

Trapping wave fields in an expulsive potential by means of linear coupling

Nir Hacker and Boris A. Malomed

Department of Physical Electronics, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel

(1) Introduction

The **nonlinear Schrödinger** (**NLS**) equation including a trapping (**harmonic-oscillator**) potential is a commonly known model with many physical realizations, such as waveguides for photonic and matter waves (**BEC**):

$$i\frac{\partial u}{\partial z} + \frac{1}{2}\frac{\partial^2 u}{\partial x^2} - \frac{1}{2}x^2u + \sigma |u|^2 u = 0,$$

with $\sigma = +1$ (self-focusing), -1 (defocusing), or 0 (the linear Schrödinger equation). The equation is written in the notation adjusted to optics in the spatial domain, z being the propagation distance. In terms of BEC, it is the Gross-Pitaevskii equation, with z replaced by time, t.

A straightforward generalization is a **symmetric** system of two **linearly-coupled NLS** equations for wave fields **u** and **v**, which models a set of two **parallel waveguides** ("**cores**") **coupled by tunneling** of photons (in optics) or atoms (in **BEC**):

$$i\frac{\partial u}{\partial z} + \frac{1}{2}\frac{\partial^2 u}{\partial x^2} + \lambda v - \frac{1}{2}x^2u + \sigma |u|^2 u = 0,$$

$$i\frac{\partial v}{\partial z} + \frac{1}{2}\frac{\partial^2 v}{\partial x^2} + \lambda u - \frac{1}{2}x^2v + \sigma |v|^2 v = 0,$$

where real $\lambda > 0$ is the coupling constant.

In terms of **BEC** (but **not in optics**), it is also relevant to consider a two-dimensional (**2D**) version of the system, with the evolution variable **z** replaced by time **t**, and the **2D isotropic trapping potential**. The

2D system for a set of **parallel BEC layers** coupled by tunneling of atoms is written in **polar coordinates** (r, θ) :

$$i\frac{\partial u}{\partial t} + \frac{1}{2} \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} \right) u + \lambda v - \frac{1}{2} r^2 u + \sigma |u|^2 u = 0,$$

$$\partial v + \frac{1}{2} \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} \right) u + \lambda v - \frac{1}{2} r^2 u + \sigma |u|^2 u = 0,$$

$$i\frac{\partial v}{\partial t} + \frac{1}{2} \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} \right) v + \lambda u - \frac{1}{2} r^2 v + \sigma |v|^2 v = 0.$$

The **2D** system admits *vortex solutions* (which carry the **angular momentum**), in the form of

 $\{u(r,\theta,t)\}=\exp(-i\mu t+iS\theta)\{U(r),V(r)\},$ where real μ is the chemical potential (- μ is the propagation constant, alias wavenumber, in terms of the optics model), integer S is the **vorticity** (winding number), and real functions U(r) and V(r) satisfy the radial equations:

$$\mu U + \frac{1}{2} \left(\frac{d^2}{dr^2} + \frac{1}{r} \frac{d}{dr} - \frac{S^2}{r^2} \right) U + \lambda V - \frac{1}{2} r^2 U + \sigma U^3 = 0,$$

$$\mu V + \frac{1}{2} \left(\frac{d^2}{dr^2} + \frac{1}{r} \frac{d}{dr} - \frac{S^2}{r^2} \right) V + \lambda U - \frac{1}{2} r^2 V + \sigma V^3 = 0.$$

In the case of the self-attractive nonlinearity (σ = +1), the *interplay* between the *intra-core self-attraction* and *inter-core linear coupling* gives rise to *spontaneous symmetry breaking*, in the 1D and 2D systems alike:

PHYSICAL REVIEW A 96, 033621 (2017)

Spontaneous symmetry breaking of fundamental states, vortices, and dipoles in two- and one-dimensional linearly coupled traps with cubic self-attraction

Zhaopin Chen,¹ Yongyao Li,² Boris A. Malomed,^{1,3} and Luca Salasnich^{4,5}

¹Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel

²School of Physics and Optoelectronic Engineering, Foshan University, Foshan 52800, China

³Laboratory of Nonlinear-Optical Informatics, ITMO University, St. Petersburg 197101, Russia

⁴Dipartimento di Fisica e Astronomia "Galileo Galilei" and CNISM, Università di Padova, via Marzolo 8, 35131 Padova, Italy

⁵Istituto Nazionale di Ottica (INO) del Consiglio Nazionale delle Ricerche (CNR), Sezione di Sesto Fiorentino, via Nello Carrara,

1 – 50019 Sesto Fiorentino, Italy

A dynamical effect: *Josephson oscillations* between the linearly coupled cores, if the input is loaded into one core of the **1D** system (**Symmetry 13**, 372 (2021)):

Article

Nonlinear Dynamics of Wave Packets in Tunnel-Coupled Harmonic-Oscillator Traps

Nir Hacker 1 and Boris A. Malomed 1,2,*

Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, and Center for Light-Matter interaction, Tel Aviv University, Tel Aviv 69978, Israel; nirhack@gmail.com

² Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, 1000000 Arica, Chile

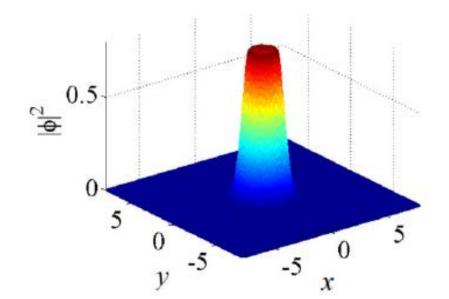
Correspondence: malomed@tauex.tau.ac.il

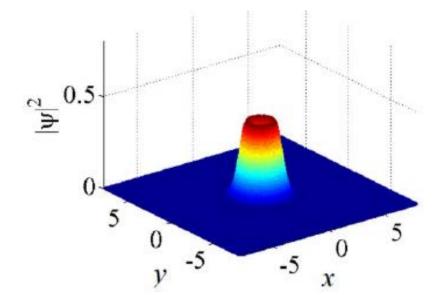
An example of a state with **broken symmetry**: an **asymmetric stable vortex mode** with S = 1 and **different amplitudes** of the two components, produced by the **2D system** with the **inter-core coupling constant** $\lambda = 0.4$. The total norm of the state is

$$N = N_u + N_v \equiv 2\pi \int_0^\infty \left[U^2(r) + V^2(r) \right] r dr \approx 8.8.$$

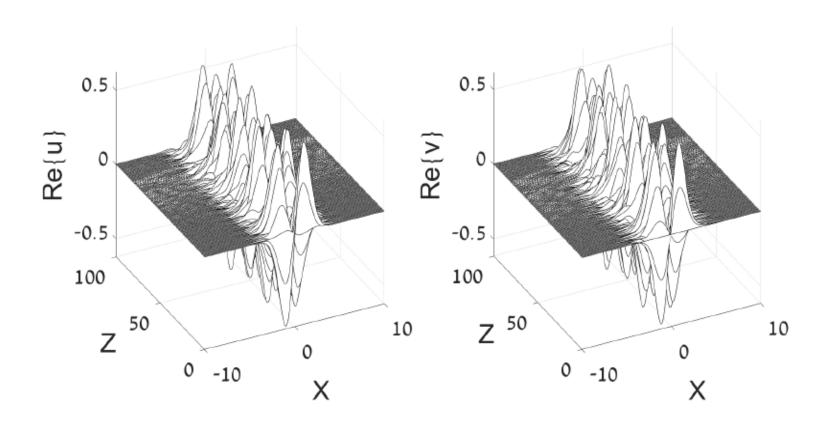
The asymmetric vortices with S = 1 exist (i.e., the symmetry breaking takes place) at

$$N > N_{\rm cr} \approx 0.57 + 19.06 \lambda$$
.

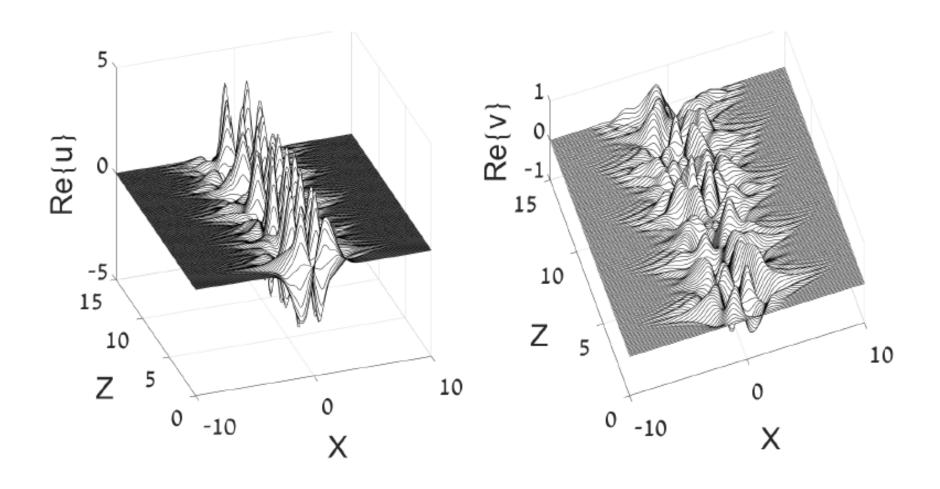




Below a critical value of the norm, the system performs **regular** (**non-chaotic**) Josephson oscillations, maintaining **dynamical symmetry** between the two components (cores):



Above the critical norm, the system performs chaotic oscillations, which spontaneously break the dynamical symmetry between the component:



(2) A new model: an asymmetric linearly coupled system with the trapping (harmonic-oscillator, HO) potential in one core, and an expulsive (inverted HO) potential in the other

The results have been reported in:

PHYSICAL REVIEW E **105**, 034213 (2022)

Trapping wave fields in an expulsive potential by means of linear coupling

Nir Hacker¹ and Boris A. Malomed 1,2

²Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica, Chile

¹Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, and Center for Light-Matter interaction, Tel Aviv University, Tel Aviv 69978, Israel

Expulsive potentials (in the **1D NLS** equation) were considered in optics, as they create **anti-waveguiding structures**, that may find various applications in design of **all-optical signal-processing systems**:

- B. V. Gisin and A. A. Hardy, Stationary solutions of plane nonlinear-optical antiwaveguides, Opt. Quant. Electron **27**, 565 (1995).
- B. V. Gisin, A. Kaplan, and B. A. Malomed, Spontaneous symmetry breaking and switching in planar nonlinear optical antiwaveguides, Phys. Rev. E **62**, 2804 (2000).
- D. Bortman-Arbiv, A. D. Wilson-Gordon, and H. Friedmann, Strong parametric amplification by spatial soliton-induced cloning of transverse beam profiles in an all-optical antiwaveguide, Phys. Rev. A 63, 031801(R) (2001).
- O. N. Verma and T. N. Dey, Steering, splitting, and cloning of an optical beam in a coherently driven Raman gain system, Phys. Rev. A **91**, 013820 (2015).
- A. Kaplan, B. V. Gisin, and B. A. Malomed, Stable propagation and all-optical switching in planar waveguide-antiwaveguide periodic structures, J. Opt. Soc. Am. B 19, 522 (2002).

Expulsive potentials were also studied in various contexts in similar **BEC** models:

- L. D. Carr and Y. Castin, Dynamics of a matter-wave bright soliton in an expulsive potential, Phys. Rev. A 66, 063602 (2002).
- L. Salasnich, Dynamics of a Bose-Einstein-condensate bright soliton in an expulsive potential, Phys. Rev. A 70, 053617 (2004).
- Z. X. Liang, Z. D. Zhang, and W. M. Liu, Dynamics of a Bright Soliton in Bose-Einstein Condensates with Time-Dependent Atomic Scattering Length in an Expulsive Parabolic Potential, Phys. Rev. Lett. **94**, 050402 (2005).

The system of the coupled equations with *trapping* and *anti-trapping* potentials:

$$i\frac{\partial u}{\partial z} + \frac{1}{2}\frac{\partial^2 u}{\partial x^2} + \lambda v - \frac{1}{2}x^2u + \sigma |u|^2 u = -\omega u,$$

$$i\frac{\partial v}{\partial z} + \frac{1}{2}\frac{\partial^2 v}{\partial x^2} + \lambda u + \frac{\kappa}{2}x^2v + \sigma |v|^2 v = 0,$$

where ω is a possible *mismatch* between the coupled components, and $\kappa > 0$ is the strength of the **expulsive** potential acting in the *v*-component.

The main question: can the linear coupling maintain stable two-component bound (localized) states, in spite of the obvious delocalization effect produced by the expulsive potential, in such 1D and 2D coupled systems?

In optics, the physical realization of such a **1D** system is obvious: a planar *dual-core coupler*, with the *waveguiding* and *antiwaveguiding* structures induced by the corresponding patterns of the transversely modulated refractive index in the coupled cores.

The **2D** variant of the system cannot be realized in optics, but *it is possible* (as well as the **1D case**) in **BEC**: *trapping* and *antitrapping* optical potentials may be induced, respectively, by *red*- and *blue*-detuned laser beams focused on two **tunnel-coupled** parallel layers of **BEC**. The separation between the layers is expected to be **a few microns**, which is also **sufficient** to separate (resolve) the two optical trapping patterns.

Stationary solutions for the linearly-coupled **1D** system, with propagation constant $-\mu$ (in terms of BEC, with z replaced by t, μ is the chemical potential), are looked for as:

$$\{u(x,z),v(x,z)\} = \{U(x),V(x)\}\exp(-i\mu z),$$

with real functions U(x) and V(x) satisfying equations

$$(\mu + \omega)U + \frac{1}{2}\frac{d^{2}U}{dx^{2}} + \lambda V - \frac{1}{2}x^{2}U + \sigma U^{3} = 0,$$

$$\mu V + \frac{1}{2} \frac{d^2 V}{dx^2} + \lambda U + \frac{\kappa}{2} x^2 V + \sigma V^3 = 0,$$

In terms of this system of equations, a mathematical problem is: does the system give rise to solutions which are localized at $|x| \to \infty$ in both components, while the potential term $\sim \kappa$ tends to expel the ν component?

The plan of the subsequent presentation:

- (3) Exact **non-generic** solutions for the bound states in the **1D linear system**.
- (4) The variational (*Rayleigh-Ritz*) approximation and numerical results for **generic** bound states in the **linear** system.
- (5) Coexistence of the discrete 1D bound states with the continuum of delocalized (unbound) states (the realization of "bound states in the continuum").
- (6) Nonlinear effects in the 1D system.
- (7) 2D systems (linear and nonlinear): vorticity, stability, etc.
- (8) Conclusion.

(3) Exceptional (codimension-1) exact solutions of the 1D linearized system

First of all, to confirm the existence of the bound states in the system, it is possible to find an **exact** spatially-symmetric (**even**) solution of the **linearized** ($\sigma = 0$) coupled system, which is valid **under a special condition** imposed on ω and λ (while V_0 is an **arbitrary amplitude**):

$$U(x) = \left(U_0 + U_2 x^2\right) \exp\left(-\frac{x^2}{2}\right),$$

$$V(x) = V_0 \exp\left(-\frac{x^2}{2}\right),$$

$$U_0 = \frac{1 - 2\lambda^2 + \kappa}{4\lambda} V_0,$$

$$U_2 = -\frac{1 + \kappa}{2\lambda} V_0,$$

$$\mu_{\text{even}} = \frac{1}{2} \left(\lambda^2 + \frac{1}{2}\right) - \frac{\kappa}{4},$$

This solution exists under the *restriction* imposed on the parameters (note that the *restriction* may hold for *arbitrarily large* values of strength κ of the expulsive potential):

$$\omega_{\text{even}} = \frac{9}{4} - \frac{\lambda^2}{2} + \frac{\kappa}{4}.$$

Therefore it is categorized as a **codimension-1** exact solution. The ratio of norms of the **trapped** and **anti-trapped** components in the exact solution:

$$\frac{N_u}{N_v} = \frac{\lambda^2}{4} + \frac{(1+\kappa)^2}{8\lambda^2}.$$

The trapped component (u) is a **dominant** one, with $N_u > N_v$, if the strength of the expulsive potential is large enough,

$$\kappa > 2\sqrt{2} - 1 \approx 1.83$$
. Otherwise, $N_{\mu} < N_{\nu}$ is possible.

It is also possible to find an **exact solution** of the linearized system for a **spatially-odd** (antisymmetric, alias **dipole**) mode, with an arbitrary amplitude V_1 :

$$U(x) = (U_1 x + U_3 x^3) \exp(-x^2 / 2),$$

$$V(x) = V_1 x \exp(-x^2 / 2),$$

$$U_1 = (4\lambda)^{-1} (3 - 2\lambda^2 + 3\kappa) V_1,$$

$$U_3 = -(2\lambda)^{-1} (1 + \kappa) V_1,$$

$$\mu_{\text{odd}} = \frac{1}{2} (\lambda^2 + \frac{3}{2}) - \frac{3}{4} \kappa.$$

This exact solution too exists under the *restriction* imposed on the parameters (and again, the *restriction* may hold for *arbitrarily large* values of strength κ of the expulsive potential):

$$\omega_{\rm odd} = \frac{11}{4} - \frac{\lambda^2}{2} + \frac{3\kappa}{4}.$$

(4) To construct generic bound eigenstates of the linear system, one can use the variational (alias Rayleigh-Ritz) approximation (VA). It is based on the integral expression for μ following from the stationary equations:

$$\mu = -\int_{-\infty}^{+\infty} dx \left[U \left(\omega U + \frac{1}{2} \frac{d^2 U}{dx^2} - \frac{x^2}{2} U \right) + V \left(\frac{1}{2} \frac{d^2 V}{dx^2} + \frac{\kappa x^2}{2} V \right) + 2\pi U V \right]$$

(assuming that the total norm of the wave function is $N \equiv N_u + N_v = 1$).

The variational *ansatz* for the **spatially even** eigenstates with free parameter η is adopted as

$$\{U_{VA}(x), V_{VA}(x)\} = \pi^{-1/4} \{\cos \eta, \sin \eta\} \exp(-x^2/2).$$

The substitution of the ansatz in the expession for μ yields

$$\mu_{VA} = (1/2 - \omega)\cos^2 \eta + (1/4)(1 - \kappa)\sin^2 \eta - \lambda\sin(2\eta).$$

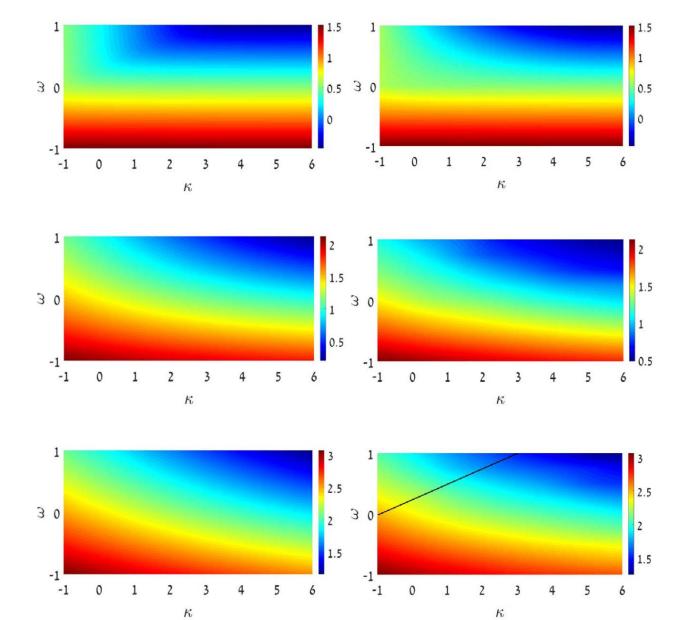
The **variational equation** is $d\mu_{VA}/d\eta = 0$. It yields

$$\mu_{VA} = (1/2 - \omega - q) + \sqrt{q^2 + \lambda^2}, \ q = (1/2)[(1/4)(1 + \kappa) - \omega].$$

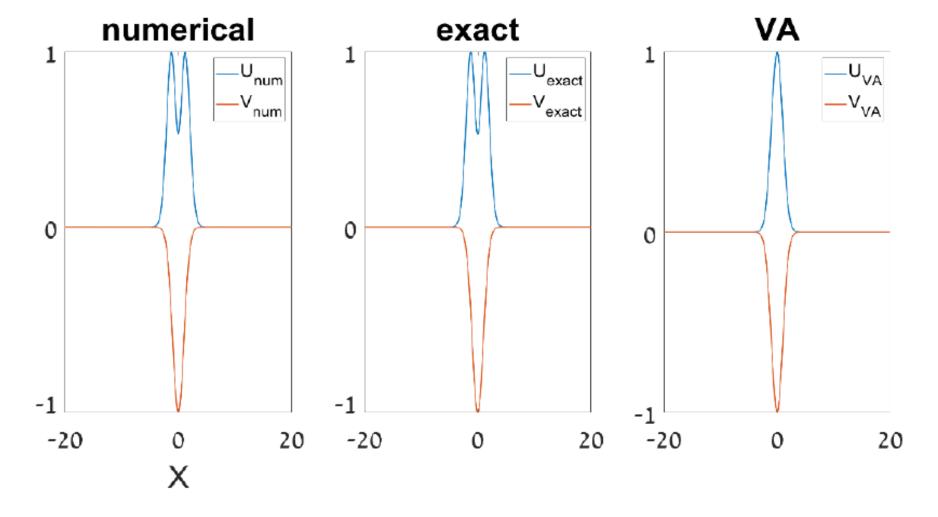
In particular, in the limit of $\kappa \to \infty$ (very strong expulsive

potential) the bound state **persists**, with $\mu_{VA} \approx 1/2 - \omega + 4\lambda^2/\kappa$, while the amplitude of the v component, which is subject to the action of the expulsive potential, **is vanishing**: $\eta \approx -4\lambda/\kappa$.

Heatmaps for the **VA-predicted** (**left**) and **numerically found** (**right**) eigenvalues μ in the (κ , ω) plane for λ = **0.1**, **1**, **2** (top to bottom). The **black** line designates the **exact solution** of **codimension 1**.



Comparison of the variational, numerically found, and exact (**codimension-1**) shapes of the **spatially even** wave functions for $\lambda = 2$, $\omega = 1$, $\kappa = 3$. All the three solutions have $\mu = 1.5$. The **VA** predicts μ accurately, in spite of the discrepancy in the shape of the wave function.



The VA can be also developed for eigenvalues of the spatially odd (dipole) eigenstates, using the ansatz

$$\left\{ U_{\rm DM}^{\rm (VA)}(x), V_{\rm DM}^{\rm (VA)}(x) \right\} = \sqrt{2}\pi^{-1/4} \{\cos \eta, \sin \eta\} x \exp\left(-\frac{x^2}{2}\right), \tag{53}$$

cf. Eq. (42), which is also subject to normalization Eq. (43). Substituting this in Eq. (44) yields

$$\mu_{\rm DM} = \left(\frac{3}{2} - \omega\right) \cos^2 \eta + \frac{3}{4} (1 - \kappa) \sin^2 \eta - \lambda \sin(2\eta), \quad (54)$$

cf. Eq. (45). Then, the variational Eq. (46), applied to Eq. (54), produces the result

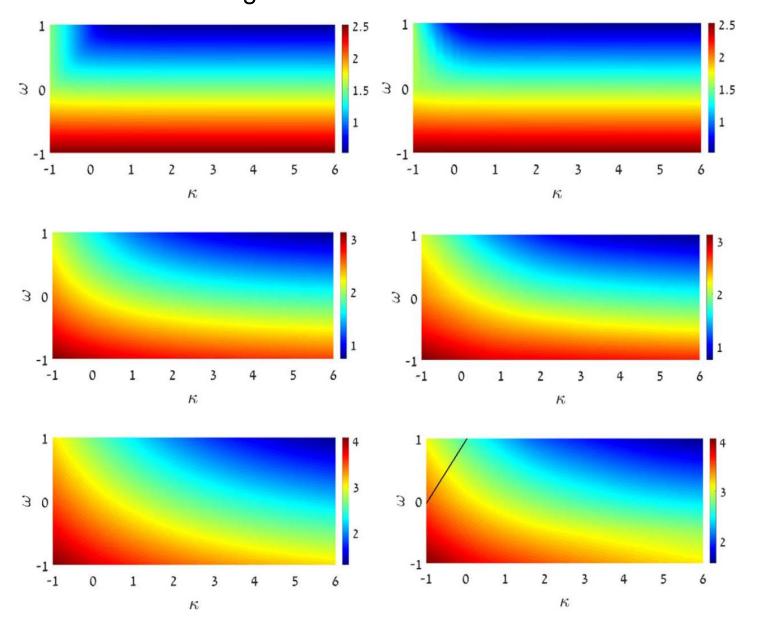
$$\tan(2\eta) = -\lambda/q_{\rm DM},\tag{55}$$

$$q_{\rm DM} \equiv \frac{1}{2} \left[\frac{3}{4} (1 + \kappa) - \omega \right],\tag{56}$$

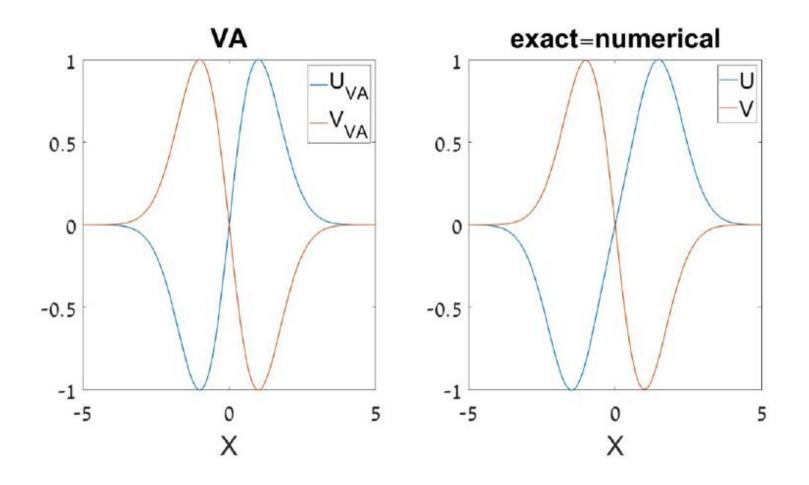
cf. Eqs. (47) and (48). The substitution of this in Eq. (54) leads to the following eigenvalue:

$$\mu_{\rm DM}^{\rm (VA)} = \frac{3}{2} - \omega - q_{\rm DM} + \sqrt{q_{\rm DM}^2 + \lambda^2},\tag{57}$$

The comparison of the variational (**left**) and numerical (**right**) results for **eigenvalues** μ of the **dipole** (spatially odd) **eigenstate**, for $\lambda = 0.1, 1, 2$ (top to bottom), with the **black line** denoting the **exact solution of codimension 1**:



Comparison of the variational, numerically found, and exact shapes of the **spatially odd** eigenstates for $\lambda = 2$, $\omega = 1$, $\kappa = 1/3$. All the three solutions have $\mu = 2.5$.



(5) The same system admits a continuum of delocalized states, at all values of μ . Therefore, the localized eigenstates, existing at discrete values of μ , may be categorized as **bound states**

in the continuum (BIC), alias embedded states, cf. Stillinger, F.H.; Herrick, D.R. Bound states in continuum. Phys. Rev. A 11, 446 (1975); Kodigala, A.; Lepetit, T.; Gu, Q.; Bahari, B.; Fainman, Y.; Kante, B. Lasing action from photonic bound states in continuum. Nature 54, 196 (2017). Champneys, A.R.; Malomed, B.A.; Yang, J.; Kaup, D.J. "Embedded solitons": solitary waves in resonance with the linear spectrum. Physica D 152, 340 (2001).

The analytical asymptotic form of the *delocalized* solutions, which exist at *all values* of μ , and thus indeed form a *continuum*:

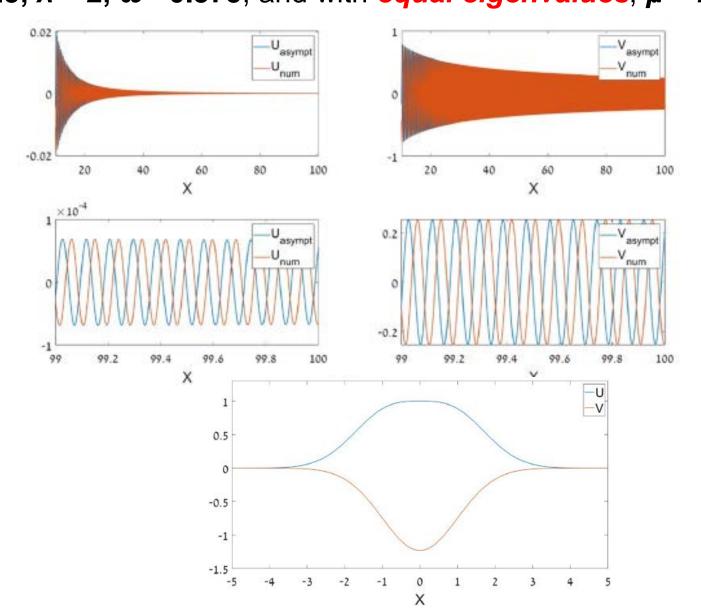
$$V_{\text{deloc}}(x) \underset{|x| \to \infty}{\approx} V_0 |x|^{-1/2} \cos\left(\frac{\sqrt{\kappa}}{2}x^2 + \frac{\mu}{\sqrt{\kappa}}\ln(|x|)\right), (60)$$

$$U_{\text{deloc}}(x) \underset{|x| \to \infty}{\approx} V_0 \frac{2\lambda}{1+\kappa} |x|^{-5/2} \cos\left(\frac{\sqrt{\kappa}}{2}x^2 + \frac{\mu}{\sqrt{\kappa}}\ln(|x|)\right), (61)$$

Note that the *quadratic term* is the *leading one* in the phase of these expressions.

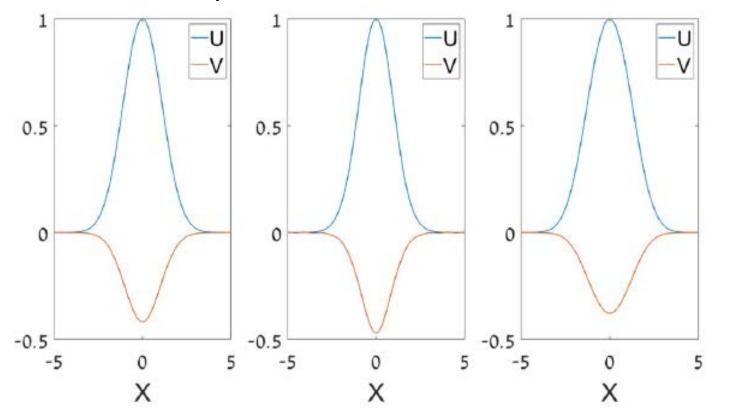
The v component, subject to the action of the expulsive potential, obviously **dominates** in this asymptotic solution. These eigenstates may be considered as delocalized ones because their norm *diverges* (slowly) as $\int dx/|x|$ at $|x| \to \infty$.

An example of the delocalized state, and the spatially even *exact* bound eigenstate existing *at the same values of parameters*: $\kappa = 0.5$, $\lambda = 2$, $\omega = 0.375$, and with *equal eigenvalues*, $\mu = 2.125$:

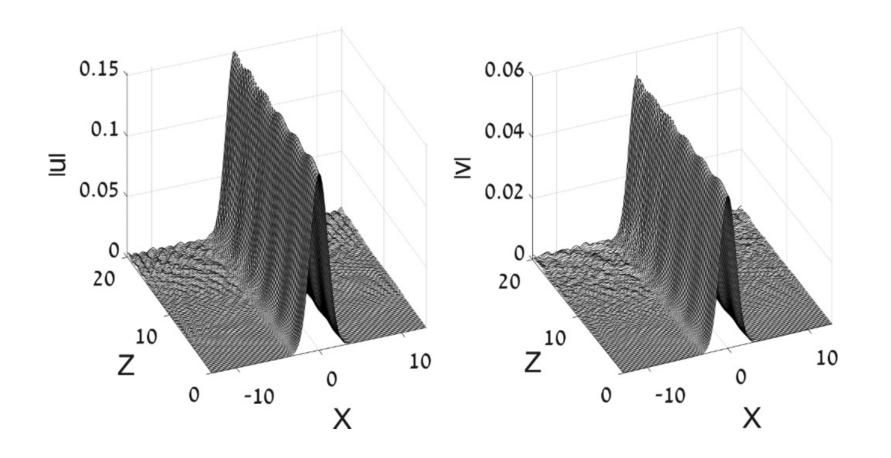


(6) Effects of the cubic self-focusing ($\sigma = +1$) and defocusing ($\sigma = -1$) nonlinearities

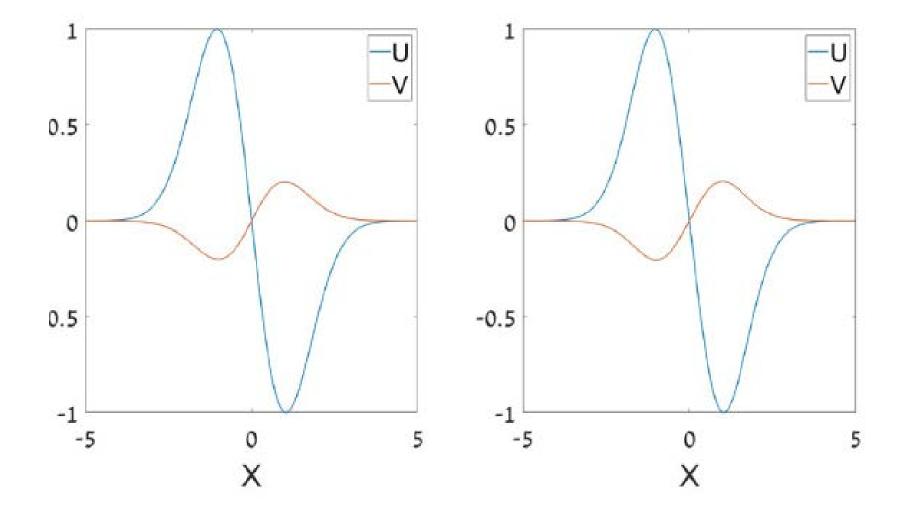
Comparison of the *exact* spatially-even bound state at $\sigma = 0$, $\kappa = 1$, $\lambda = 5$, $\omega = -10$, $\mu = 12.5$ (the left panel) and its numerically found counterparts with $\sigma = +1$, $\mu = 11.97$ (center) and $\sigma = -1$, $\mu = 13.19$ (right). Bound states remain stable in the nonlinear system:



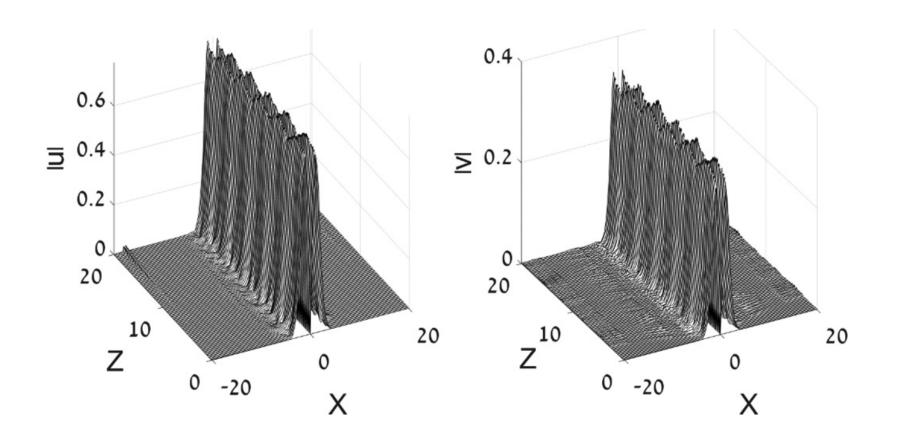
A **stability test**: take the exact **spatially even** bound-state solution of the **linearized system** (here, with $\kappa = 1$, $\lambda = 6$, $\omega = -15.5$, and amplitude $U_{\text{max}} = 0.146$), and use it as the **input** for simulations of the **nonlinear system** with $\sigma = +1$ (**self-focusing**). The result is a **robust breather**, which emits a small amount of "radiation":



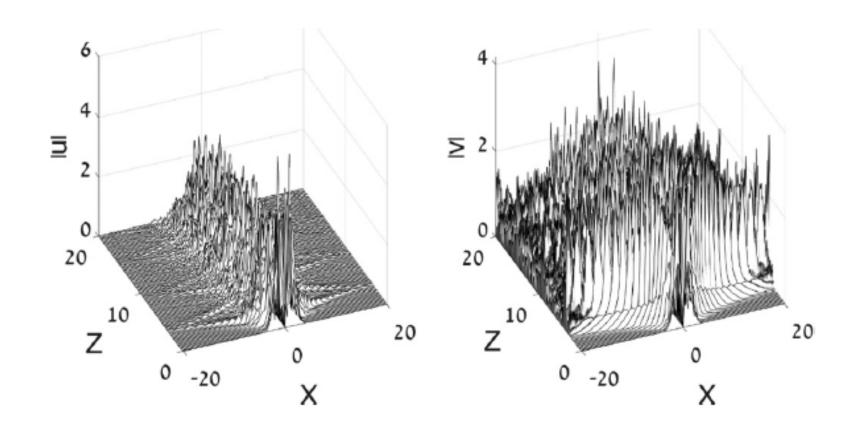
Similar comparison for **spatially-odd** solutions at $\sigma = 0, \kappa = 2.5$, $\lambda = 10$, $\omega = -45.375$ (left: the **exact solution** with $\mu = 48.875$) and its *numerically found counterpart* with $\sigma = +1$, $\mu = 48.363$ (right). The odd bound states are **stable** in the nonlinear system.



The **stability test** with the **input** taken as per the exact **spatially odd** solution of the **linearized system** with $\kappa = 0.5$, $\lambda = 5$, $\omega = -9.375$, and amplitude $U_{\text{max}} = 0.716$. A very "clean" breather is produced by the simulations, with virtually no emission of "radiation".



On the other hand, the simulations with a **much larger amplitude** of the input demonstrate **chaotization** of the ensuing dynamics. It **suppresses** the **effective confinement** imposed by the **linear coupling** onto the **v** component, which is subject to the action of the **expulsive potential**. This leads to the **loss of the localization**. An example: the simulation initiated by the same **spatially odd input** as before, but with the amplitude **x5**:



(7) Fundamental and vortex eigenstates of the two-dimensional system

A straightforward **2D** extension of the linearly-coupled system (written in the polar coordinates):

$$iu_{z} + \frac{1}{2} \left(\frac{\partial^{2}}{\partial r^{2}} + \frac{1}{r} \frac{\partial}{\partial r} - \frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}} \right) u + \lambda v - \frac{1}{2} r^{2} u + \sigma |u|^{2} u$$

$$= -\omega u,$$

$$iv_{z} + \frac{1}{2} \left(\frac{\partial^{2}}{\partial r^{2}} + \frac{1}{r} \frac{\partial}{\partial r} - \frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}} \right) v + \lambda u + \frac{1}{2} \kappa r^{2} v + \sigma |v|^{2} v$$

$$= 0.$$

$$(7)$$

Stationary **2D** solutions for bound states with propagation constant $-\mu$ and embedded vorticity S = 0,1,2,3,... are looked for as

$$\{u, v\} = \exp(-i\mu z + iS\theta)\{U(r), V(r)\},$$
 (8)

where real functions U and V satisfy radial equations

$$(\mu + \omega)U + \frac{1}{2} \left(\frac{d^2}{dr^2} + \frac{1}{r} \frac{d}{dr} - \frac{S^2}{r^2} \right) U + \lambda V - \frac{1}{2} r^2 U + \sigma U^3$$

$$= 0,$$
(9)

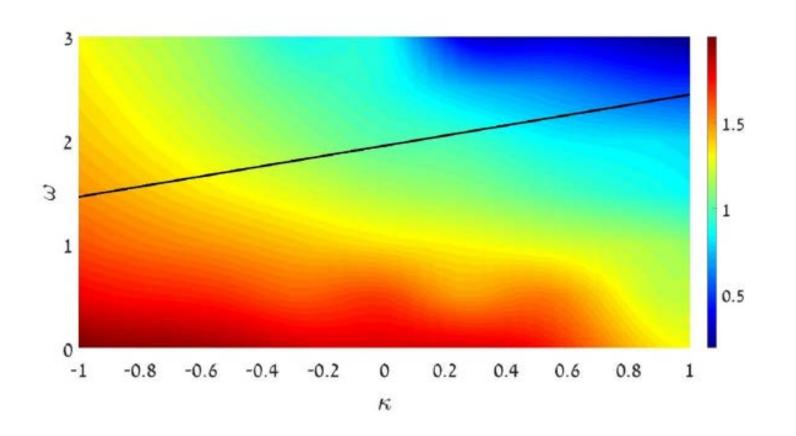
$$\mu V + \frac{1}{2} \left(\frac{d^2}{dr^2} + \frac{1}{r} \frac{d}{dr} - \frac{S^2}{r^2} \right) V + \lambda U + \frac{1}{2} \kappa r^2 V + \sigma V^3 = 0.$$
(10)

The **linearized version** of these equations admits an **exact codimension-1 solution** too, with **any integer vorticity S**:

$$\begin{split} U(r) &= \left(U_0^{(2\mathrm{D})} + U_2^{(2\mathrm{D})} r^2\right) r^S \exp\left(-\frac{r^2}{2}\right), \\ V(r) &= V_0^{(2\mathrm{D})} r^S \exp\left(-\frac{r^2}{2}\right), \\ U_0^{(2\mathrm{D})} &= \frac{(S+1)(1+\kappa) - \lambda^2}{2\lambda} V_0^{(2\mathrm{D})}, \\ U_2^{(2\mathrm{D})} &= -\frac{1+\kappa}{2\lambda} V_0^{(2\mathrm{D})}, \\ \mu_{2\mathrm{D}} &= \frac{1}{2} [\lambda^2 + (S+1)(1-\kappa)], \end{split}$$

This solution is valid under the following constraint imposed on parameters of the system: $\omega_{\rm 2D} = (1/2) \left[5 + S - \lambda^2 + (S+1)\kappa \right]$.

The heatmap of **numerically found** eigenvalues of the **2D** bound states in the linear system with $\sigma = 0$, S = 0 and $\lambda = 1$ (the **exact codimension-1** solutions exist along the black line):



Similarly to the **1D** setting, *all bound states* of the linearized **2D** system may be considered as eigenmodes *embedded into the continuum of delocalized states*.

The asymptotic form of the **2D** delocalized states at $r \rightarrow \infty$ is

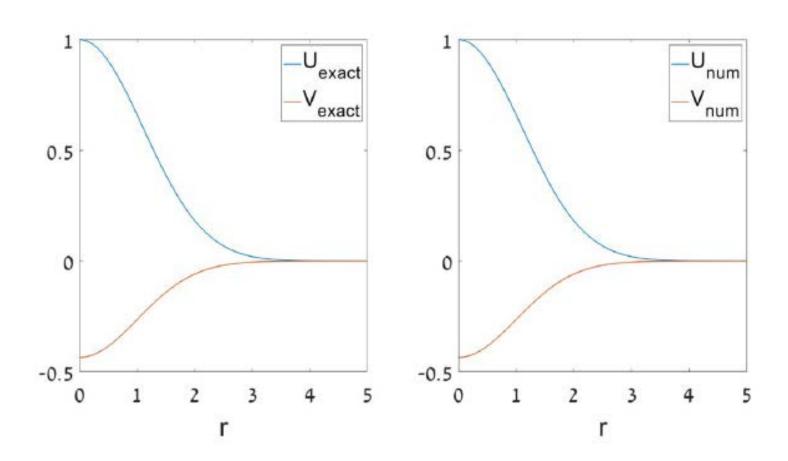
$$V_{\text{deloc}}^{(2D)}(r) \underset{r \to \infty}{\approx} V_0 r^{-1} \cos \left(\frac{\sqrt{\kappa}}{2} r^2 + \frac{\mu}{\sqrt{\kappa}} \ln r \right),$$

$$U_{\text{deloc}}^{(2D)}(r) \underset{r \to \infty}{\approx} V_0 \frac{2\lambda}{1 + \kappa} r^{-3} \cos \left(\frac{\sqrt{\kappa}}{2} r^2 + \frac{\mu}{\sqrt{\kappa}} \ln r \right).$$

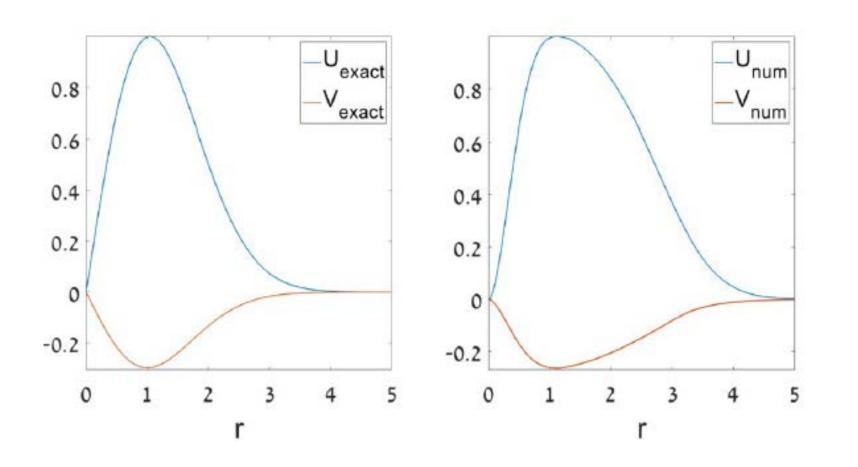
Note the *quadratic term* ~ r^2 in the phase of these expressions. At $r \to \infty$, their total norm slowly diverges as $\int dr/r$.

Also similar to the **1D** case, the **v** component, which is subject to the action of the expulsive potential, **dominates** in this solution.

The (weak) effect of the self-focusing nonlinearity on the 2D state with S=0 and $\kappa=1$, $\lambda=5$, $\omega=-10$: the exact solution with $\sigma=0$, $\mu=12.5$ (left), and its numerically found counterpart with $\sigma=+1$, $\mu=12.10$ (right). The 2D bound states with S=0 remain stable in the nonlinear system with either sign of σ .



The effect of the self-defocusing nonlinearity on the 2D bound state with vorticity S = 1 and $\kappa = 0.5$, $\lambda = 10$, $\omega = -46.5$: the exact solution with $\sigma = 0$, $\mu = 24.5$ (left), and its numerically found counterpart with $\sigma = -1$, $\mu = 27.01$ (right).

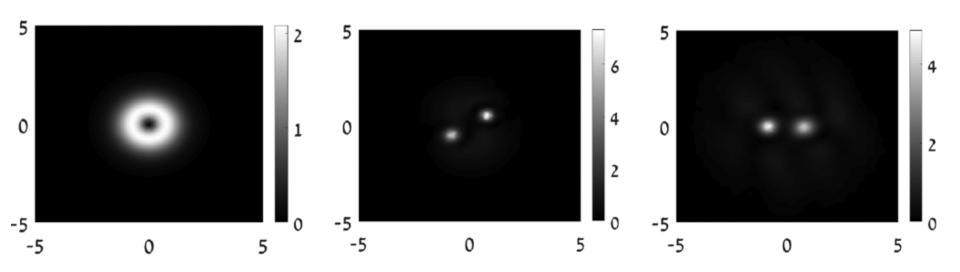


The situation concerning the **stability** of the **2D** bound states with **embedded vorticity** in the system with the **self-focusing** is **different**, in comparison with the case of S = 0. As in other models

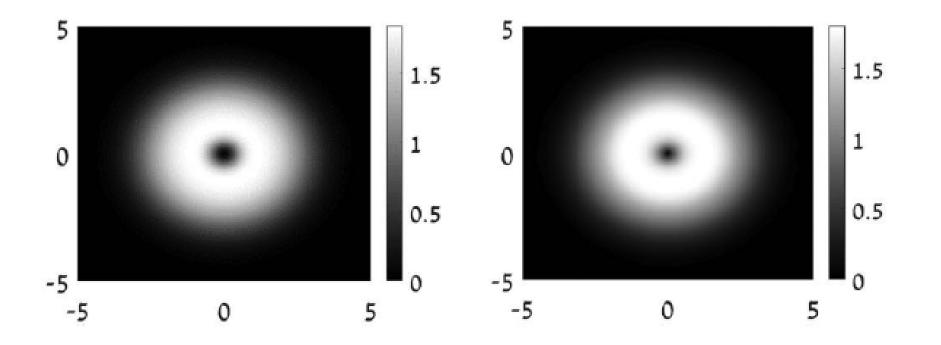
T. J. Alexander and L. Bergé, Ground states and vortices of matter-wave condensates and optical guided waves, Phys. Rev. E **65**, 026611 (2002);

B. A. Malomed, Vortex solitons: Old results and new perspectives, Physica D 399, 108 (2019)], the vortex is *unstable* against *spontaneous splitting* under the action of the *self-focusing nonlinearity* ($\sigma = +1$).

An example: the unstable evolution of the vortex state with S = 1 and $\kappa = 0.5$, $\lambda = 10$, $\omega = -46.5$, $U_{\text{max}} = 1$. Shown are the shapes at z = 0, 3.8, and 6.2.



On the other hand, the vortex eigenstates remain *stable* in the *nonlinear system* with *self-defocusing* ($\sigma = -1$). An example: the *stable evolution* of the eigenstate with S = 1 in the system with $\kappa = 1$, $\lambda = 7$, $\omega = -20.5$, and $U_{\text{max}} = 1$. Shown are the shapes at z = 0 and z = 10.



(8) Conclusions

- (i) It is demonstrated that, quite **counter-intuitively**, **bound states** of the wave function subject to the action of the **1D** and **2D expulsive** parabolic potential may be supported by the linear coupling of the wave function to a mate one, which is confined by the **trapping potential**.
- (ii) This finding is precisely corroborated by the **exact analytical solutions** of **codimension 1**, for both the even and odd eigenmodes in the **1D** system, and for eigenstates with all values of vorticity **S** in **2D**.
- (iii) Generic spatially even and odd **1D** eigenstates are found by means of the variational (*Rayleigh-Ritz*) approximation. Along with the systematically reported numerical findings, these results corroborate the **existence of the bound states for all values of strength** κ **of the expulsive potential**. In the limit of $\kappa \to \infty$, this is explained by the fact that the amplitude of the component of the bound state which is subject to the action of the expulsive potential becomes **vanishingly small**, $\sim 1/\kappa$.

- (iv) All the bound eigenstates coexist with the delocalized states which form the continuous spectrum, therefore the bound eigenstates may be categorized as *localized modes embedded into the continuum*.
 - (v) Both the self-focusing and defocusing nonlinearity produces a weak deformation of the bound states, and does not break their stability in the 1D system.
 - (vi) In the 2D system, bound eigenstates with embedded vorticity are unstable against spontaneous splitting under the action of the self-focusing, but remain stable in the case of defocusing.

A copy of the file of this talk can be requested from: malomed@tauex.tau.ac.il

Thank you for your interest!