On the complexity of first-order logic of probability of type 1

Stanislav O. Speranski

Steklov Mathematical Institute of RAS

Moscow 2025

1. Probabilities on the domain

Consider a (first-order) signature ς . Then, following [1], by an $\mathcal{L}_1(\varsigma)$ -structure we mean a triple $\langle D, \pi, \mathsf{p} \rangle$ where:

- *D* is a non-empty set;
- π is a ς -structure, as defined in first-order logic, with domain D;
- p is a discrete probability distribution on D, i.e. a function from D to [0,1] such that

$$\left|\left\{d\in D\mid \mathbf{p}\left(d\right)\neq0\right\}\right|\ \leqslant\ \aleph_{0}\quad\text{and}\quad\sum_{d\in D}\mathbf{p}\left(d\right)\ =\ 1,$$

which generates the probability measure P on the powerset of D as follows:

$$P(A) := \sum_{d \in A} p(d).$$

Note, in passing, that given p as above and a non-zero $k \in \mathbb{N}$, we can define a discrete distribution p^k on D^k by

$$\mathsf{p}^k\left(d_1,\ldots,d_k\right) := \mathsf{p}\left(d_1\right)\cdot\ldots\cdot\mathsf{p}\left(d_k\right),$$

which generates the measure P^k on the powerset of D^k , of course. Evidently, if $A \subseteq D^k$, and A' is obtained from A by permuting some of the coordinates, then $P^k(A')$ coincides with $P^k(A)$.

As for the syntax of \mathcal{L}_1 , its alphabet includes two disjoint countable sets

$$Var := \{x, y, z, \ldots\}$$
 and $Var := \{\mathfrak{a}, \mathfrak{b}, \mathfrak{c}, \ldots\},$

whose elements are called individual variables and field variables respectively. Of course, the latter are intended to range over reals. In addition, we have:

- the logical symbols \top , \bot , \land , \lor and \neg ;
- the quantifier symbols ∀ and ∃;
- the symbols $0, 1, +, -, \cdot, =$ and \leq of the language of ordered fields;
- a special symbol μ , which will be interpreted using probability measures.

Given a signature ς , let $\mu\text{-Form}^1_{\varsigma}$ and $\mu\text{-Term}^1_{\varsigma}$ be the sets defined simultaneously by the following conditions:

- 1. μ -Form contains all atomic fist-order ς -formulas, including \top and \bot ;
- 2. μ -Term¹ contains 0 and 1;
- 3. μ -Term¹ contains all field variables;
- 4. μ -Form¹ is closed under \wedge , \vee and \neg ;
- 5. μ -Form¹ is closed under Qx, for all $Q \in \{ \forall, \exists \}$ and $x \in Var$;
- 6. μ -Form¹ is closed under $Q\mathfrak{a}$, for all $Q \in \{\forall, \exists\}$ and $\mathfrak{a} \in \mathbf{Var}$;
- 7. if ϕ belongs to μ -Form $_{\varsigma}^{1}$, and $\vec{x} \in \operatorname{Var}^{+}$, then $\mu_{\vec{x}}(\phi)$ belongs to μ -Term $_{\varsigma}^{1}$;
- 8. μ -Term¹ is closed under +, and ·;
- 9. if t_1 and t_2 belong to $\mu\text{-Term}^1_{\varsigma}$, then $t_1=t_2$ and $t_1\leqslant t_2$ belong to $\mu\text{-Form}^1_{\varsigma}$.

Elements of these sets are called $\mathscr{L}_1(\varsigma)$ -formulas and $\mathscr{L}_1(\varsigma)$ -terms respectively. By the depth of an $\mathscr{L}_1(\varsigma)$ -formula ϕ , denoted by $dp(\phi)$, we mean the largest number of nested occurrences of μ in ϕ ; similarly for $\mathscr{L}_1(\varsigma)$ -terms.

An $\mathcal{L}_1(\varsigma)$ -formula ϕ is:

- basic if ϕ has the form $t_1=t_2$ or $t_1\leqslant t_2$ where t_1 and t_2 are $\mathscr{L}_1\left(\varsigma\right)$ -terms;
- regular if all occurrences of (atomic) first-order ς -formulas in ϕ are in the scope of μ .

An $\mathcal{L}_1(\varsigma)$ -sentence is an $\mathcal{L}_1(\varsigma)$ -formula with no free variable occurrences.

Consider an $\mathscr{L}_1(\varsigma)$ -structure $\mathcal{M} = \langle D, \pi, \mathsf{p} \rangle$. Hence the individual variables are intended to range over D. By a valuation in \mathcal{M} we mean a pair $\langle \zeta, \gamma \rangle$ where ζ and γ are functions from Var and Var to D and \mathbb{R} respectively. Then

$$\mathcal{M} \Vdash \phi \left[\zeta, \gamma \right]$$

read as ' ϕ is true in \mathcal{M} under $\langle \zeta, \gamma \rangle$ ', can be defined by induction on the depth of ϕ . Of course, in case ϕ is a first-order ς -formula, we employ the ς -structure π , viz.

$$\mathcal{M} \Vdash \phi [\zeta, \gamma] :\iff \pi \vDash \phi [\zeta].$$

Assuming $dp(\phi) > 0$, the idea is that given an arbitrary valuation $\langle \eta, \delta \rangle$ in \mathcal{M} , we interpret each $\mu_{(x_1, \dots, x_k)}(\psi)$ with $dp(\psi) < dp(\phi)$ as

$$\mathsf{P}^k\left(\left\{(d_1,\ldots,d_k)\in D^k\mid \mathcal{M}\Vdash\psi\left[\eta_{\vec{d}}^{\vec{x}},\delta\right]\right\}\right)$$

where $\eta_{\vec{J}}^{\vec{x}}$ is the function from Var to D such that

$$\eta_{\vec{d}}^{\vec{x}}(u) = \begin{cases} d_i & \text{if } u = x_i \text{ with } i \in \{1, \dots, k\} \\ \eta(u) & \text{otherwise.} \end{cases}$$

We call an $\mathcal{L}_1(\varsigma)$ -sentence valid if it is true in all $\mathcal{L}_1(\varsigma)$ -structures.

Theorem 1.1 (see [1])

Let ς be $\langle P^2 \rangle$ where P is a binary predicate symbol. Then the validity problem for $\mathscr{L}_1(\varsigma)$ -sentences is Π_1^2 -complete. However, if we limit ourselves to at most countable domains, the corresponding problem becomes Π_{∞}^1 -complete.

Let \mathscr{L}_1^{\natural} be the sublanguage of \mathscr{L}_1 obtained by excluding field variables, and hence quantifiers over reals. So the definitions of $\mathscr{L}_1^{\natural}(\varsigma)$ -formula and $\mathscr{L}_1^{\natural}(\varsigma)$ -term are like those for \mathscr{L}_1 except that items 3 and 6 are removed.

Theorem 1.2 (see [1])

Let ς be as before. Then the validity problem for $\mathscr{L}_1^{\natural}(\varsigma)$ -sentences is Π_1^1 -hard, even if we confine ourselves to at most countable domains.

2. Concerning higher-order arithmetic

In second-order arithmetic, in addition to individual variables x, y, z, \ldots , which are intended to range over \mathbb{N} , we have k-ary set variables

$$X^k$$
, Y^k , Z^k , ...,

intended to range over the powerset of \mathbb{N}^k , for each positive k. Hence the atomic second-order formulas additionally include all expressions of the form

$$X^k(t_1,\ldots,t_k)$$

where t_1, \ldots, t_k are terms. In what follows we shall write X instead of X^1 .

Let \mathfrak{N} be the standard model of Peano arithmetic presented in the signature $\langle 0, \mathbf{s}, +, \cdot; = \rangle$. We write $\sigma_{\mathbf{s}}$ for the much smaller signature $\langle 0, \mathbf{s}; = \rangle$ and $\mathfrak{N}_{\mathbf{s}}$ for the $\sigma_{\mathbf{s}}$ -reduct of \mathfrak{N} . Take

$$\sigma_{\mathsf{s}}^{\sharp} := \langle 0, \mathsf{s}; =, Y^2 \rangle$$

where Y^2 is treated as a binary predicate symbol. For each $R \subseteq \mathbb{N}^2$, denote by $\langle \mathfrak{N}_s, R \rangle$ the σ_s^{\sharp} -expansion of \mathfrak{N}_s in which Y^2 is interpreted as R.

Lemma 2.1 (see [9, Section 5])

There exist first-order σ_s^{\sharp} -formulas $\Psi_+(x,y,z)$, $\Psi_-(x,y,z)$ and a first-order σ_s^{\sharp} -sentence Δ such that for every $R \subseteq \mathbb{N}^2$,

$$\langle \mathfrak{N}_{\mathsf{s}}, R \rangle \vDash \Delta \iff \begin{array}{c} \Psi_{+}\left(x, y, z\right) \text{ and } \Psi_{-}\left(x, y, z\right) \text{ define} \\ \text{addition and multiplication respectively in } \langle \mathfrak{N}_{\mathsf{s}}, R \rangle. \end{array}$$

Corollary 2.2

Let \mathbb{S}^1_1 denote the collection of all second-order σ_s -sentences of the form $\forall Y^2 \Psi$ where Y^2 is a binary set variable, and Ψ contains no set quantifiers. Then

$$\left\{\Phi \in \mathsf{S}^1_1 \mid \mathfrak{N} \vDash \Phi\right\}$$

is Π_1^1 -complete.

Corollary 2.3

Let S^1_{∞} denote the collection of all second-order σ_s -sentences of the form $\forall Y^2 \Psi$ where Y^2 is a binary set variable, and Ψ contains only unary set quantifiers. Then

$$\left\{\Phi \in \mathtt{S}^1_{\infty} \mid \mathfrak{N} \vDash \Phi\right\}$$

is Π^1_{∞} -complete.

In third-order arithmetic we also have class variables

$$\mathcal{X}, \ \mathcal{Y}, \ \mathcal{Z}, \ \ldots,$$

intended to range over the powerset of the powerset of \mathbb{N} . It would be more accurate to call these unary class variables, but we shall not deal with class variables of greater arities. Hence the atomic third-order formulas additionally include all expressions of the form $\mathcal{X}(X)$.

Corollary 2.4

Let S_1^2 denote the collection of all third-order σ_s -sentences of the form

$$\forall \mathcal{X} \, \forall Y^2 \, \Psi$$

where \mathcal{X} is a class variable, Y^2 is a binary set variable, and Ψ contains only unary set quantifiers and no class quantifiers. Then $\{\Phi \in \mathbb{S}^2_1 \mid \mathfrak{N} \models \Phi\}$ is Π^2_1 -complete.

3. The case of structures of type 2

We write Form for the set of all quantifier-free first-order ς -formulas.

Fix a special individual variable \underline{u} . Call a regular $\mathcal{L}_1(\varsigma)$ -formula flat if each of its basic subformulas is of the form

$$\mu_{\underline{u}}(\phi) = \mu_{\underline{u}}(\psi) \text{ or } \mu_{\underline{u}}(\phi) \leqslant \mathfrak{a}$$

where ϕ and ψ belong to $\mathrm{Form}_{\varsigma}^{\circ}$, and \mathfrak{a} is a field variable. Obviously, ' $\mu_{\underline{u}}\left(\phi\right)\leqslant\mathfrak{a}$ ' must be omitted in the case of $\mathscr{L}_{1}^{\natural}$, i.e. if we exclude field variables.

Now Corollary 2.2 can be utilized to get:

Theorem 3.1

Let ς be $\langle P^2 \rangle$ where P is a binary predicate symbol. Then the validity problem for flat $\mathcal{L}_1^{\natural}(\varsigma)$ -sentences is Π_1^1 -hard, even if we confine ourselves to at most countable domains.

Proof. Consider an arbitrary $\mathscr{L}_1(\varsigma)$ -structure $\mathcal{M} = \langle D, \pi, \mathsf{p} \rangle$. With each $d \in D$, associate the corresponding event

$$\llbracket d \rrbracket := \{ e \in D \mid \pi \models P(d, e) \}.$$

Denote by \mathscr{D} the collection of all such events. If x is a variable distinct from \underline{u} , let us write [x] for $P(x,\underline{u})$. Here $P(x,\underline{u})$ may be read as 'x satisfies P at \underline{u} '; so \underline{u} is viewed as ranging over 'worlds'. Then the (flat) formula

$$x \approx y := \mu\left(([x] \land \neg[y]) \lor ([y] \land \neg[x])\right) = 0$$

says 'the symmetric difference of $\llbracket x \rrbracket$ and $\llbracket y \rrbracket$ has measure zero'. For expository purposes, assume that $\mathsf{p}\,(d)>0$ for all $d\in D$. While this restriction is not necessary, it will make some descriptions below simpler. Thus $x\approx y$ means that $\llbracket x \rrbracket$ equals $\llbracket y \rrbracket$. So

$$x \preccurlyeq y := \mu([x] \land \neg[y]) = 0$$

says ' $\llbracket x \rrbracket$ is a subset of $\llbracket y \rrbracket$ '. For convenience, take

 $\underline{\mathscr{D}}:=$ the closure of \mathscr{D} under finite intersection and complementation.

Naturally, it can be viewed as a Boolean algebra. Observe that the formula

$$\operatorname{At}\left(x\right) \;:=\; \mu\left(\left[x\right]\right) \neq 0 \land \forall y \left(\mu\left(\left[x\right] \land \left[y\right]\right) \neq 0 \rightarrow \mu\left(\left[x\right] \land \left[y\right]\right) = \mu\left(\left[x\right]\right)\right)$$

holds iff [x] is an atom of $\underline{\mathscr{D}}$, i.e. a minimal non-empty event in $\underline{\mathscr{D}}$.

We shall also need the following formulas:

$$\begin{aligned} \operatorname{Disj}_{2}\left(x,y\right) &:= \mu\left([x] \wedge [y]\right) = 0; \\ \operatorname{Disj}_{3}\left(x,y,z\right) &:= \mu\left([x] \wedge [y]\right) = \mu\left([x] \wedge [z]\right) = \mu\left([y] \wedge [z]\right) = 0; \\ \operatorname{DEq}_{2}\left(x,y\right) &:= \operatorname{Disj}_{2}\left(x,y\right) \wedge \mu\left([x]\right) = \mu\left([y]\right); \\ \operatorname{DEq}_{3}\left(x,y,z\right) &:= \operatorname{Disj}_{3}\left(x,y,z\right) \wedge \mu\left([x]\right) = \mu\left([y]\right) = \mu\left([z]\right); \\ \operatorname{Step}_{2}\left(x,y\right) &:= \exists y_{1} \exists y_{2} \left(\operatorname{DEq}_{2}\left(y_{1},y_{2}\right) \wedge \mu\left([y]\right) = \mu\left([y_{1}] \vee [y_{2}]\right) \wedge \mu\left([y]\right) = \mu\left([y_{1}]\right); \\ \operatorname{Step}_{3}\left(x,y\right) &:= \exists y_{1} \exists y_{2} \exists y_{3} \left(\operatorname{DEq}_{3}\left(y_{1},y_{2},y_{3}\right) \wedge \mu\left([y]\right) = \mu\left([y_{1}]\right); \\ \operatorname{Step}_{3}\left(x,y\right) &:= \exists y_{1} \exists y_{2} \exists y_{3} \left(\operatorname{DEq}_{3}\left(y_{1},y_{2},y_{3}\right) \wedge \mu\left([y]\right) = \mu\left([y_{1}]\right). \end{aligned}$$

Their meanings are clear. For technical reasons, suppose that ${\mathcal M}$ satisfies

Tech :=
$$\forall u (At(u) \rightarrow \exists v (At(v) \land Step_2(u, v)) \land \exists v (At(v) \land Step_3(u, v))).$$

With Tech in mind, the formula

$$\operatorname{Ind}_{2}(x) := \forall u \left(\operatorname{At}(u) \wedge u \leq x \rightarrow \exists v \left(\operatorname{At}(v) \wedge v \leq x \wedge \operatorname{Step}_{2}(u, v) \right) \right)$$

holds iff for every atom $\llbracket u \rrbracket$ (of $\underline{\mathscr{D}}$) below $\llbracket x \rrbracket$ there exists an atom $\llbracket v \rrbracket$ below $\llbracket x \rrbracket$ whose measure is two times smaller than that of $\llbracket u \rrbracket$. Then

$$\begin{aligned} \operatorname{Seq}_{2}\left(u,x\right) &:= \\ \operatorname{At}\left(u\right) \wedge u &\preccurlyeq x \wedge \operatorname{Ind}_{2}\left(x\right) \wedge \\ \forall v_{1} \, \forall v_{2} \left(\operatorname{At}\left(v_{1}\right) \wedge \operatorname{At}\left(v_{2}\right) \wedge v_{1} &\preccurlyeq x \wedge v_{2} &\preccurlyeq x \rightarrow \neg \operatorname{DEq}_{2}\left(v_{1},v_{2}\right)\right) \wedge \\ \forall v \left(\operatorname{At}\left(v\right) \wedge v &\preccurlyeq x \wedge \mu\left(\left[v\right]\right) \neq \mu\left(\left[u\right]\right) \rightarrow \exists w \left(\operatorname{At}\left(w\right) \wedge w &\preccurlyeq x \wedge \operatorname{Step}_{2}\left(w,v\right)\right)\right) \end{aligned}$$

means that $\llbracket u \rrbracket$ is an atom, and $\llbracket x \rrbracket$ is a minimal event above $\llbracket u \rrbracket$ satisfying $\operatorname{Ind}_2(x)$. Similarly, we can obtain $\operatorname{Ind}_3(x)$ and $\operatorname{Seq}_3(u,x)$ using $\operatorname{Step}_3(x,y)$, or $\operatorname{Ind}_6(x)$ and $\operatorname{Seq}_6(u,x)$ via

$$\operatorname{Step}_{6}(x,y) := \exists z (\operatorname{Step}_{2}(x,z) \wedge \operatorname{Step}_{3}(z,y)).$$

Finally, we need the formula

Base
$$(x_a, x_b, x_c)$$
 := Disj₃ $(x_a, x_b, x_c) \land \mu([x_a] \lor [x_b] \lor [x_c]) = 1 \land$

$$\mu([x_a] \lor [x_b]) = \mu([x_c]) \land \mu([x_a]) = \mu([x_b]) \land$$

$$\exists u (At (u) \land Step_2(x_a, u) \land u \preccurlyeq x_a) \land Ind_2(x_a) \land$$

$$\exists u (At (u) \land Step_2(x_b, u) \land u \preccurlyeq x_b) \land Ind_2(x_b) \land$$

$$\exists u (At (u) \land Step_3(x_c, u) \land u \preccurlyeq x_c) \land Ind_2(x_c) \land Ind_3(x_c).$$

It guarantees that:

- $[x_a]$, $[x_b]$ and $[x_c]$ are pairwise disjoint;
- the measures of $[x_a]$, $[x_b]$ and $[x_c]$ are equal to 1/4, 1/4 and 1/2;
- $[x_a]$ and $[x_b]$ can be represented as

$$\llbracket x_a \rrbracket = \bigcup_{i \in \mathbb{N}} \llbracket a_i \rrbracket$$
 and $\llbracket x_b \rrbracket = \bigcup_{i \in \mathbb{N}} \llbracket b_i \rrbracket$

where each $[a_i]$ and $[b_i]$ is an atom and has measure $1/2^{i+3}$;

• $\llbracket x_c \rrbracket$ can be represented as

$$\llbracket x_c \rrbracket = \bigcup_{i,j \in \mathbb{N}} \llbracket c_{ij} \rrbracket$$

where each $\llbracket c_{ij} \rrbracket$ is an atom and has measure $1/\left(2^{i+1} \cdot 3^{j+1}\right)$.

Clearly, in case Base (x_a, x_b, x_c) holds, every atom has the form $[a_i]$ or $[b_i]$ or $[c_{ij}]$, since

$$2 \cdot \sum_{i \in \mathbb{N}} \frac{1}{2^{i+3}} + \sum_{i,j \in \mathbb{N}} \frac{1}{2^{i+1} \cdot 3^{j+1}} = \frac{1}{2} + \frac{1}{2} = 1.$$

Moreover, each of the $[\![c_{ij}]\!]$'s is uniquely determined by its measure. In particular, $[\![c_{00}]\!]$ can be captured by

$$Start(x) := At(x) \wedge \exists y (\mu([y]) = \mu(\neg[y]) \wedge Step_3(y, x)).$$

In fact, the atoms below $\llbracket x_a \rrbracket$ and $\llbracket x_b \rrbracket$ will play supporting roles. For instance, $\operatorname{Step}_3(\llbracket c_{ij} \rrbracket, \llbracket c_{ij+1} \rrbracket)$ can be justified by finding $S \subseteq \mathbb{N}$ such that

$$\frac{1}{2^{i+1} \cdot 3^{j+2}} = \sum_{k \in S} \frac{1}{2^{k+3}}$$

and extending \mathscr{D} to contain both $\bigcup_{k \in S} \llbracket a_i \rrbracket$ and $\bigcup_{k \in S} \llbracket b_i \rrbracket$. However, we shall be mainly concerned with $\llbracket x_c \rrbracket$, which will conveniently be viewed as an infinite matrix: for any $i, j \in \mathbb{N}$,

$$C_i := \bigcup \{ \llbracket c_{ij} \rrbracket \mid j \in \mathbb{N} \} \quad \text{and} \quad C_j^* := \bigcup \{ \llbracket c_{ij} \rrbracket \mid i \in \mathbb{N} \}$$

correspond to the ith row and jth column respectively; thus the diagonal is

$$E := \bigcup \{ \llbracket c_{ii} \rrbracket \mid i \in \mathbb{N} \}.$$

To make sure that all the rows, the columns and the diagonal belong to \mathcal{D} , one can add

Aux :=
$$\exists u \,\exists y \,(\operatorname{Start}(u) \wedge \operatorname{Seq}_2(u, y) \wedge \forall v \,(\operatorname{At}(v) \wedge v \preccurlyeq y \to \exists z \,\operatorname{Seq}_3(v, z))) \wedge \exists u \,\exists y \,(\operatorname{Start}(u) \wedge \operatorname{Seq}_3(u, y) \wedge \forall v \,(\operatorname{At}(v) \wedge v \preccurlyeq y \to \exists z \,\operatorname{Seq}_2(v, z))) \wedge \exists u \,\exists y \,(\operatorname{Start}(u) \wedge \operatorname{Seq}_6(u, y)).$$

which guarantees, in particular, that for some c_0 , c_1 , ... and c_0^* , c_1^* , ...,

$$[\![c_0]\!] = C_0, \quad [\![c_1]\!] = C_1, \quad \dots \quad \text{and} \quad [\![c_0^*]\!] = C_0^*, \quad [\![c_1^*]\!] = C_1^*, \quad \dots$$

Thus we are going to deal with $\mathscr{L}_1\left(\varsigma\right)$ -structures that satisfy the sentence

Req := Tech
$$\wedge \exists x_a \exists x_b \exists x_c \operatorname{Base}(x_a, x_b, x_c) \wedge \operatorname{Aux}$$
.

It is straightforward to check that such structures do exist; we shall call them admissible. Further, for every $S\subseteq \mathbb{N}^2$ there exists an admissible \mathcal{M} such that

$$\bigcup_{(i,j)\in S} \llbracket c_{ij} \rrbracket \in \mathscr{D}.$$

This will allow us to interpret a free binary predicate on the natural numbers.

Now consider the following formulas:

```
\operatorname{Row}^{0}(x) := \exists u \left( \operatorname{Start}(u) \wedge \operatorname{Seq}_{3}(u, x) \right);
\operatorname{Col}^{0}(x) := \exists u \left( \operatorname{Start}(u) \wedge \operatorname{Seq}_{2}(u, x) \right);
\operatorname{Row}(x) := \exists y \exists u \left( \operatorname{Col}^{0}(y) \wedge \operatorname{At}(u) \wedge u \preccurlyeq y \wedge \operatorname{Seq}_{3}(u, x) \right);
\operatorname{Col}(x) := \exists y \exists u \left( \operatorname{Row}^{0}(y) \wedge \operatorname{At}(u) \wedge u \preccurlyeq y \wedge \operatorname{Seq}_{2}(u, x) \right);
\operatorname{Diag}(x) := \exists u \left( \operatorname{Start}(u) \wedge \operatorname{Seq}_{6}(u, x) \right);
\operatorname{Match}(x, y) := \exists z \left( \operatorname{Diag}(z) \wedge \mu \left( [x] \wedge [y] \wedge [z] \right) \neq 0 \right).
```

Their meanings are clear. Note that $\operatorname{Match}(x,y)$ can be used to switch from rows to columns, and vice versa: if \mathcal{M} is an admissible $\mathscr{L}_1(\varsigma)$ -structure, then for any $i,j\in\mathbb{N}$,

$$\mathcal{M} \Vdash \operatorname{Match}(c_i, c_i^*) \iff i = j.$$

Let us think of natural numbers as rows. Hence the successor function is captured by $\operatorname{Step}_2(x,y)$. To interpret a binary set variable, we introduce

$$\Gamma(x, y, z) := \exists y^* (\operatorname{Col}(y^*) \wedge \operatorname{Match}(y, y^*) \wedge \mu([x] \wedge [y^*] \wedge [z]) \neq 0).$$

To see how it works, observe that for every $S \subseteq \mathbb{N}^2$,

$$S = \{(i,j) \in \mathbb{N}^2 \mid \mathcal{M} \Vdash \Gamma(c_i,c_j,s)\},\$$

provided that \mathcal{M} is admissible, $\bigcup_{(i,j)\in S} \llbracket c_{ij} \rrbracket$ belongs to \mathscr{D} and equals $\llbracket s \rrbracket$. Thus elements of \mathscr{D} may be treated as binary relations on \mathbb{N} .

We are ready to show the Π_1^1 -hardness of the validity problem for flat $\mathcal{L}_1^{\natural}(\varsigma)$ -sentences. Let Φ be a σ_s -sentence in \mathbb{S}_1^1 ; so it has the form $\forall Y^2 \Psi$ where Ψ contains no set variables. Without loss of generality, we may assume that:

 \bullet each atomic subformula of Ψ has the form

$$x=y$$
 or $x=0$ or $\mathbf{s}\left(x\right) =y$ or $Y^{2}\left(x,y\right) ;$

• \vee and \exists do not occur in Ψ , although \wedge , \neg and \forall may occur in it.

For convenience, the set variable Y^2 will also be treated as distinguished individual variable. Now define $\tau(\Psi)$ recursively:

$$\tau(x = y) := \mu([x]) = \mu([y]);$$

$$\tau(x = 0) := \operatorname{Row}^{0}(x);$$

$$\tau(s(x) = y) := \operatorname{Step}_{2}(x, y);$$

$$\tau(Y^{2}(x, y)) := \Gamma(x, y, Y^{2});$$

$$\tau(\Theta \wedge \Xi) := \tau(\Theta) \wedge \tau(\Xi);$$

$$\tau(\neg \Theta) := \neg \tau(\Theta);$$

$$\tau(\forall x \Theta) := \forall x (\operatorname{Row}(x) \to \tau(\Theta)).$$

By construction, $\tau(\Psi)$ is always flat. And it is straightforward to verify that

$$\mathfrak{N} \vDash \Phi \iff \operatorname{Req} \to \forall Y^2 \tau(\Psi) \text{ is valid.}$$

Finally, apply Corollary 2.2.

If we allow quantifiers over reals, then Corollary 2.3 can be used to obtain:

Theorem 3.2

Let ς be as before. Then the validity problem for flat $\mathscr{L}_1(\varsigma)$ -sentences is Π^1_∞ -hard, even if we confine ourselves to at most countable universes.

Proof. ...

In effect, Corollary 2.4 allows us to get a bit more:

Theorem 3.3

Let ς be as before. Then the validity problem for flat $\mathscr{L}_1(\varsigma)$ -sentences is Π_1^2 -hard.

Proof. . . .

References

- [1] M. Abadi, J. Y. Halpern. Decidability and expressiveness for first-order logics of probability. Information and Computation 112(1), 1–36, 1994.
- [2] J. Y. Halpern. An analysis of first-order logics of probability. Artificial Intelligence 46(3), 311—350, 1990.
- [3] D. N. Hoover. Probability logic. Annals of Mathematical Logic 14(3), 287–313, 1978.
- [4] D. Ibeling, T. Icard, K. Mierzewski, M. Mossé. Probing the quantitative—qualitative divide in probabilistic reasoning. Annals of Pure and Applied Logic 175(9), 103339, 2024.

- [5] H. J. Keisler. Probability quantifiers. In J. Barwise, S. Feferman (eds.), Model-Theoretic Logics, pp. 509–556. Springer, 1985.
- [6] Z. Ognjanović, M. Rašković, Z. Marković. Probability Logics. Springer, 2016.
- [7] Z. Ognjanović, A. Ilić-Stepić. Logics with probability operators. In Z. Ognjanović (ed.), Probabilistic Extensions of Various Logical Systems, pp. 1–35. Springer, 2020.
- [8] S. O. Speranski. An 'elementary' perspective on reasoning about probability spaces. Logic Journal of the IGPL, jzae042, 2024. Published online.
- [9] S. O. Speranski. Sharpening complexity results in quantified probability logic. Logic Journal of the IGPL, jzae114, 2024. Published online.
- [10] S. O. Speranski. On the decision problem for quantified probability logics. Izvestiya: Mathematics 89(3), 10.4213/im9652, 2025.