{ij} \otimes E_{ji}.$$

Then the quantum Stokes matrices at a second order pole satisfy the Yang-Baxter equation

$$R^{12}S_{\hbar\pm}{}^{(1)}S_{\hbar\pm}{}^{(2)}=S_{\hbar\pm}{}^{(2)}S_{\hbar\pm}{}^{(1)}\in Mat_n\otimes Mat_n\otimes U(\mathfrak{gl}_n)\llbracket\hbar\rrbracket.$$

Interpretations: Knot invariants, Yang-Baxter equation

• Equivalently, take standard R-matrix in $Mat_n \otimes Mat_n$,

$$R = \sum_{i \neq j, i, j=1}^{n} E_{ii} \otimes E_{jj} + e^{\hbar} \sum_{i=1}^{n} E_{ii} \otimes E_{ii} + (e^{\hbar} - e^{-\hbar}) \sum_{1 \leq j < i \leq n} E_{ij} \otimes E_{ji}.$$

Then the quantum Stokes matrices at a second order pole satisfy the Yang-Baxter equation

$$R^{12}S_{\hbar\pm}{}^{(1)}S_{\hbar\pm}{}^{(2)} = S_{\hbar\pm}{}^{(2)}S_{\hbar\pm}{}^{(1)} \in Mat_n \otimes Mat_n \otimes U(\mathfrak{gl}_n)[\![\hbar]\!].$$

• (Witten, Reshetikhin-Turaev) Quantum group encodes the quantum invariants of the Chern-Simons theory. In particular, for $U_{\hbar}(\mathfrak{gl}_2)$ we get Jones polynomial. One can say the jump of asymptotics of solutions of linear ODE at a second order pole encodes the knot invariants!

A dictionary

Table: A dictionary

	linear ODE at 2nd order pole	Quantum group $U_{\hbar}(\mathfrak{gl}_n)$
1	Nonresonant case $\hbar \notin \mathbb{Q}$	Realization of $U_{\hbar}(\mathfrak{gl}_n)$ at a generic \hbar
2	Resonant case $\hbar \in \mathbb{Q}$	Representation at roots of unity
3	WKB approximation as $\hbar \to \infty$	$\mathfrak{gl}_n ext{-Crystals}$
4	Wall-crossing in WKB approximation	Cactus group actions on crystals
5	Whitham dynamics	HKRW covers on eigenbasis
6	Analytic branching rules	Braching rules/ Gelfand-Tsetlin theory
7	Asymptotic Riemann-Hilbert problem	An explicit Drinfeld isomorphism
8	Involution of equations	Quantum symmetric pairs
9	Formal power series solutions	Yangians/ Trigonometric R-matrix
10	Semiclassical limit	Dual Poisson Lie groups

Canonical/crystal basis

• Classical problem in representation theory: to find a basis \mathbb{B} of $U(\mathfrak{gl}_n)$ such that for any highest weight representation V, the set

$$\mathbb{B} \cdot v_0 \in V$$

is a basis of V. Very hard. A classical Lie theory problem, but only solved by quantum group.

Canonical/crystal basis

• Classical problem in representation theory: to find a basis \mathbb{B} of $U(\mathfrak{gl}_n)$ such that for any highest weight representation V, the set

$$\mathbb{B} \cdot v_0 \in V$$

is a basis of V. Very hard. A classical Lie theory problem, but only solved by quantum group.

• (Lusztig, Kashiwara) In crystal limit $t = e^{\hbar} \to 0$ $(1/\hbar \to 0)$, the algebraic structure of $U_{\hbar}(\mathfrak{gl}_n)$ becomes a crystal

$$\left(\mathbb{B}_V, \{\tilde{e}_i, \tilde{f}_i\}_{i=1,\dots,n-1}\right)$$

a finite set \mathbb{B}_V which models a weight basis of V equipped with crystal operators \tilde{e}_i and \tilde{f}_i . Encoding representation data.

Canonical/crystal basis

• Classical problem in representation theory: to find a basis \mathbb{B} of $U(\mathfrak{gl}_n)$ such that for any highest weight representation V, the set

$$\mathbb{B} \cdot v_0 \in V$$

is a basis of V. Very hard. A classical Lie theory problem, but only solved by quantum group.

• (Lusztig, Kashiwara) In crystal limit $t = e^{\hbar} \to 0$ $(1/\hbar \to 0)$, the algebraic structure of $U_{\hbar}(\mathfrak{gl}_n)$ becomes a crystal

$$\left(\mathbb{B}_V, \{\tilde{e}_i, \tilde{f}_i\}_{i=1,\dots,n-1}\right)$$

a finite set \mathbb{B}_V which models a weight basis of V equipped with crystal operators \tilde{e}_i and \tilde{f}_i . Encoding representation data.

• Combinatorial and geometric realizations of crystals.

WKB approximation = crystal limits

• In the crystal limit $t = e^{\hbar} \to 0 \ (1/\hbar \to 0)$, the algebraic structure of $U_{\hbar}(\mathfrak{gl}_n)$ becomes a crystal $\left(\mathbb{B}_V, \{\tilde{e}_i, \tilde{f}_i\}_{i=1,\dots,n-1}\right)$.

$$\frac{1}{\hbar} \frac{dF}{dz} = \left(\frac{u}{z^2} + \frac{T}{z}\right) \cdot F$$

• The WKB method, named after Wentzel, Kramers, and Brillouin, is for approximating solutions of a differential equation whose highest derivative is multiplied by a small parameter $1/\hbar$.

WKB approximation = crystal limits

• In the crystal limit $t = e^{\hbar} \to 0$ $(1/\hbar \to 0)$, the algebraic structure of $U_{\hbar}(\mathfrak{gl}_n)$ becomes a crystal $(\mathbb{B}_V, \{\tilde{e}_i, \tilde{f}_i\}_{i=1,\dots,n-1})$.

$$\frac{1}{\hbar} \frac{dF}{dz} = \left(\frac{u}{z^2} + \frac{T}{z}\right) \cdot F$$

- The WKB method, named after Wentzel, Kramers, and Brillouin, is for approximating solutions of a differential equation whose highest derivative is multiplied by a small parameter $1/\hbar$.
- Indication: crystal structures should arises from the limits of q-Stokes matrices $S_{\hbar\pm}(u) = (S_{\hbar\pm}(u)_{ij})$ as $h \to -\infty$, where

$$S_{\hbar\pm}(u)_{ij} \in U(\mathfrak{gl}_n)[\![\hbar]\!] \to \operatorname{End}(V).$$

WKB analysis and crystals

 \bullet The algebraic characterization of the $1/h \to 0$ asymptotics of

$$S_{\hbar\pm}(u) \in \operatorname{End}(V) \otimes \operatorname{End}(\mathbb{C}^n) \text{ of } \frac{1}{h} \frac{dF}{dz} = \left(\frac{u}{z^2} + \frac{T}{z}\right) \cdot F.$$

WKB analysis and crystals

- The algebraic characterization of the $1/h \to 0$ asymptotics of $S_{\hbar\pm}(u) \in \operatorname{End}(V) \otimes \operatorname{End}(\mathbb{C}^n)$ of $\frac{1}{\hbar} \frac{dF}{dz} = \left(\frac{u}{z^2} + \frac{T}{z}\right) \cdot F$.
- The action of the off-diagonal entry $S_{h+}(u)_{k,k+1}$ on certain set \mathbb{B}_V of canonical basis $\{v_i(u)\}_{i\in I}$ of V

$$S_{\hbar+}(u)_{k,k+1} \cdot v_i(u) = \sum_{j \in I} e^{h\phi_{ij}^{(k)}(u) + \sqrt{-1}g_{ij}^{(k)}(u,h)} (v_j(u) + O(h^{-1})),$$

where $\phi_{ij}^{(k)}(u)$, $g_{ij}^{(k)}(u,h)$ are real valued functions for all $1 \leq i, j \leq k \leq n-1$.

WKB analysis and crystals

- The algebraic characterization of the $1/h \to 0$ asymptotics of $S_{\hbar\pm}(u) \in \operatorname{End}(V) \otimes \operatorname{End}(\mathbb{C}^n)$ of $\frac{1}{\hbar} \frac{dF}{dz} = \left(\frac{u}{z^2} + \frac{T}{z}\right) \cdot F$.
- The action of the off-diagonal entry $S_{\hbar+}(u)_{k,k+1}$ on certain set \mathbb{B}_V of canonical basis $\{v_i(u)\}_{i\in I}$ of V

$$S_{\hbar+}(u)_{k,k+1} \cdot v_i(u) = \sum_{j \in I} e^{h\phi_{ij}^{(k)}(u) + \sqrt{-1}g_{ij}^{(k)}(u,h)} (v_j(u) + O(h^{-1})),$$

where $\phi_{ij}^{(k)}(u)$, $g_{ij}^{(k)}(u,h)$ are real valued functions for all $1 \leq i, j \leq k \leq n-1$.

• The WKB approximation of $S_{\hbar+}(u)_{k,k+1}$ naturally defines an operator \tilde{e}_k on the set \mathbb{B}_V by picking the leading term

$$\tilde{e}_k(v_i(u)) := v_j(u), \quad \text{if} \quad \phi_{ij}^{(k)}(u) = \max\{\phi_{il}^{(k)}(u) \mid l \in I\}.$$

A transcendental realization of crystals

Conjecture (Xu, Proved under the WKB asmptotic assumption)

For any u, there exists a canonical basis $\{v_I(u)\}$ of V, operators $\tilde{e}_k(u)$ and $\tilde{f}_k(u)$ for k = 1, ..., n-1 such that there exists constants c, c'

$$\lim_{q=e^{\pi ih}\to 0} q^c S_{h+}(u)_{k,k+1} \cdot v_I(u) = \tilde{e}_k(v_I(u)),$$

$$\lim_{q\to 0} q^{c'} S_{h+}(u)_{k,k+1} \cdot v_I(u) = \tilde{e}_k(v_I(u)),$$

$$\lim_{q=e^{\pi i h} \to 0} q^{c'} S_{\hbar-}(u)_{k+1,k} \cdot v_I(u) = \tilde{f}_k(v_I(u)).$$

Furthermore, the datum $(\{v_I(u)\}, \tilde{e}_k(u), \tilde{f}_k(u))$ is a \mathfrak{gl}_n -crystal.

A transcendental realization of crystals

Conjecture (Xu, Proved under the WKB asmptotic assumption)

For any u, there exists a canonical basis $\{v_I(u)\}$ of V, operators $\tilde{e}_k(u)$ and $\tilde{f}_k(u)$ for k = 1, ..., n - 1 such that there exists constants c, c'

$$\lim_{q=e^{\pi ih} \to 0} q^{c} S_{h+}(u)_{k,k+1} \cdot v_{I}(u) = \tilde{e}_{k}(v_{I}(u)),$$

$$\lim_{q=e^{\pi ih} \to 0} q^{c'} S_{h-}(u)_{k+1,k} \cdot v_{I}(u) = \tilde{f}_{k}(v_{I}(u)).$$

Furthermore, the datum $(\{v_I(u)\}, \tilde{e}_k(u), \tilde{f}_k(u))$ is a \mathfrak{gl}_n -crystal.

Theorem (Xu)

The conjecture is true as $u_n \gg u_{n-1} \gg \cdots \gg u_1$. And the WKB datum coincides with the known \mathfrak{gl}_n -crystal structure on semistandard Young tableaux.

Спасибо большое

Part II

Arbitrary order pole and quantization of Riemann-Hilbert mpas

Quantum Stokes matrices at pole of order k+1

• The universal enveloping algebra $U(\mathfrak{gl}_n(\mathbb{C}[t]/t^k))$ generated by $\{e_{ij}t^{m-1}\}$ for i, j = 1, ..., n and m = 1, ..., k subject to the relation

$$[e_{ij}t^a, e_{kl}t^b] = \begin{cases} \delta_{jk}e_{il}t^{a+b} - \delta_{li}e_{kj}t^{a+b}, & \text{if } a+b \le k\\ 0, & \text{if } a+b > k. \end{cases}$$

Quantum Stokes matrices at pole of order k+1

• The universal enveloping algebra $U(\mathfrak{gl}_n(\mathbb{C}[t]/t^k))$ generated by $\{e_{ij}t^{m-1}\}$ for i, j = 1, ..., n and m = 1, ..., k subject to the relation

$$[e_{ij}t^a, e_{kl}t^b] = \begin{cases} \delta_{jk}e_{il}t^{a+b} - \delta_{li}e_{kj}t^{a+b}, & \text{if } a+b \le k\\ 0, & \text{if } a+b > k. \end{cases}$$

• Consider the equation

$$\frac{dF}{dz} = h \left(\frac{u}{z^{k+1}} + \frac{T_{[k]}}{z^k} + \dots + \frac{T_{[2]}}{z^2} + \frac{T_{[1]}}{z} \right) \cdot F,$$

where $u \in \mathfrak{h}_{reg}$, h is a complex parameter, each $T_{[m]}$ is an $n \times n$ matrix with entries valued in $U(\mathfrak{gl}_n(\mathbb{C}[t]/t^k))$

$$(T_{[m]})_{ij} = e_{ij}t^{m-1}, \quad \text{for } 1 \le i, j \le n, \quad 1 \le m \le k.$$

Quantum Stokes matrices at pole of order k+1

• The universal enveloping algebra $U(\mathfrak{gl}_n(\mathbb{C}[t]/t^k))$ generated by $\{e_{ij}t^{m-1}\}$ for i, j = 1, ..., n and m = 1, ..., k subject to the relation

$$[e_{ij}t^a, e_{kl}t^b] = \begin{cases} \delta_{jk}e_{il}t^{a+b} - \delta_{li}e_{kj}t^{a+b}, & \text{if } a+b \le k\\ 0, & \text{if } a+b > k. \end{cases}$$

• Consider the equation

$$\frac{dF}{dz} = h \left(\frac{u}{z^{k+1}} + \frac{T_{[k]}}{z^k} + \dots + \frac{T_{[2]}}{z^2} + \frac{T_{[1]}}{z} \right) \cdot F,$$

where $u \in \mathfrak{h}_{reg}$, h is a complex parameter, each $T_{[m]}$ is an $n \times n$ matrix with entries valued in $U(\mathfrak{gl}_n(\mathbb{C}[t]/t^k))$

$$(T_{[m]})_{ij} = e_{ij}t^{m-1}, \quad \text{for } 1 \le i, j \le n, \ 1 \le m \le k.$$

• 2k quantum Stokes matrices

$$S_i(u) \in \widehat{U}(\mathfrak{gl}_n(\mathbb{C}[t]/t^k)) \otimes \operatorname{End}(\mathbb{C}^n) \text{ for } i = 1, ..., 2k$$

Here S_{2i+1} is upper triangular and S_{2i} is lower triangular.

• Take the standard R-matrix $R \in \text{End}(\mathbb{C}^n) \otimes \text{End}(\mathbb{C}^n)$,

$$R = \sum_{i \neq j, i, j=1}^{n} E_{ii} \otimes E_{jj} + e^{\pi i h} \sum_{i=1}^{n} E_{ii} \otimes E_{ii} + (e^{\pi i h} - e^{-\pi i h}) \sum_{1 \leq j < i \leq n} E_{ij} \otimes E_{ji}.$$

• Introduce

$$\mathbb{S}_{[i]}^{(1)} := S_1^{(1)} S_2^{(1)} \cdots S_i^{(1)} \in \widehat{U} \big(\mathfrak{gl}_n(\mathbb{C}[t]/t^k) \big) \otimes \operatorname{End}(\mathbb{C}^n) \otimes \operatorname{End}(\mathbb{C}^n),$$

$$\mathbb{S}_{[i]}^{(2)} := S_{i+1}^{(2)} S_{i+2}^{(2)} \cdots S_{2k}^{(2)} \in \widehat{U} \big(\mathfrak{gl}_n(\mathbb{C}[t]/t^k) \big) \otimes \operatorname{End}(\mathbb{C}^n) \otimes \operatorname{End}(\mathbb{C}^n).$$

Here the indices are taken modulo 2k.

Theorem (Xu)

For any $u \in \mathfrak{h}_{reg}$, the quantum Stokes matrices satisfy the algebraic relations (RL...L = L...LR)

$$\mathbb{R}^{12}\mathbb{S}_{[i]}^{(1)}\mathbb{S}_{[i]}^{(2)} = \mathbb{S}_{[i]}^{(2)}\mathbb{S}_{[i]}^{(1)}\mathbb{R}^{12}, \quad i = 1, ..., 2k - 1.$$