Ergodicity of invariant measures on a Hilbert space and pecularities of state diffusion

V. Zh. Sakbaev¹

We study a finitely additive nonnegative measure λ on a real separable Hilbert space E that are invariant with respect to the group of shifts on any vector of this space.

The Hilbert space $H=L_2(E,\lambda,C)$ of function that are squre integrable with respect to an invariant measure is intoduced. We show that the representation π of the Abelian group E in the space H is not strongly continuous and we find the subgroup L such that the mapping $\pi:L\to B(H)$ is continuous in the strong operator topology.

Let G be a group of mapping of a space E into itself. Let R be a G-invariant ring of subsets of a space E.

Definition. A G-invariant measure $\mu: R \to [0, +\infty)$ is called

- 1. ring-decomposible with respect to the group G if there are two G-invariant subrings r_1, r_2 of the ring R satysfying conditions a), b) such that $\mu(A) = 0 \ \forall \ A \in r_1 \cap r_2$; where
 - a) $\mu|_{r_1} \neq 0$, $\mu|_{r_2} \neq 0$,
 - b) the ring R is completion with respect to the measure μ of the ring which is generated by the collection of sets $r_1 \cup r_2$;
- 2. ring-ergodic with respect to the group G if for any two G-invariant subrings r_1, r_2 of the ring R the conditions a), b) imply that there is $A \in r_1 \cap r_2$ such that $\mu(A) > 0$.

The decomposition of a G-invariant measure μ to the sum of ring-ergodic with respect to the group G mutually singular measures is called *ring-ergodic* with respect to the group G decomposition of the G-invariant measure μ .

We obtain the ring-ergodic with respect to the group L decompositions $\lambda = \bigoplus_{z \in E/L} \lambda_z$ and the orthogonal decomposition $H = \bigoplus_{z \in E/L} H_z$ where $H_z = L_2(E, \lambda_z, C)$.

 $^{^1}$ Keldysh Institute of Applied Mathematics RAS, Ufa Mathematical Institute UFRC RAS. Email: fumi2003@mail.ru

We prove, that the representation ${\bf U}$ of the convolutional semigroup of Gaussian measures on the space E in the space H is strongly continuous if and only if subspaces $H_z,\ z\in E/L$, are invariant with respect to the semigroup ${\bf U}$.