Geometric representatives in SU-bordism classes

Taras Panov

Moscow State University

Conference
"Geometry, Topology and Mathematical Physic"
dedicated to the memory of Sergey Petrovich Novikov
2-6 June 2025

1. Unitary bordism

The unitary bordism ring Ω^U consists of complex bordism classes of stably complex manifolds.

A stably complex manifold is a pair (M, c_T) consisting of a smooth manifold M and a stably complex structure c_T , determined by a choice of an isomorphism

$$c_{\mathcal{T}}\colon \mathcal{T}M\oplus \underline{\mathbb{R}}^N\stackrel{\cong}{\longrightarrow} \xi$$

between the stable tangent bundle of M and a complex vector bundle ξ .

Theorem (Milnor-Novikov)

- Two stably complex manifolds M and N represent the same bordism classes in Ω^U iff their sets of Chern characteristic numbers coincide.
- Ω^U is a polynomial ring on generators in every even degree:

$$\Omega^U \cong \mathbb{Z}[a_1, a_2, \ldots, a_i, \ldots], \quad \deg a_i = 2i.$$

Polynomial generators of Ω^U are detected using a special characteristic class s_n . It is the polynomial in the universal Chern classes c_1, \ldots, c_n obtained by expressing the symmetric polynomial $x_1^n + \cdots + x_n^n$ via the elementary symmetric functions $\sigma_i(x_1, \ldots, x_n)$ and replacing each σ_i by c_i .

$$s_n[M] = s_n(\mathcal{T}M)\langle M \rangle$$
: the corresponding characteristic number.

Theorem

The bordism class of a stably complex manifold M^{2i} may be taken to be the polynomial generator $a_i \in \Omega_{2i}^U$ iff

$$s_i[M^{2i}] = egin{cases} \pm 1 & \textit{if} & \textit{i} + 1
eq \textit{p}^s & \textit{for any prime p}, \ \pm \textit{p} & \textit{if} & \textit{i} + 1 = \textit{p}^s & \textit{for some prime p and integer s} > 0. \end{cases}$$

Problem

Find geometric representatives in (unitary) bordism classes; e.g., smooth algebraic varieties or manifolds with large symmetry.

2. Special unitary bordism

A stably complex manifold (M, c_T) is special unitary (an SU-manifold) if $c_1(M) = 0$. Bordism classes of SU-manifolds form the special unitary bordism ring Ω^{SU} .

The ring structure of Ω^{SU} is more subtle than that of Ω^{U} . Novikov described $\Omega^{SU} \otimes \mathbb{Z}[\frac{1}{2}]$ (it is a polynomial ring). The 2-torsion was described by Conner and Floyd. We shall need the following facts.

Theorem

- ullet The kernel of the forgetful map $\Omega^{SU} o \Omega^U$ consists of torsion.
- Every torsion element in Ω^{SU} has order 2.
- $\Omega^{SU} \otimes \mathbb{Z}[\frac{1}{2}]$ is a polynomial algebra on generators in every even degree > 2:

$$\Omega^{SU} \otimes \mathbb{Z}[\frac{1}{2}] \cong \mathbb{Z}[\frac{1}{2}][y_i \colon i > 1], \quad \deg y_i = 2i.$$

3. *U*- and *SU*-theory

 $\Omega^U = U_*(pt) = \pi_*(MU)$ is the coefficient ring of the complex bordism theory, defined by the Thom spectrum $MU = \{MU(n)\}$, where MU(n) is the Thom space of the universal U(n)-bundle $EU(n) \to BU(n)$:

$$U_n(X,A) = \lim_{k \to \infty} \pi_{2k+n} ((X/A) \wedge MU(k)),$$

$$U^n(X,A) = \lim_{k \to \infty} [\Sigma^{2k-n}(X/A), MU(k)]$$

for a CW-pair (X, A).

Similarly, $\Omega^{SU} = SU_*(pt) = \pi_*(MSU)$ is the coefficient ring of the SU-theory, defined by the Thom spectrum $MSU = \{MSU(n)\}$:

$$SU_n(X,A) = \lim_{k \to \infty} \pi_{2k+n} ((X/A) \wedge MSU(k)),$$

$$SU^n(X,A) = \lim_{k \to \infty} [\Sigma^{2k-n}(X/A), MSU(k)].$$

4. c_1 -spherical bordism W

Consider closed manifolds M with a c_1 -spherical structure, which consists of

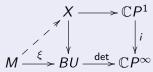
- a stably complex structure on the tangent bundle $\mathcal{T}M$;
- a $\mathbb{C}P^1$ -reduction of the determinant bundle, that is, a map $f: M \to \mathbb{C}P^1$ and an equivalence $f^*(\eta) \cong \det \mathcal{T}M$, where η is the tautological bundle over $\mathbb{C}P^1$.

This is a natural generalisation of an SU-structure, which can be thought of as a " $\mathbb{C}P^0$ -reduction", that is, a trivialisation of the determinant bundle.

The corresponding bordism theory is called c_1 -spherical bordism and is denoted W_* . It is instrumental in describing the SU-bordism ring and other calculations in the SU-theory.

As in the case of stable complex structures, a c_1 -spherical complex structure on the stable tangent bundle is equivalent to such a structure on the stable normal bundle. There are forgetful transformations $MSU_* \to W_* \to MU_*$.

Homotopically, a c_1 -spherical structure on a stable complex bundle $\xi \colon M \to BU$ is defined by a choice of lifting to a map $M \to X$, where X is the (homotopy) pullback:



The Thom spectrum corresponding to the map $X \to BU$ defines the bordism theory of manifolds with a $\mathbb{C}P^1$ -reduction of the stable normal bundle, that is, the theory W_* . We denote this spectrum by W.

Proposition (Conner-Floyd)

There is an equivalence of MSU-modules

$$W \simeq MSU \wedge \Sigma^{-2} \mathbb{C}P^2$$
.

Under this equivalence, the forgetful map $W \to MU$ is identified with the free MSU-module map $MSU \wedge \Sigma^{-2}\mathbb{C}P^2 \to MSU \wedge \Sigma^{-2}\mathbb{C}P^\infty$.

Theorem (Conner-Floyd, Stong)

- (a) The image of the forgetful homomorphism $\pi_*(W) \to \pi_*(MU)$ coincides with ker Δ .
- (b) The spectrum W is the fibre of $MU \xrightarrow{\Delta} \Sigma^4 MU$.

5. Multiplications and projections

 $\Omega_{2n}^W=\pi_{2n}(W)$ can be identified with the subgroup of Ω_{2n}^U consisting of bordism classes $[M^{2n}]$ such that every Chern number of M^{2n} of which c_1^2 is a factor vanishes.

However, $\Omega^W = \bigoplus_{i \geqslant 0} \Omega_{2i}^W$ is not a subring of Ω^U : one has $[\mathbb{C}P^1] \in \Omega_2^W$, but $c_1^2[\mathbb{C}P^1 \times \mathbb{C}P^1] = 8 \neq 0$, so $[\mathbb{C}P^1] \times [\mathbb{C}P^1] \notin \Omega_4^W$.

Let $\pi\colon MU\to W$ be an SU-linear projection (an idempotent operation with image W). It defines an SU-bilinear multiplication on W by the formula

$$W \wedge W \rightarrow MU \wedge MU \xrightarrow{m_{MU}} MU \xrightarrow{\pi} W$$
.

This multiplication has a unit, obtained from the unit of MSU by the forgetful morphism.

Theorem (Chernykh-P)

Any SU-linear multiplication on W with the standard unit has the form

$$a*b = ab + (2[V] - w)\partial a\partial b,$$

where $[V] = [\mathbb{C}P^1]^2 - [\mathbb{C}P^2]$ and $w \in \Omega_4^W$. Any such multiplication is associative and commutative. Furthermore, the multiplications obtained from SU-linear projections are those with $w = 2\widetilde{w}$, $\widetilde{w} \in \Omega_4^W$.

In this way, W becomes a complex oriented multiplicative cohomology theory.

The standard (Stong's) multiplication corresponds to w = 0.

Let
$$m_i = \gcd\left\{\binom{i+1}{k}, \ 1 \leqslant k \leqslant i\right\}$$

$$= \begin{cases} 1 & \text{if} \quad i+1 \neq p^\ell \quad \text{for any prime } p, \\ p & \text{if} \quad i+1 = p^\ell \quad \text{for some prime } p \text{ and integer } \ell > 0. \end{cases}$$

Then $[M^{2i}] \in \Omega^U_{2i}$ represents a polynomial generator iff $s_i[M^{2i}] = \pm m_i$.

Theorem (Stong)

 Ω^W is a polynomial ring on generators in every even degree except 4:

$$\Omega^W \cong \mathbb{Z}[x_1, x_i \colon i \geqslant 3], \quad x_1 = [\mathbb{C}P^1], \quad x_i \in \pi_{2i}(W).$$

The polynomial generators x_i are specified by the condition $s_i(x_i) = \pm m_i m_{i-1}$ for $i \geqslant 3$. The boundary operator $\partial \colon \Omega^W \to \Omega^W$, $\partial^2 = 0$, is given by $\partial x_1 = 2$, $\partial x_{2i} = x_{2i-1}$, and satisfies the identity

$$\partial(a*b) = a*\partial b + \partial a*b - x_1*\partial a*\partial b.$$

We have

$$\Omega^{W} \otimes \mathbb{Z}[\frac{1}{2}] \cong \mathbb{Z}[\frac{1}{2}][x_{1}, x_{2k-1}, 2x_{2k} - x_{1}x_{2k-1} \colon k > 1],$$

where $x_1^2 = x_1 * x_1$ is a ∂ -cycle, and each x_{2k-1} , $2x_{2k} - x_1x_{2k-1}$ is a ∂ -cycle.

Theorem

There exist elements $y_i \in \Omega_{2i}^{SU}$, i > 1, such that $s_2(y_2) = -48$ and

$$s_i(y_i) = \begin{cases} m_i m_{i-1} & \text{if i is odd,} \\ 2m_i m_{i-1} & \text{if i is even and } i > 2. \end{cases}$$

These elements are mapped as follows under the forgetful homomorphism $\Omega^{SU} \to \Omega^W$:

$$y_2 \mapsto 2x_1^2, \quad y_{2k-1} \mapsto x_{2k-1}, \quad y_{2k} \mapsto 2x_{2k} - x_1x_{2k-1}, \quad k > 1.$$

In particular, $\Omega^{SU} \otimes \mathbb{Z}[\frac{1}{2}]$ embeds in $\Omega^W \otimes \mathbb{Z}[\frac{1}{2}]$ as the polynomial subring generated by x_1^2 , x_{2k-1} and $2x_{2k} - x_1x_{2k-1}$.

6. (Quasi)toric representatives in bordism classes

A toric variety is a normal complex algebraic variety V containing an algebraic torus $(\mathbb{C}^{\times})^n$ as a Zariski open subset in such a way that the natural action of $(\mathbb{C}^{\times})^n$ on itself extends to an action on V.

Toric varieties are classified by convex-geometrical objects called rational fans, and projective toric varieties correspond to convex lattice polytopes *P*.

A toric manifold is a complete (compact) nonsingular toric variety.

A quasitoric manifold is a smooth 2n-dimensional closed manifold M with a locally standard action of a (compact) torus T^n whose quotient M/T^n is a simple polytope P. An omniorientation of a quasitoric manifold provides it with an intrinsic stably complex structure.

Theorem (Danilov–Jurkiewicz, Davis–Januszkiewicz)

Let V be a (quasi)toric manifold of real dimension 2n. The cohomology ring $H^*(V;\mathbb{Z})$ is generated by the degree-two classes v_i dual to the torus-invariant codimension-two submanifolds V_i , and is given by

$$H^*(V; \mathbb{Z}) \cong \mathbb{Z}[v_1, \dots, v_m]/\mathcal{I}, \qquad \text{deg } v_i = 2,$$

where ${\cal I}$ is the ideal generated by elements of the following two types:

- $v_{i_1} \cdots v_{i_k}$ such that the facets i_1, \ldots, i_k do not intersect in P;
- $\sum_{i=1} \langle a_i, x \rangle v_i$, for any vector $x \in \operatorname{Hom}(T^n, S^1) \cong \mathbb{Z}^n$.

Here $\mathbf{a}_i \in \operatorname{Hom}(S^1, T^n) \cong \mathbb{Z}^n$ is the primitive vector defining the one-parameter subgroup fixing V_i .

It is convenient to consider the integer $n \times m$ characteristic matrix

$$\Lambda = \begin{pmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nm} \end{pmatrix}$$

whose columns are the vectors a_i written in the standard basis of \mathbb{Z}^n . Then the n linear forms $a_{j1}v_1 + \cdots + a_{jm}v_m$ corresponding to the rows of Λ vanish in $H^*(V;\mathbb{Z})$.

Theorem

There an isomorphism of complex vector bundles:

$$\mathcal{T}V \oplus \underline{\mathbb{C}}^{m-n} \cong \rho_1 \oplus \cdots \oplus \rho_m$$

where $\mathcal{T}V$ is the tangent bundle, $\underline{\mathbb{C}}^{m-n}$ is the trivial (m-n)-plane bundle, and ρ_i is the line bundle corresponding to V_i , with $c_1(\rho_i) = v_i$. In particular, the total Chern class of V is given by

$$c(V) = (1 + v_1) \cdots (1 + v_m).$$

Proposition

An omnioriented quasitoric manifold M has $c_1(M)=0$ if and only if there exists a linear function $\varphi\colon\mathbb{Z}^n\to\mathbb{Z}$ such that $\varphi(a_i)=1$ for $i=1,\ldots,m$. Here the a_i are the columns of characteristic matrix. In particular, if some n vectors of a_1,\ldots,a_m form the standard basis

 e_1, \ldots, e_n , then M is SU iff the column sums of Λ are all equal to 1.

Corollary

A toric manifold V cannot be SU.

Proof. If $\varphi(a_i) = 1$ for all i, then the vectors a_i lie in the positive halfspace of φ , so they cannot span a complete fan.

Theorem (Buchstaber-P.-Ray)

A quasitoric SU-manifold M^{2n} represents 0 in Ω_{2n}^U whenever n < 5.

Theorem (Lu-P.)

There exist quasitoric SU-manifolds M^{2i} , $i \geqslant 5$, with $s_i(M^{2i}) = m_i m_{i-1}$ if i is odd and $s_i(M^{2i}) = 2m_i m_{i-1}$ if i is even. These quasitoric manifolds represent polynomial generators of $\Omega^{SU} \otimes \mathbb{Z}[\frac{1}{2}]$.

7. Calabi–Yau hypersurfaces and *SU*-bordism

A Calabi-Yau manifold is a compact Kähler manifold M with $c_1(M)=0$. By definition, a Calabi-Yau manifold is an SU-manifold.

A toric manifold V is Fano if its anticanonical class $V_1+\cdots+V_m$ (representing $c_1(V)$) is ample. In geometric terms, the projective embedding $V\hookrightarrow \mathbb{C} P^s$ corresponding to $V_1+\cdots+V_m$ comes from a lattice polytope P in which the lattice distance from 0 to each hyperplane containing a facet is 1. Such a lattice polytope P is called reflexive; its polar polytope P^* is also a lattice polytope.

The submanifold N dual to $c_1(V)$ is given by the hyperplane section of the embedding $V \hookrightarrow \mathbb{C}P^s$ defined by $V_1 + \cdots + V_m$. Therefore, $N \subset V$ is a smooth algebraic hypersurface in V, so N is a Calabi–Yau manifold of complex dimension n-1.

Lemma

The s-number of the Calabi-Yau manifold N is given by

$$s_{n-1}(N) = \langle (v_1^{n-1} + \cdots + v_m^{n-1})(v_1 + \cdots + v_m) - (v_1 + \cdots + v_m)^n, [V] \rangle.$$

Example

Consider the Calabi–Yau hypersurface N_3 in $V = \mathbb{C}P^3$.

We have $c_1(\mathcal{TCP}^3) = 4u$, where $u \in H^2(\mathbb{CP}^3; \mathbb{Z})$ is the canonical generator dual to a hyperplane section.

Therefore, N_3 can be given by a generic quartic equation in homogeneous coordinates on $\mathbb{C}P^3$.

The standard example is the quartic given by $z_0^4+z_1^4+z_2^4+z_3^4=0$, which is a K3-surface. Lemma above gives

$$s_3(N_3) = \langle 4u^2 \cdot 4u - (4u)^3, [\mathbb{C}P^3] \rangle = -48,$$

so N_3 represents the generator $-y_2 \in \Omega_4^{SU}$.

 $\sigma = (\sigma_1, \ldots, \sigma_k)$ an unordered partition of n, $\sigma_1 + \cdots + \sigma_k = n$ Δ^{σ_i} the standard reflexive simplex of dimension σ_i . $P_{\sigma} = \Delta^{\sigma_1} \times \cdots \times \Delta^{\sigma_k}$ is a reflexive polytope with the corresponding toric Fano manifold $V_{\sigma} = \mathbb{C}P^{\sigma_1} \times \cdots \times \mathbb{C}P^{\sigma_k}$. N_{σ} the canonical Calabi–Yau hypersurface in V_{σ} .

Theorem (Limonchenko-Lu-P.)

The SU-bordism classes of the canonical Calabi–Yau hypersurfaces N_{σ} in $\mathbb{C}P^{\sigma_1} \times \cdots \times \mathbb{C}P^{\sigma_k}$ multiplicatively generate the SU-bordism ring $\Omega^{SU}[\frac{1}{2}]$.

Idea of proof.

Denote by $\widehat{P}(n)$ the set of all partitions σ with parts of size at most n-2:

$$\widehat{P}(n) := \{ \sigma = (\sigma_1, \dots, \sigma_k) \colon \sigma_1 + \dots + \sigma_k = n, \quad \sigma \neq (n), (1, n-1). \}$$

For each σ we have the multinomial coefficient $\binom{n}{\sigma}=\frac{n!}{\sigma_1!\cdots\sigma_k!}$ and define

$$\alpha(\sigma) := \binom{n}{\sigma} (\sigma_1 + 1)^{\sigma_1} \cdots (\sigma_k + 1)^{\sigma_k}.$$

Then for for any $\sigma \in \widehat{P}(n)$ we have

$$s_{n-1}(N_{\sigma}) = -\alpha(\sigma).$$

Then we prove that

$$\gcd_{\sigma \in \widehat{P}(n)} \alpha(\sigma) = \begin{cases} 2m_{n-1}m_{n-2} & \text{if } n > 3 \text{ is odd;} \\ m_{n-1}m_{n-2} & \text{if } n > 3 \text{ is even;} \\ 48 & \text{if } n = 3. \end{cases}$$

Therefore, there is a linear combination of the bordism classes $[N_{\sigma}] \in \Omega_{2n-2}^{SU}$ whose s-number satisfies the condition for a polynomial generator y_{n-1} of $\Omega^{SU}[\frac{1}{2}]$.

References

- Victor Buchstaber, Taras Panov and Nigel Ray. Toric genera. Internat. Math. Research Notices 16 (2010), 3207–3262.
- Victor Buchstaber and Taras Panov. Toric Topology. Mathematical Surveys and Monographs, vol. 204, American Mathematical Society, Providence, RI, 2015, 516 pages.
- Zhi Lü and Taras Panov. On toric generators in the unitary and special unitary bordism rings. Algebraic & Geometric Topology 16 (2016), no. 5, 2865–2893.
- Georgy Chernykh, Ivan Limonchenko and Taras Panov. SU-bordism: structure results and geometric representatives. Russian Math. Surveys 74 (2019), no. 3, 461–524.
- Georgy Chernykh and Taras Panov. SU-linear operations in complex cobordism and the c₁-spherical bordism theory. Izvestiya: Mathematics 87 (2023), no. 4, 768–797.