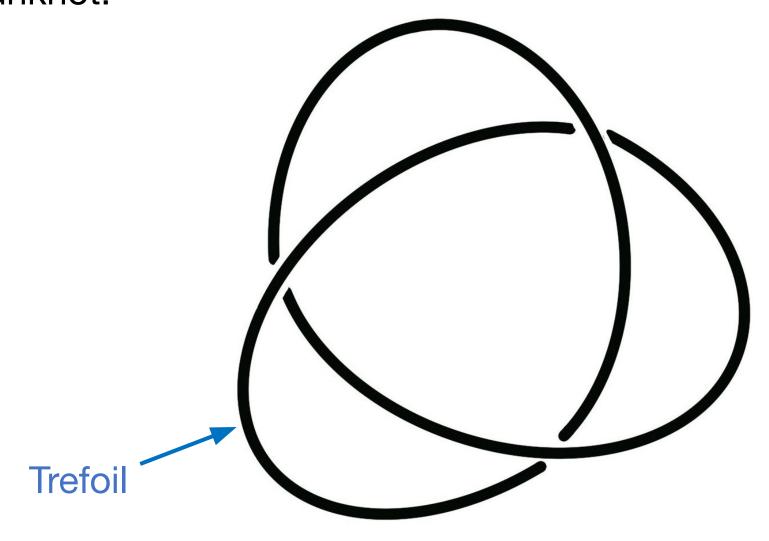
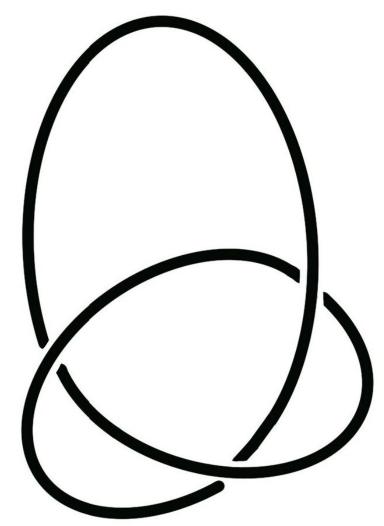
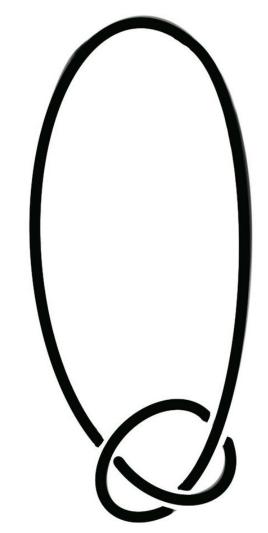
Rolfsen's Conjecture and wild knots that pierce wild disks

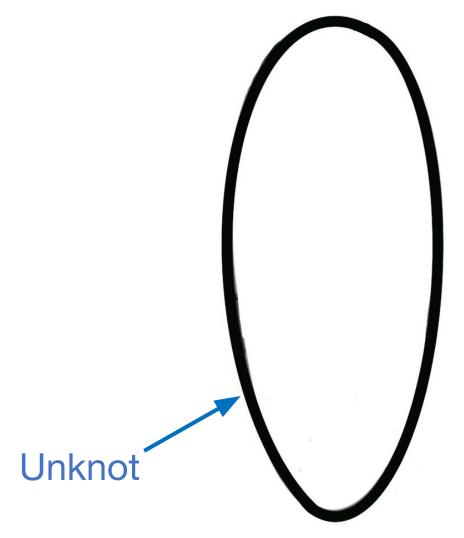
Fredric Ancel

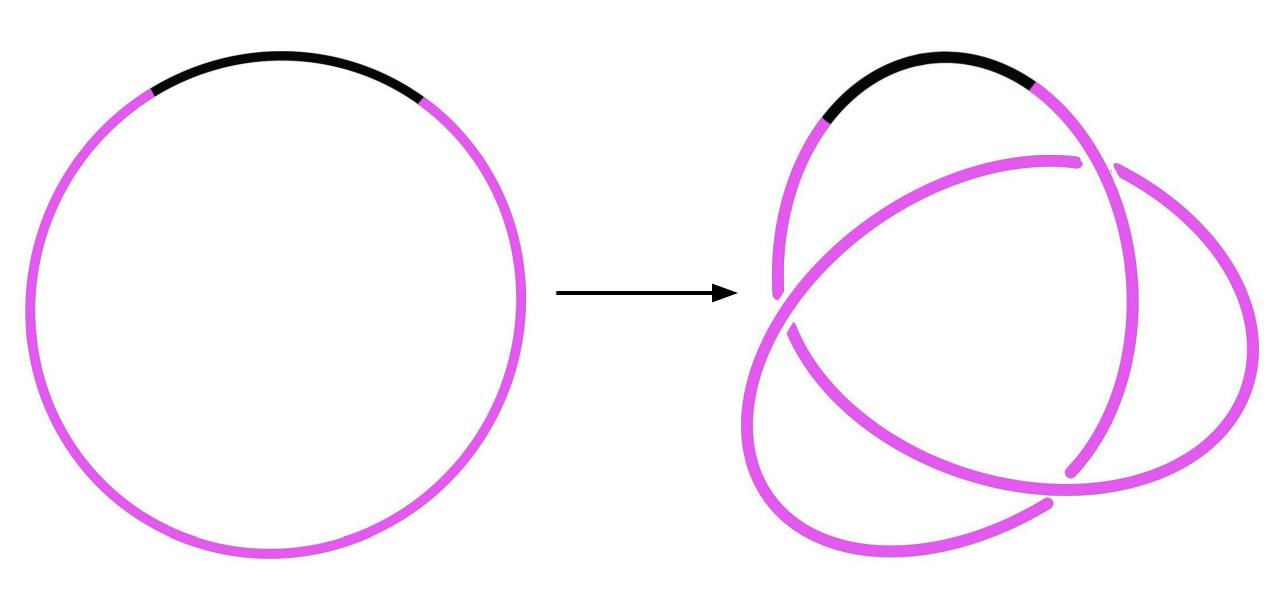
Geometric Topology Seminar Steklov Mathematical Institute, Moscow July 11, 2025

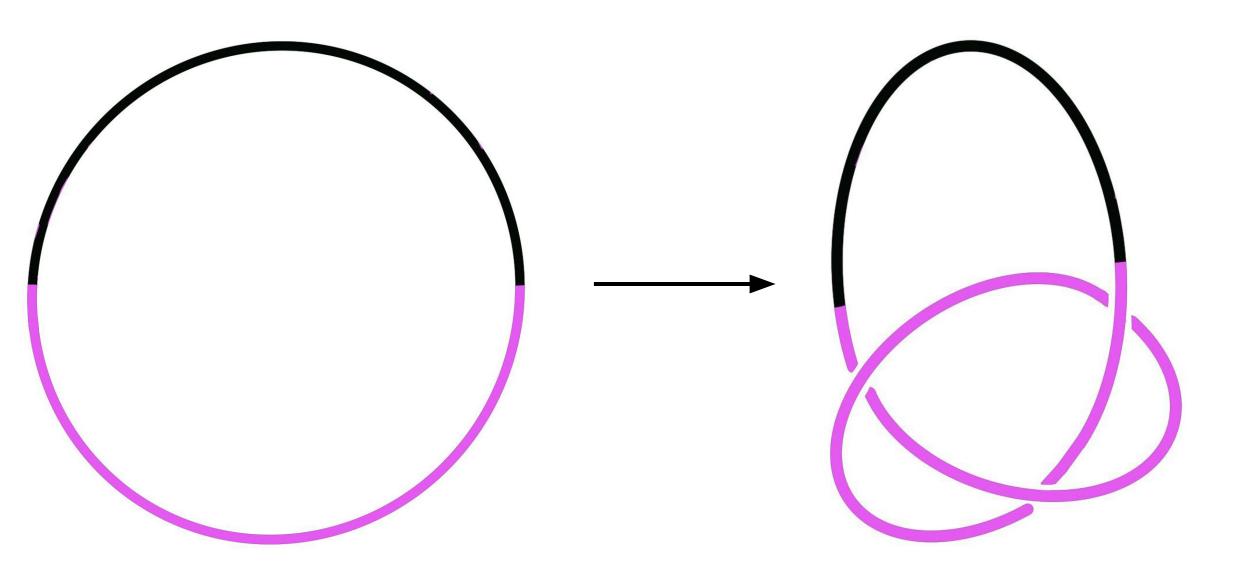


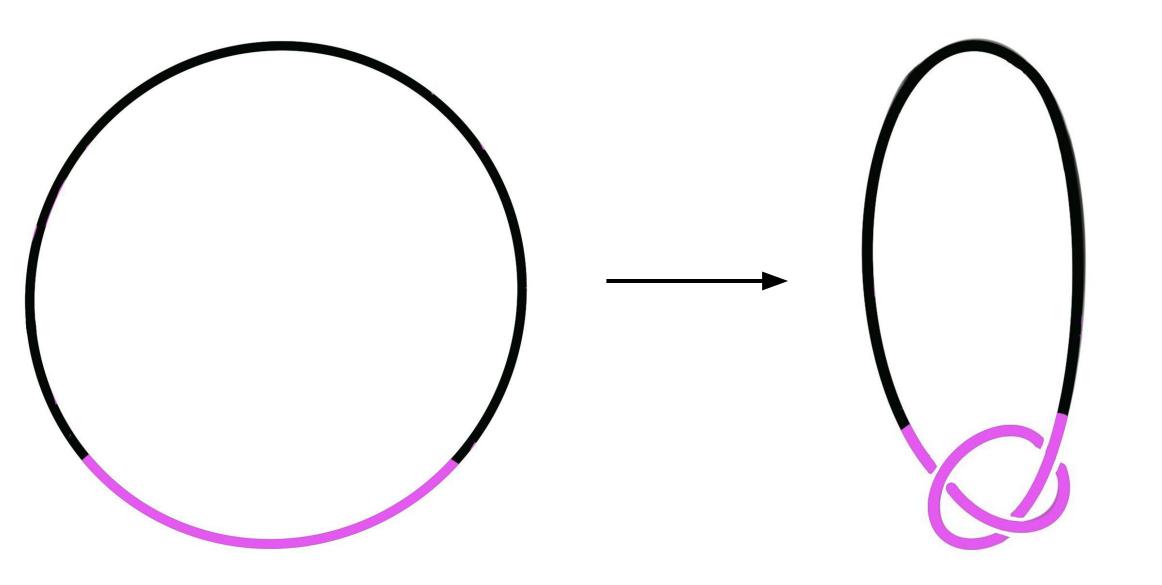


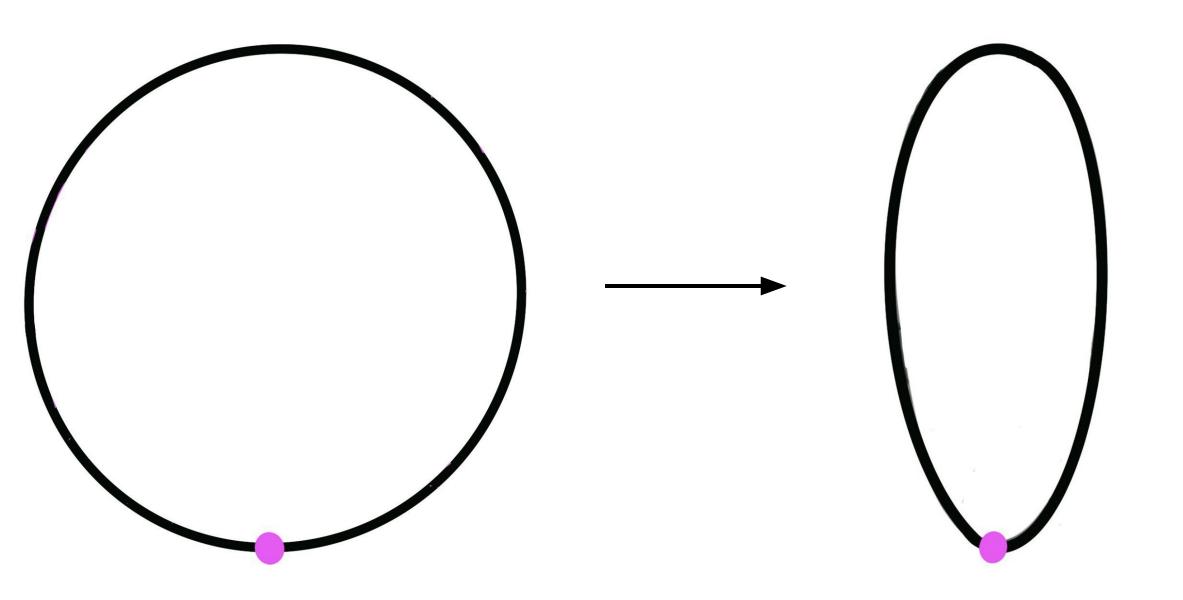








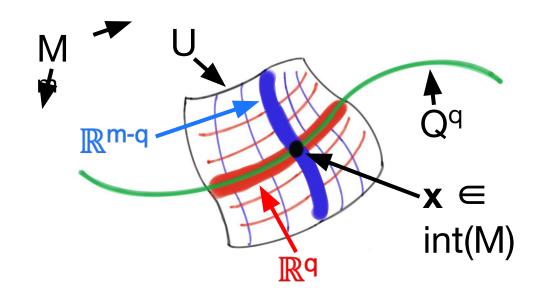


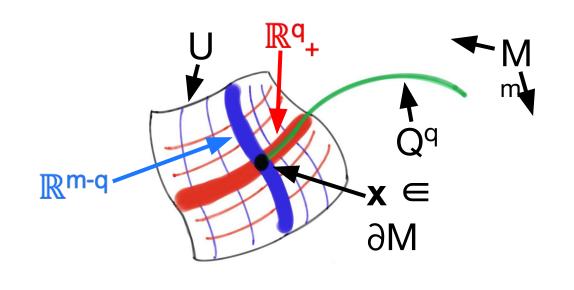


Let $Q^q \subset int(M^m)$ where Q^q and M^m are manifolds. Let $\mathbf{x} \in Q^q$.

Qq is tame at x if

 \exists an open nbhd U of \mathbf{x} in M such that $(U,U \cap \mathbf{Q}^q) \approx (\mathbb{R}^q \times \mathbb{R}^{m-q}, \mathbb{R}^q \times \{\mathbf{0}\})$





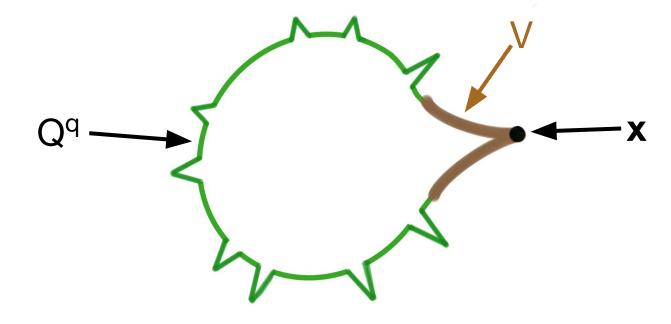
If not, Qq is wild at x.

Qq is tame in Mm if

x is an isolated wild point of Qq if

Qq is wild at x and

 \exists an open nbhd V of \mathbf{x} in \mathbf{Q}^q such that \mathbf{Q}^q is **tame** at each point of $V - \{\mathbf{x}\}$.



Let M be a 3-manifold.

A *knot* in M is a (tame or wild) embedded S¹ in int(M).

A *link* in M is a disjoint union of finitely many knots.

Let K, $L \subset M$.

K is *ambiently isotopic* to L if

 \exists a level-preserving **homeomorphism** h : M × [0,1] \rightarrow M × [0,1] such that h = id on M × {0} and h(K × {1}) = L × {1}.

K is *non-ambiently isotopic* to L if

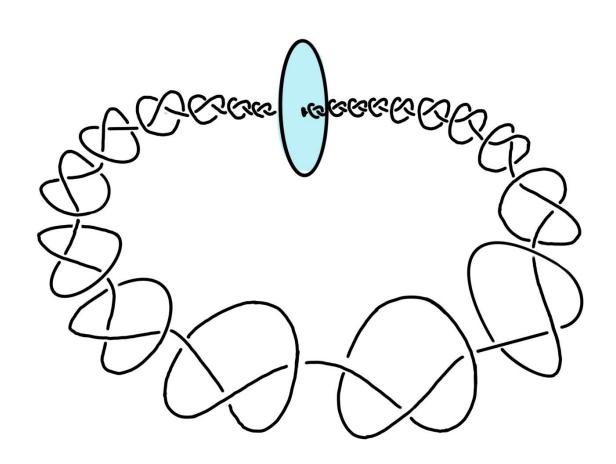
 \exists a level-preserving **embedding** e : K × [0,1] \rightarrow M × [0,1] such that e(K × {0}) = K × {0} and e(K × {1}) = L × {1}.

Example. A trefoil knot is: *non-*ambiently isotopic to an unknot. **not** ambiently isotopic to an unknot.

Rolfsen's Conjecture (1974):

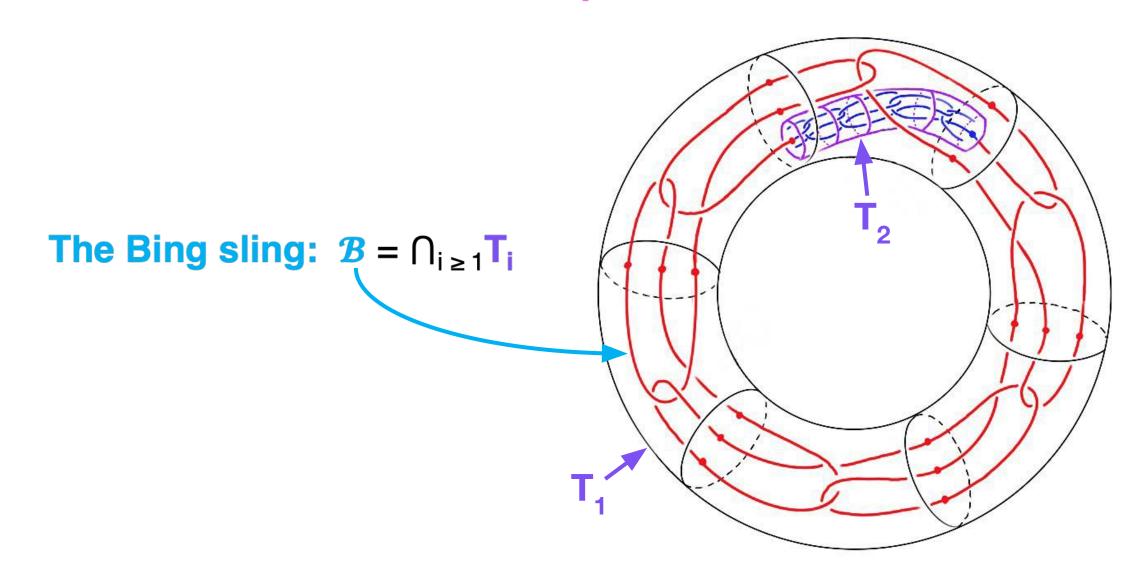
Every knot in S³ is non-ambiently isotopic to an unknot.

Example: A wild knot that is non-ambiently isotopic to an unknot.



Rolfsen's Conjecture is probably false.

Main candidate for a counterexample:



Partial results concerning Rolfsen's conjecture:

A *thickening* of a link K in a 3-manifold M is:

a compact 3-manifold T in M such that $K \hookrightarrow T$ is a homotopy equivalence and each component of T is a solid torus or a solid Klein bottle.

K is *thickenable* if it has a thickening.

Let T be a solid torus or solid Klein bottle.

- : $T = D^2 \times [0,1]/\sim \text{ where } (x,1) \sim (h(x),0) \text{ and }$
- either h : $D^2 \rightarrow D^2$ = identity
- The simple closed curve $\{(0,0)\}\times[0,1]/\sim$ is a *core* of T.
- Let T be a thickening.
- $J \cap t$ is a core of t for every component t of T.

Theorem: Every knot in S³ has a thickening. (??,

Example: \exists a 2-component link in S³ that has **no** thickening.

The Milnor link (1957): L^{3}

Exercise: The Milnor link is non-ambiently isotopic to an unlink.

Let K, $L \subset M$.

K is *semi-isotopic* to L if

∃ an embedding e : $K \times [0,1] \rightarrow M \times [0,1]$ such that $e(K \times \{0\}) = K \times \{0\}$, $e(K \times \{1\}) = L \times \{1\}$ and ∃ a level-preserving homeo h : $K \times [0,1) \rightarrow e(K \times [0,1)) \subset M \times [0,1)$.

In other words:

but this reparametrization may not extend to $K \times \{1\}$.

Updated and generalized Giffen Theorem:

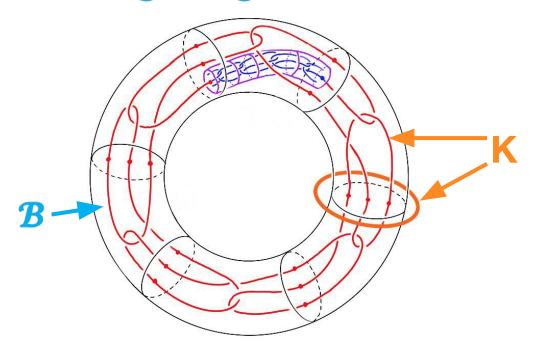
If a link K in a 3-manifold M has a thickening with core J, then K is semi-isotopic to J. (Giffen, 1976 – unpublished,

(Proof: Shift spinning.)

Rolfsen's Conjecture is false for 2-component links:

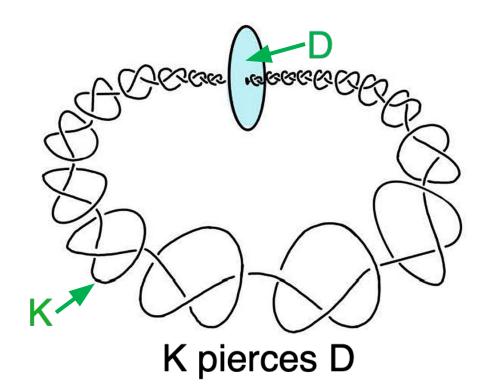
Two theorems of Melikhov (2024):

- 1) ∃ a 2-component link in S³ that is **not** non-ambiently isotopic to a tame link.
- 2) If K is a 2-component link with linking number 1 in which one component is the Bing sling B, then K is **not** non-ambiently isotopic to a tame link.



The knot invariants used in the proofs apply to **2**-component links, but **not** to knots.

A knot K in S³ pierces a disk D if: $K \cap D = a$ single interior point of D and

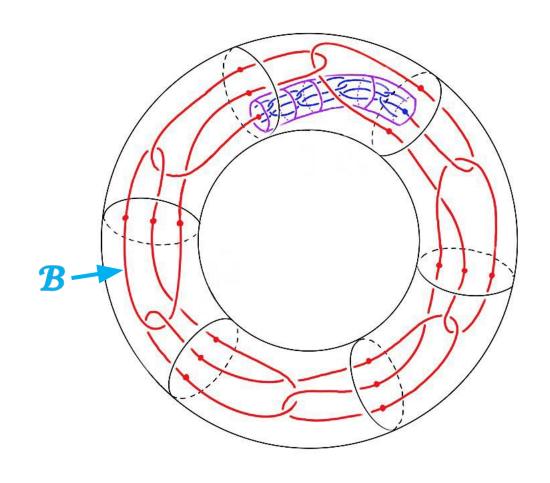


K' does not pierce D

Theorem (Bing, 1956): The Bing sling B pierces no disk.

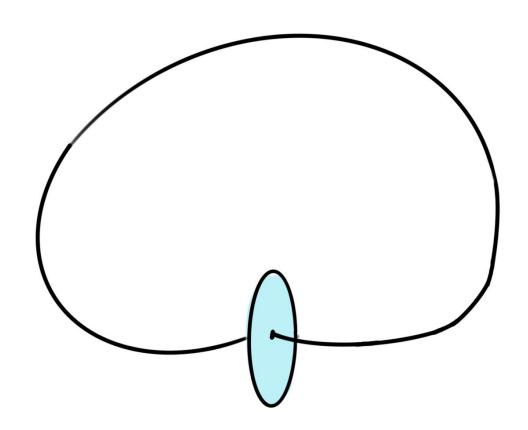
More precisely:

If the boundary of a disk D links \mathcal{B} , then D $\cap \mathcal{B} \supset$ a Cantor set.



Folk Theorem: Any knot in S³ that pierces a *tame* disk is non-ambiently isotopic to an unknot.

You already know the *proof:*



New Theorem:

non-ambiently isotopic to an unknot.

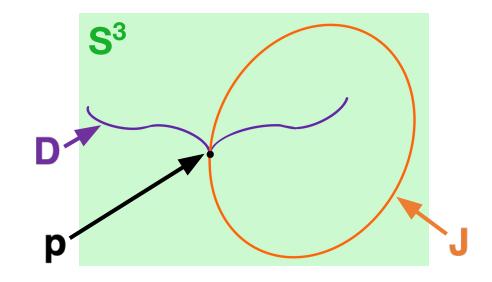
Proof:

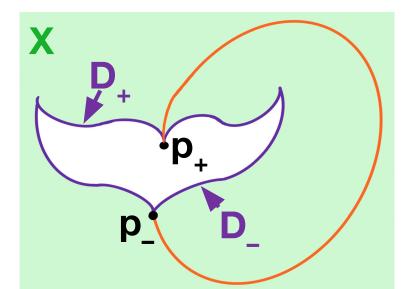
Given: a knot J in S³ pierces a wild disk D at a point **p**.

- 1) Make D tame mod p (Bing, 1957).
- 2) "Slice open" S³ along D. Get X.

$$\partial X = D_+ \cup D_-$$

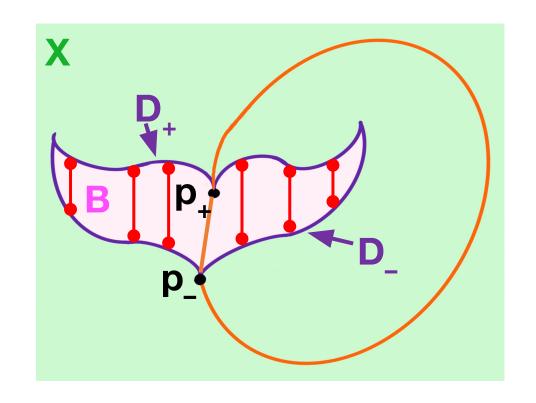
X is a 3-mfld with bdry except at \mathbf{p}_{+} , \mathbf{p}_{-} .

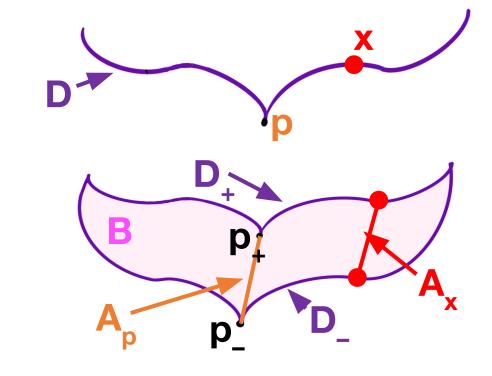




"Inflate" D to 3-ball $B - \exp$ expand each $x \in \text{int}(D)$ to arc A_x .

Attach B to X by identifying $\partial X = D_+ \cup D_-$ with $\partial B = D_+ \cup D_-$.



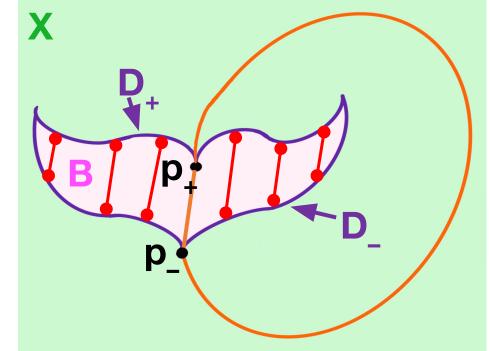


 $X \cup B$ is a 3-manifold except possibly at p_+ , p_- .

Claim: X ∪ B is a 3-manifold.

This follows from:

conn 2-mfld wild, closed conn 3-mfld *) If $Z^2 \subset V^3$ and Z^2 separates V^3 into V_+ and V_- , then $(V_+ \cup Z^2) \cup_{Z=Z \times \{0\}} (Z^2 \times [0,1))$ is a 3-manifold.





*) proved by Hosay (1964), Lininger (1965) and later generalized by "mismatch theorems" of Eaton (1972) and Cannon-Daverman (1981).

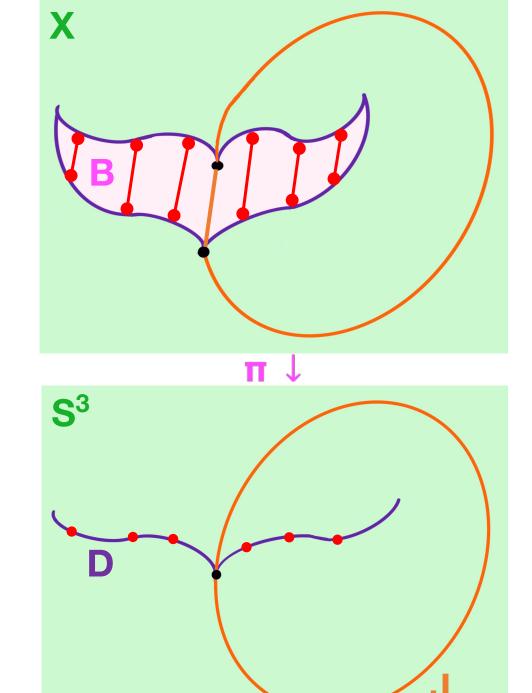
Define $\pi: X \cup B \to S^3$ by $\pi(A_x) = x$ for $x \in D$.

 π : X ∪ B → S³ is a cell-like map between 3-manifolds.

∴ π : X ∪ B → S³ is a near-homeomorphism (Armentrout (1971), Siebenmann (1972)).

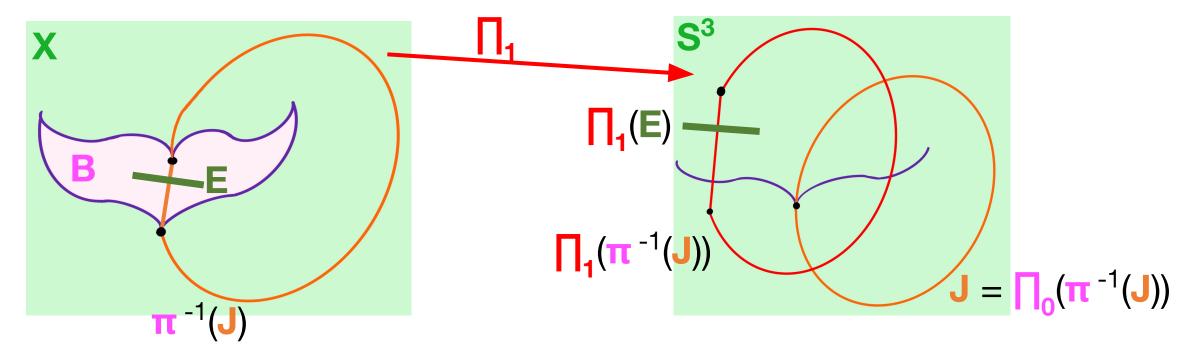
∴ π : X ∪ B → S³ is the **time-0 map** of a pseudo-isotopy Π : (X ∪ B) × [0,1] → S³;

i.e., Π is a homotopy such that $\Pi_t : X \cup B \to S^3$ is a homeo for $t \in (0,1]$ and $\Pi_0 = \Pi$ (Edwards-Kirby (1971)).



Apply \prod_{i} to $\pi^{-1}(J)$ to obtain a non-ambient isotopy from S³ $J = \prod_{0} (\pi^{-1}(J))$ to $\prod_{1} (\pi^{-1}(J))$. and reparametrize. **S**³ $\pi^{-1}(J)$ ∴ J is non-ambiently isotopic

 $\pi^{-1}(J)$ pierces a tame disk E.

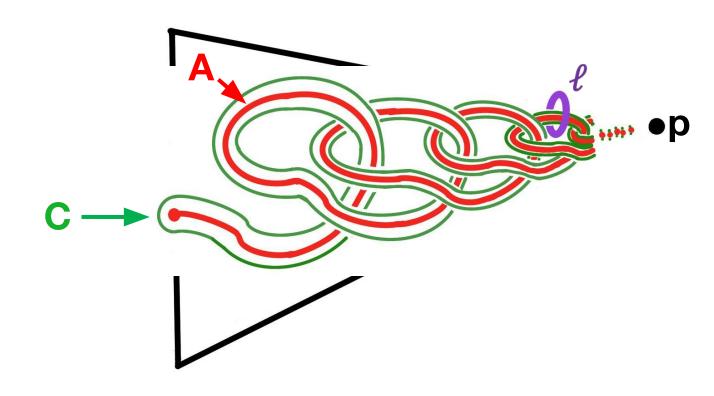


- ∴ $\Pi_1(\Pi^{-1}(J))$ pierces a tame disk $\Pi_1(E)$.
- $\therefore \prod_{1} (\pi^{-1}(J))$ is non-ambiently isotopic to an unknot.
- ∴ J is non-ambiently isotopic to an unknot. □

Example: ∃ a wild knot in S³ that pierces a wild disk but pierces no tame disk.

A – arc – wild at endpoint **p**, tame elsewhere (Fox-Artin, 1948).

A is wild at **p** because $\exists loop \ell$ near **p** in $S^3 - A$ that is **not** null-homotopic near **p** in $S^3 - A$.

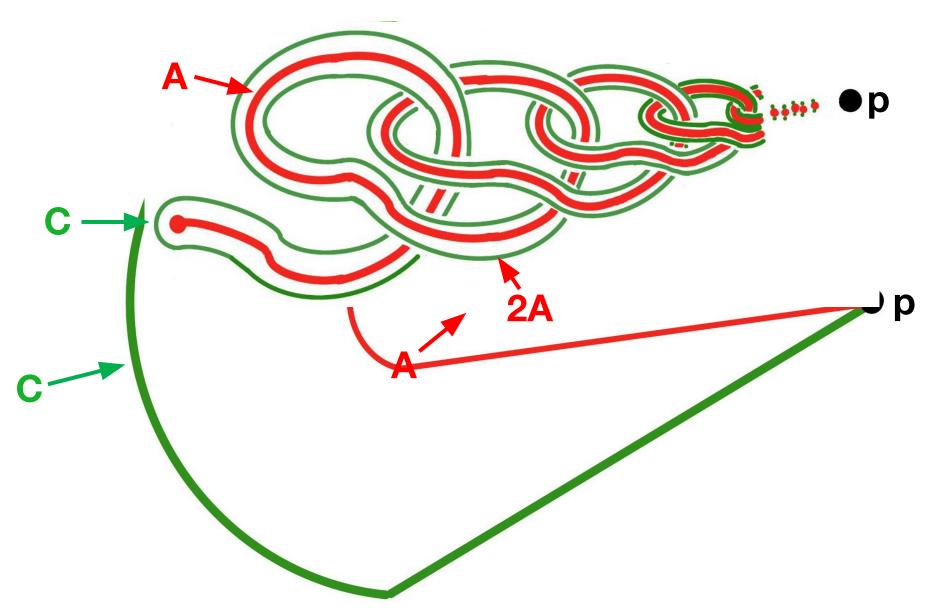


Thicken A to "tapered" 3-ball C with $p \in \partial C$, $A - \{p\} \subset int(C)$.

c is **wild** at **p** and **tame** elsewhere:

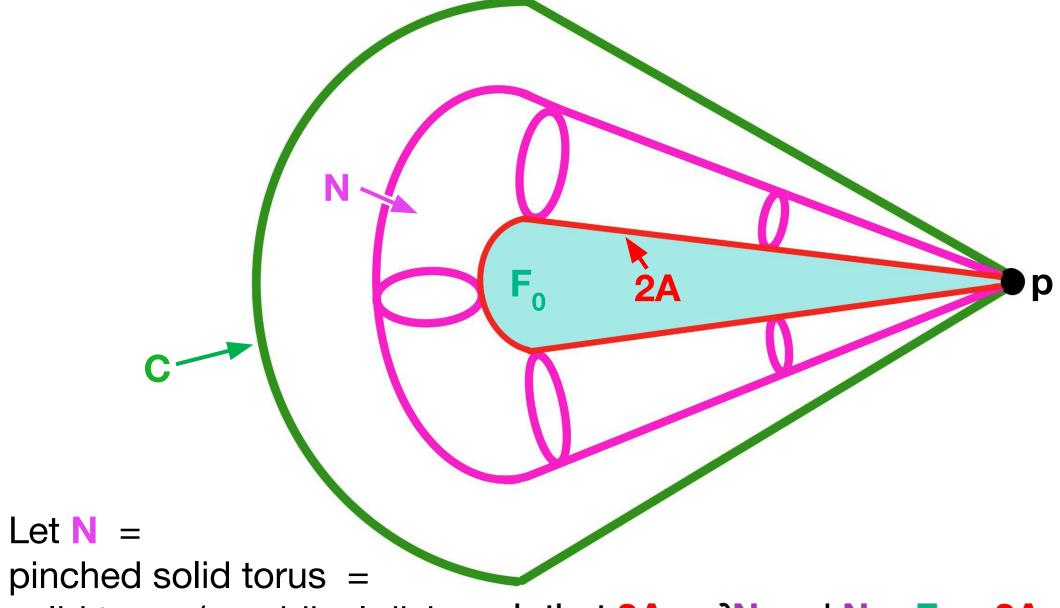
 ℓ is **not** null-homotopic near **p** in S³ – C.

Temporarily work inside C.

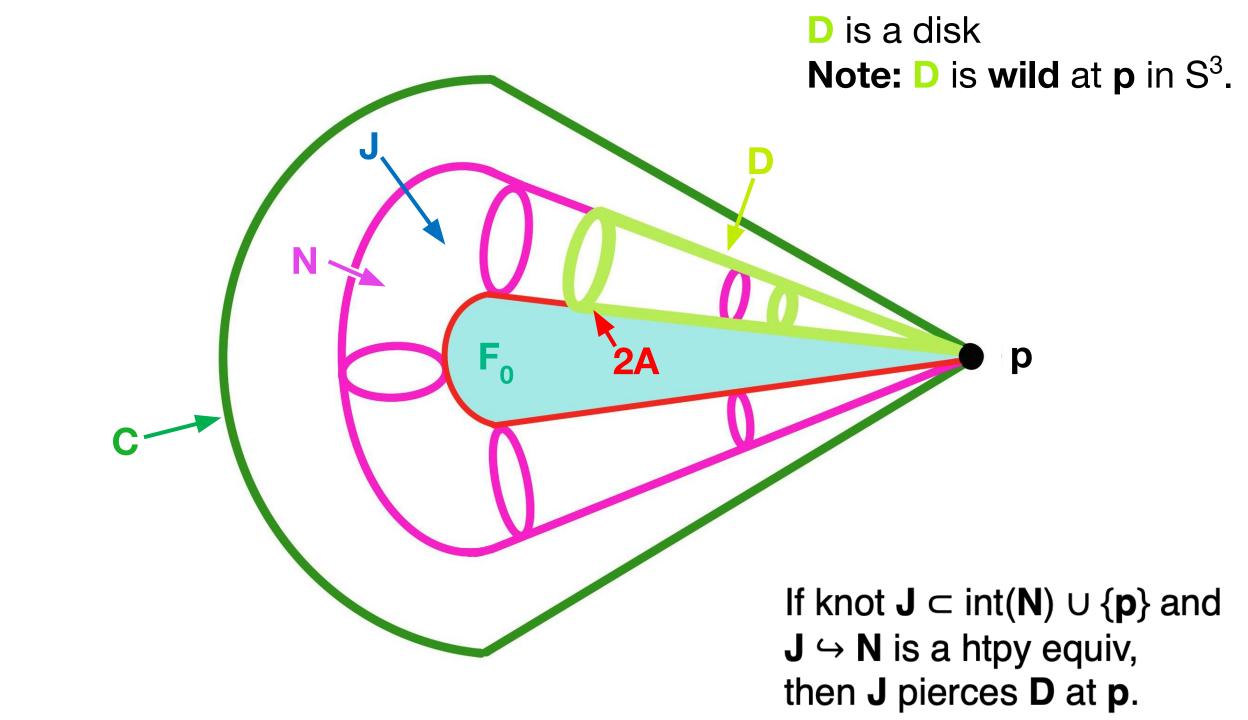


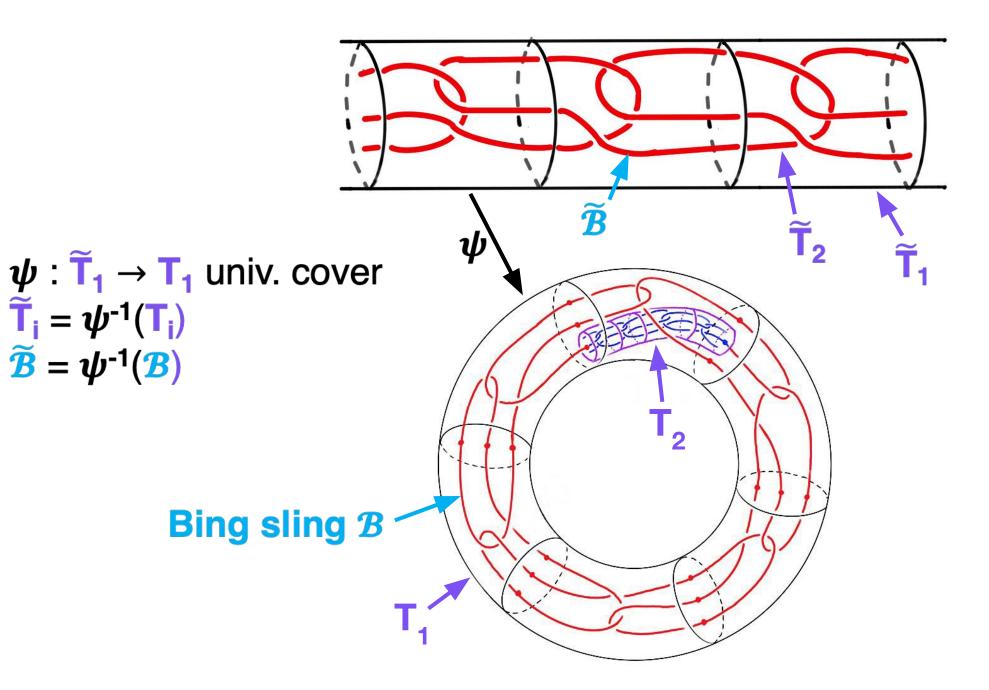
Replace A by its *double* – 2A.

2A bounds a disk F₀.



solid torus / meridinal disk such that $2A \subset \partial N$ and $N \cap F_0 = 2A$.

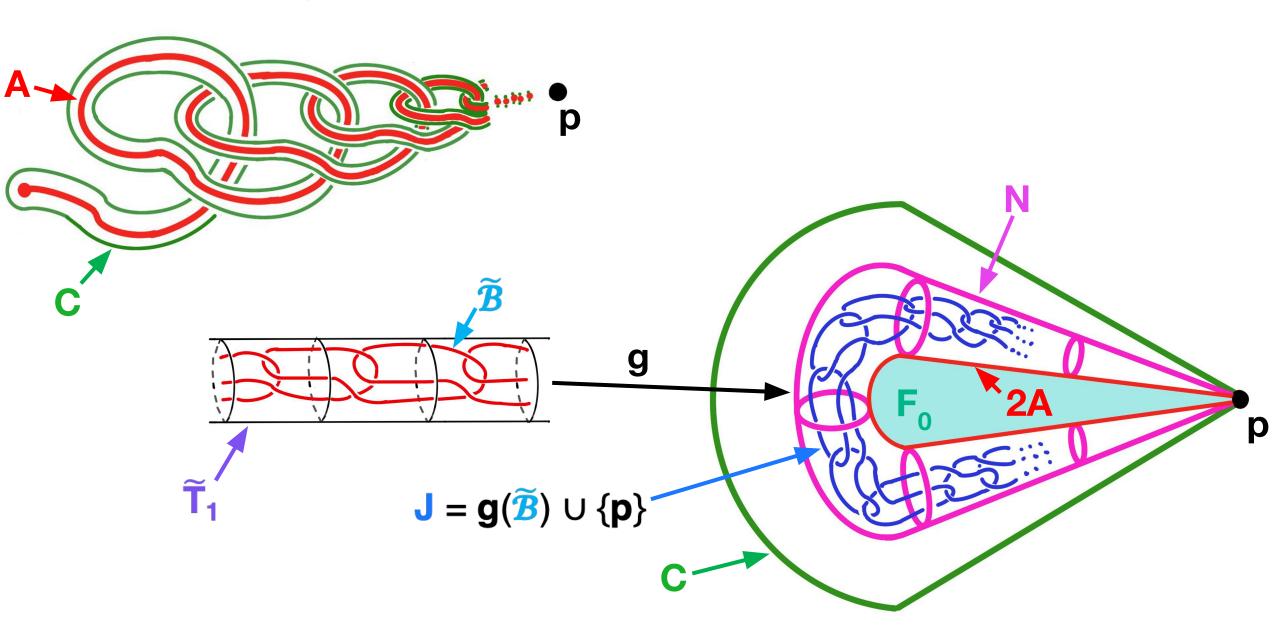




Let $\mathbf{g}: \widetilde{\mathbf{T}}_1 \to \mathbf{N} - \{\mathbf{p}\}$ be a homeomorphism. Let $J = g(\widetilde{B}) \cup \{p\}$. ∴ J is a knot in S³. J pierces the wild disk D at p. Claim: J pierces no tame disk. g

Claim: J pierces no tame disk.

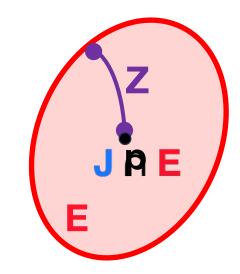
Remember these pictures:



Claim: J pierces no tame disk.

Idea of proof: Assume J pierces a tame disk E.

∴ J can't pierce **E** at a point of $J - \{p\}$ because $J - \{p\} = g(\tilde{B})$ is locally homeo to the Bing sling.



∴ J pierces E at p.

Step 1: \exists arc \mathbf{Z} in $\mathbf{E} \cap \mathbf{C}$ such that $\mathbf{p} \in \partial \mathbf{Z}$ and $\mathbf{Z} - \{\mathbf{p}\} \subset \operatorname{int}(\mathbf{C})$.

(**Hint:** Z =component of $E \cap F$ where F =surface "bounded by" J.)

Z is **tame** because $\mathbf{Z} \subset \text{tame disk } \mathbf{E}$.

Recall: C is wild at p and tame elsewhere.

Step 2: C wild at p and Z tame contradicts:

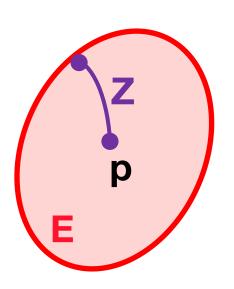
Proposition: If C is a 3-ball in S³, $\mathbf{p} \in \partial \mathbf{C}$, C is **tame** at every point of $\mathbf{C} - \{\mathbf{p}\}$, and **Z** is a **tame** arc **Z** in S³ such that $\mathbf{p} \in \partial \mathbf{Z}$ and $\mathbf{Z} - \{\mathbf{p}\} \subset \operatorname{int}(\mathbf{C})$, then **C** is **tame** at **p**.

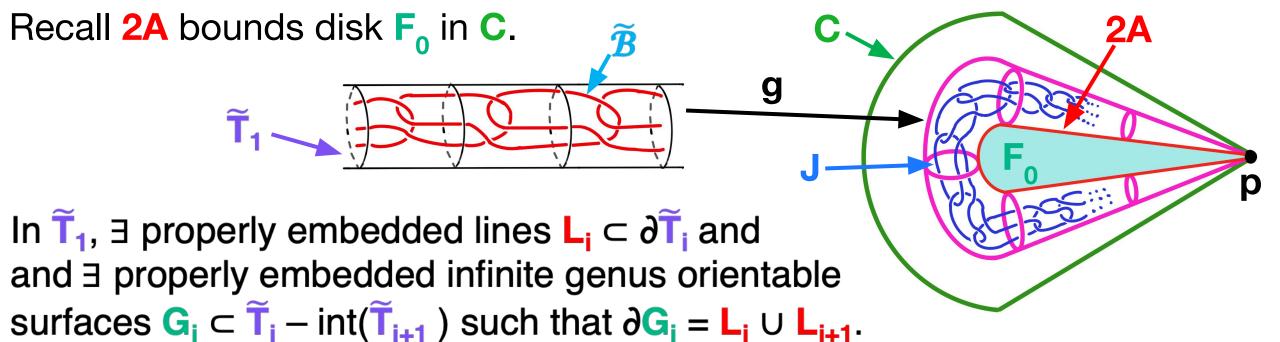
Game over!

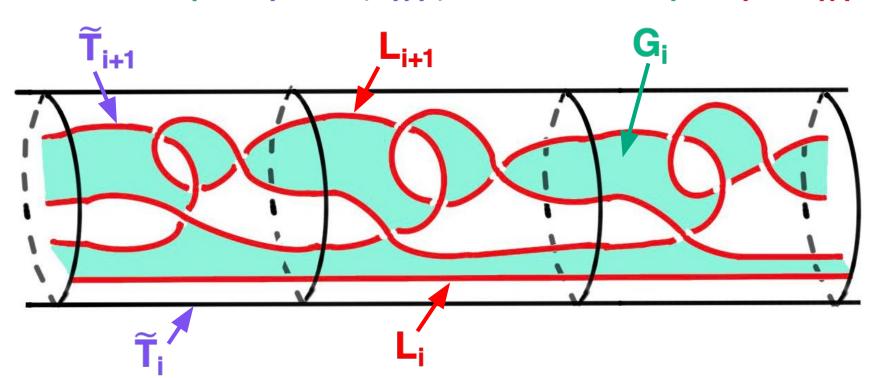
Proposition proved below.

Completion of Step 1:

Proof that: \exists arc \mathbf{Z} in \mathbf{E} \cap \mathbf{C} such that \mathbf{p} ∈ ∂ \mathbf{Z} and \mathbf{Z} − { \mathbf{p} } \subset int(\mathbf{C}).





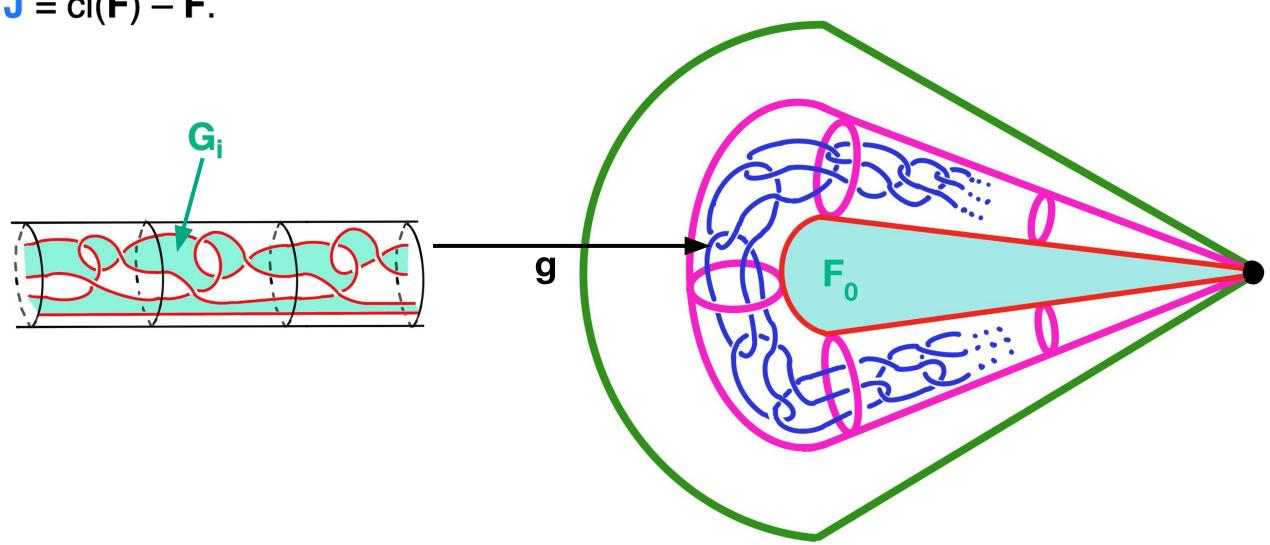


Also $\psi(L_1) = 2A$.

Let $F_i = g(G_i)$ for $i \ge 1$. Let $F = U_{i \ge 0}F_i$.

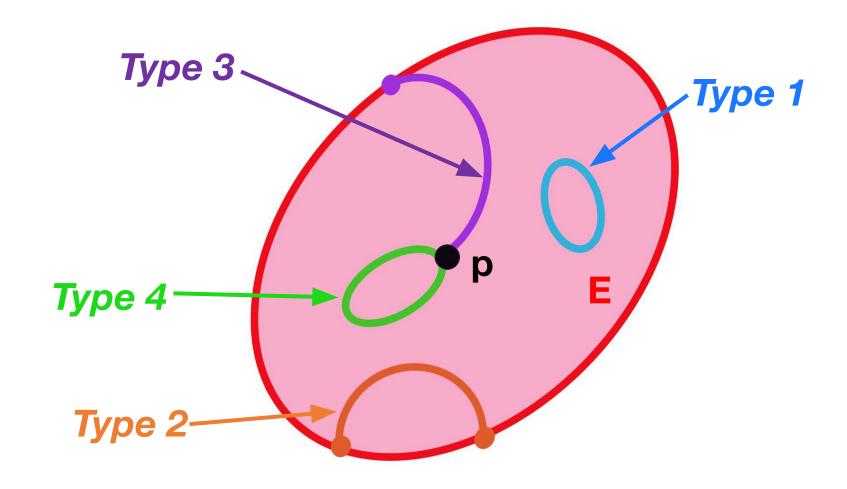
F is an infinite genus orientable surface in int(C) "bounded by" J:

 $\mathbf{J} = \operatorname{cl}(\mathbf{F}) - \mathbf{F}.$



Perturb \mathbf{F} to make it *transverse* to $\mathbf{E} - \{\mathbf{p}\}$.

 \exists 4 *types* of components of $\vdash \cap (\vdash -\{p\})$:



Claim: Type 3 must exist.

Claim: Type 3 must exist. Inking number of
$$\partial E$$
 and J

Type 3

Proof:
$$\ell k(\partial E, J) = \sum \left\{ \bigcap (\partial E, F)_x : x \in \partial E \cap F \right\}$$
oriented intersection number of ∂E and E and

Let
$$\mathcal{E}_{i} = \{ \text{ endpoints of } Type i \text{ components of } F \cap (E - \{p\}).$$

$$\therefore \ell k(\partial E, J) = \sum \{ \cap (\partial E, F)_{x} : x \in \mathcal{E}_{2} \} + \sum \{ \cap (\partial E, F)_{x} : x \in \mathcal{E}_{3} \}.$$

x and **y** endpts of same *Type 2* component
$$\Rightarrow \cap (\partial E, F)_x = - \cap (\partial E, F)_v$$
.

$$\therefore 0 \neq \ell k(\partial \mathsf{E}, \mathsf{J}) = \sum \{ \cap (\partial \mathsf{E}, \mathsf{F})_{\mathsf{x}} : \mathcal{E}_{\mathsf{3}} \}.$$

∴ A *Type 3* component
$$\theta$$
 of $\mathbf{F} \cap (\mathbf{E} - \{\mathbf{p}\})$ must exist. \square

$$Z = cl(\theta)$$
 is an arc in $E \cap C$ such that $p \in \partial Z$ and $Z - \{p\} \subset int(C)$.

Completion of Step 2:

Proposition: If \mathbb{C} is a 3-ball in \mathbb{S}^3 , $\mathbf{p} \in \partial \mathbb{C}$, \mathbb{C} is **tame** at every point of $\mathbb{C} - \{\mathbf{p}\}$, and \mathbb{Z} is a **tame** arc \mathbb{Z} in \mathbb{S}^3 such that $\mathbf{p} \in \partial \mathbb{Z}$ and $\mathbb{Z} - \{\mathbf{p}\} \subset \operatorname{int}(\mathbb{C})$, then \mathbb{C} is **tame** at \mathbf{p} .

We need:

Lemma: If A is a spanning arc in a 3-ball C, then \exists a retraction $\mathbf{r}: \mathbf{C} - \mathbf{A} \rightarrow \partial \mathbf{C} - \partial \mathbf{A}$.

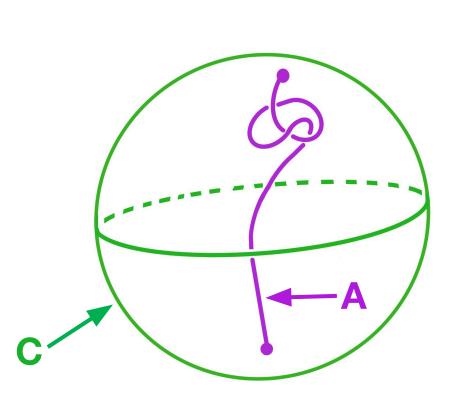
Proof sketch: Triangulate ($C - A, \partial C - \partial A$).

Let $T_0 = \max$. tree in $\partial C - \partial A$.

Extend T_0 to a max. tree T in C - A.

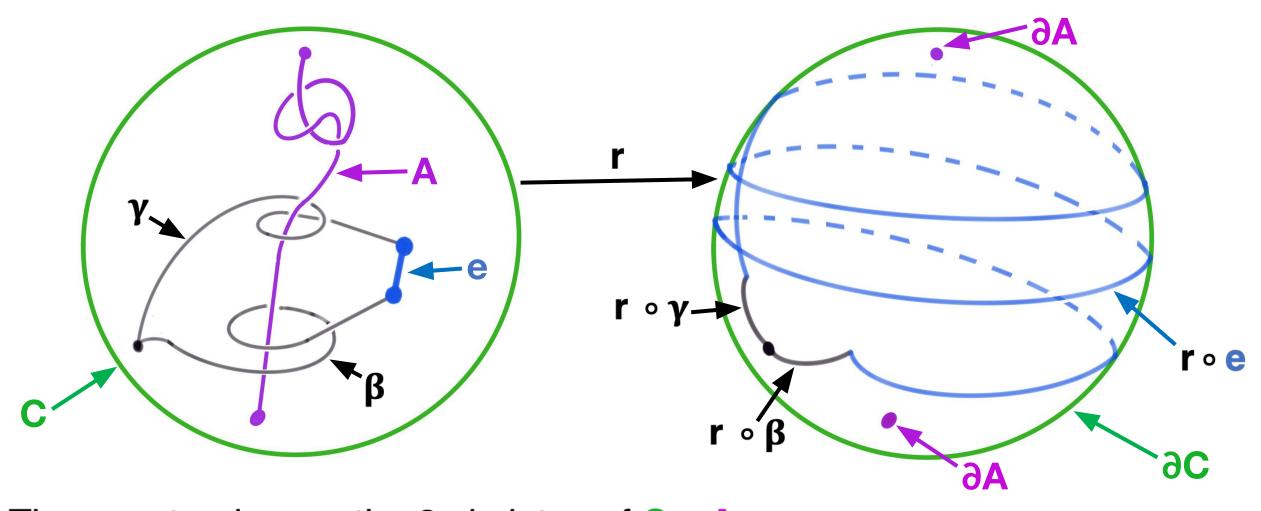
Let $\mathbf{r} \mid T : T \to T_0$ be a retraction.

For an oriented edge e in C - A, e $\not\subset T$, define $\mathbf{r} \mid \mathbf{e} : \mathbf{e} \rightarrow \partial C - \partial A$ as follows:



Let β , γ be arcs in T from a basepoint in $\partial C - \partial A$ to the endpoints of e.

Choose $\mathbf{r} \mid \mathbf{e}$ so that $\ell k((\mathbf{r} \circ \boldsymbol{\beta}) * (\mathbf{r} \circ \mathbf{e}) * (\mathbf{r} \circ \boldsymbol{\gamma}^{-1})), \partial \mathbf{A}) = \ell k(\boldsymbol{\beta} * \mathbf{e} * \boldsymbol{\gamma}^{-1}, \mathbf{A}).$

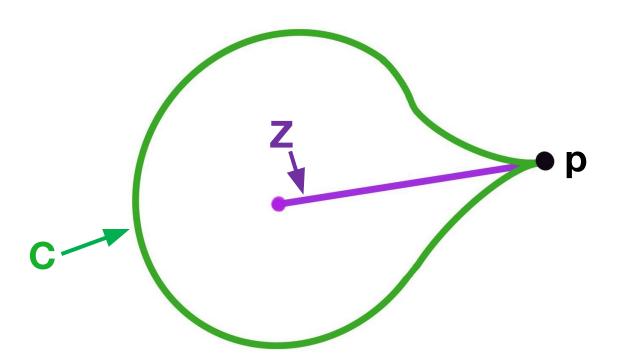


Then **r** extends over the 2-skeleton of C - A. **r** extends over the 3-skeleton of C - A because $\pi_2(\partial C - \partial A) = 0$.

Proof of the Proposition:

C is a 3-ball in S³, $\mathbf{p} \in \partial \mathbf{C}$, C is **tame** at every point of $\mathbf{C} - \{\mathbf{p}\}$, and \mathbf{Z} is a **tame** arc in C such that $\mathbf{p} \in \partial \mathbf{Z}$ and $\mathbf{Z} - \{\mathbf{p}\} \subset \operatorname{int}(\mathbf{C})$.

Fact: C is tame at p if: every open neighborhood U of p in S³ contains an contains an open neighborhood V of p in S³ such that every loop in V – C is null-homotopic in U – C. (Bing (1961)).

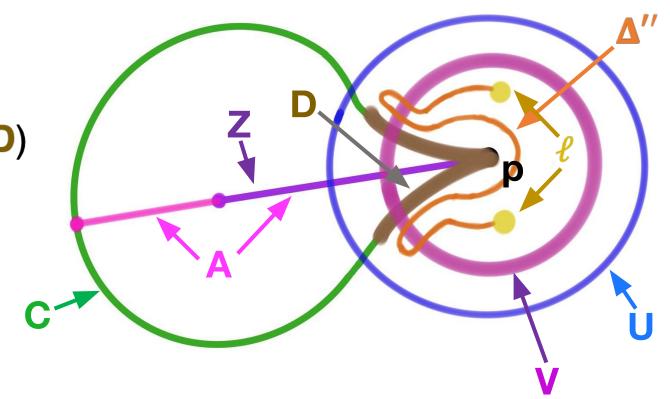


Extend Z spanning arc A of C.

Let $U = \text{open nbhd of } \mathbf{p} \text{ in } S^3$.

Let $D = \text{disk in } \partial C \text{ such that } p \in \text{int}(D)$ and $D \subset U$.

Let $V = \text{open nbhd of } \mathbf{p} \text{ in } \mathbf{U}$ such that $V \cap \partial \mathbf{C} \subset \text{int}(\mathbf{D})$ and $V - \mathbf{A}$ is simply connected. (Possible because \mathbf{Z} is \mathbf{tame} .)



Compose retraction $\mathbf{r}: \mathbf{C} - \mathbf{A} \to \partial \mathbf{C} - \partial \mathbf{A}$ with retraction $\partial \mathbf{C} - \partial \mathbf{A} \to \mathbf{D} - \{\mathbf{p}\}$, to get retraction $\mathbf{r}': \mathbf{C} - \mathbf{A} \to \mathbf{D} - \{\mathbf{p}\}$.

Must prove ℓ contracts to point in U - C.

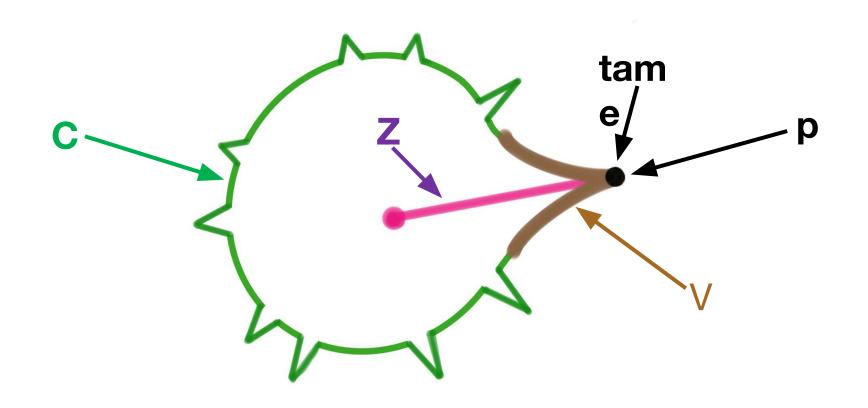
 ℓ bounds $r'(\Delta) = \Delta'$ in $(V - int(C)) \cup D$.

Use external collar on $\mathbb{C} - \{\mathbf{p}\}\$ to move Δ' to $\Delta'' \subset \mathbb{U} - \mathbb{C}$ fixing ℓ . \square

Addendum: The preceding proof actually proves a stronger result:

Proposition +: If C is a 3-ball in S^3 , $p \in \partial C$,

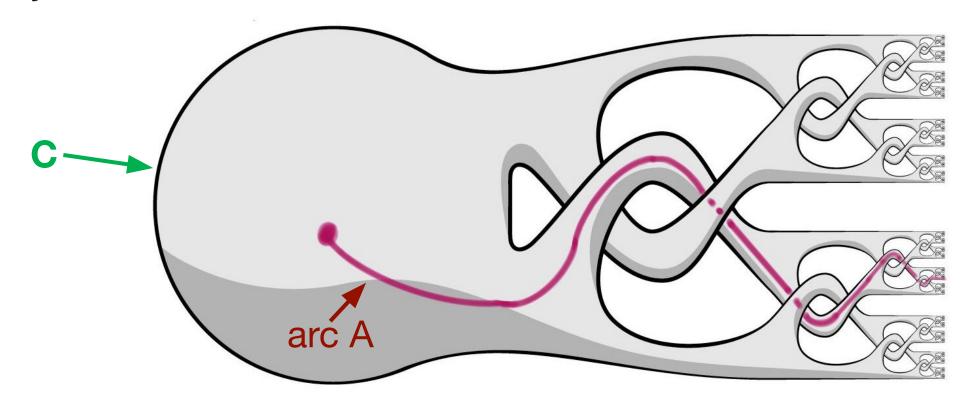
V is an open nbhd of **p** in ∂ C such that C is **tame** at every point of V − {**p**}, and Z is a **tame** arc in S³ such that **p** ∈ ∂ Z and Z − {**p**} ⊂ int(C), then C is **tame** at **p**.



The hypothesis of Proposition + –

" \exists an open nbhd V of **p** in ∂ **C** such that **C** is **tame** at every point of V – {**p**}" – can't be omitted:

Example. If \mathbb{C} is the $\partial \mathbb{C}$ is an Alexander horned sphere, then every point of $\partial \mathbb{C}$ can be approached from int(\mathbb{C}) by an arc that is **tame** in \mathbb{S}^3 .



(no isolated wild points)

A is ambiently isotopic to a horizontal straight line segment.

Proposition + is a strictly 3-dimensional phenomenon because:

Fact 1: For $n \ge 4$, arcs in S^n have no isolated wild points.

Fact 2: For $n \ge 4$, n-balls in Sⁿ have no isolated wild points (Kirby, 1968).

∴ For $n \ge 4$, if \mathbb{C} is an n-ball in \mathbb{S}^n , then every point of $\partial \mathbb{C}$ can be approached from int(\mathbb{C}) by an arc that is **tame** in \mathbb{S}^n .

Proof:

Approach a point $\mathbf{p} \in \partial \mathbf{C}$ from int(\mathbf{C}) by an arc A that is possibly **wild** in S^n . Approximate A mod \mathbf{p} by an arc A' such that A' $-\{\mathbf{p}\}$ is **tame** in S^n .

 \therefore A' is **tame** in Sⁿ. \square