

Invertibility conditions for some operators in weight spaces

Международная конференция «Теория функций и ее приложения», посвященная 120-летию со дня рождения академика РАН Сергея Михайловича Никольского

Кабанко Михаил Владимирович

Department: КГУ, кафедра математическогоа нализа и прикладной математики

Abstract: By the representation of the operator in tandem with sparse weights, a criterion for the invertibility of the operator in a general Hilbert couple is obtained. This criterion is based on the invertibility of the main diagonal of the matrix corresponding to the operator as well as on the weight conditions which are superimposed on diagonals parallel to the main one.

Some auxiliary results

Representation

Definition

A representation of the operator algebra $\mathfrak A$ is the pair (H_{θ}, θ) , where H_{θ} is some Hilbert space, which is called a representation and θ is a homomorphism of the form

$$\theta:\mathfrak{A}\to B(H_{\theta}).$$

A representation will be called faithful if the homomorphism θ is injective.

Murphy, G.J.: C*-algebras and Operator Theory. Academic Press, San Diego (1990) Helemskii, A.Y.: Lectures and Exercises on Functional Analysis. Translations of mathematical monographs, vol. 233. AMS Bookstore, Providence, Rhode Island (2004).

Some auxiliary results

Irreducible representation

Some auxiliary results

Main results

Definition

A representation (H_{θ}, θ) of the operator algebra $\mathfrak A$ is called topological irreducible (or acting irreducibly on H_{θ}) if the only closed vector subspaces of H_{θ} that are invariant for $\mathfrak A$ are trivial subspaces, i.e. 0 and H_{θ} .

Murphy, G.J.: C*-algebras and Operator Theory. Academic Press, San Diego (1990) Helemskii, A.Y.: Lectures and Exercises on Functional Analysis. Translations of mathematical monographs, vol. 233. AMS Bookstore, Providence, Rhode Island (2004).

Definition

Interpolation

Two Banach spaces X_0 and X_1 form a Banach couple if both spaces are contained in the Hausdorff topological space \mathfrak{X} and the embeddings X_i , (i=0,1) into \mathfrak{X} are continuous. A Banach couple $\{X_0,X_1\}$ is called regular if the space $X_0 \cap X_1$ is dense in X_0 and X_1 .

1. Bergh, J., Loöfström, J.: Interpolation Spaces. An Introduction. Springer, Berlin, Heidelberg, New York (1976)

2. Dmitriev, V.I., Krein, S.G., Ovchinnikov, V.I.: Fundamentals of the theory of interpolation. Geom. Linear Spaces Oper. Theory (Russian), pp. 31–74. Jaroslav. Gos. Univ., Yaroslav! (1977)

Some auxiliary results

Interpolation

Some auxiliary results

Main results

Let $\{H_0, H_1\}$ be a Hilbert couple and $\mathfrak A$ is the algebra of operators acting in the couple, i.e. $\mathfrak A=B(H_0)\cap B(H_1)$. We shell construct the map π from the algebra $\mathfrak A$ into the algebra of operators $B(H_\pi)$ where H_π is an interpolation Hilbert space in the regular Hilbert couple $\{H_0, H_1\}$ and $\pi(T)=T|_{H_\pi}$ for $T\in \mathfrak A$.

Representation in interpolation space

Some auxiliary results

Main results

Proposition

The (H_{π}, π) is a faithful representation of the algebra of operators $\mathfrak A$ acting in a Hilbert couple.

Theorem

The (H_{π}, π) is topological irreducible, where H_{π} is the interpolation Hilbert space.

Proof Th1

General case

Some auxiliary results

Main results

Theorem 2

Let T be a linear bounded operator acting in the Hilbert couple \overline{H} . If T is a topological isomorphism in the sum $H_0 + H_1$ and it is the same in the intersection $H_0 \cap H_1$ then T is a topological isomorphism in the algebra $B(\overline{H})$.

Proof Th2

Hilbert couple

$${H_0, H_1} = {I_2(G_n), I_2(2^{-n}G_n)}$$

$$||x||_{H_0} = \sum_{n=-\infty}^{\infty} ||\xi_n||_{G_n}^2 < \infty.$$

$$||x||_{H_1} = \sum_{n=-\infty}^{\infty} 2^{-2n} ||\xi_n||_{G_n}^2 < \infty.$$

Donoghue, W.F. The interpolation of quadratic norms.

Acta Math. 118, 251-270 (1967).

https://doi.org/10.1007/BF02392483

Ovchinnikov, V.I.: Operator ideals and interpolation in Hilbert couples. Vestn. VSU. Phys. Math. 2 142–161 (2014). http://www.vestnik.vsu.ru/pdf/physmath/ 2014/02/2014-02-13.pdf

Some auxiliary results

Operators in Hilbert couple

Let $A \in B(\overline{H})$ and $(a_{ij})_{i,j=-\infty}^{\infty}$, where $a_{ij}: G_j \to G_i$ are operators acting from G_j to G_i .

A = A' + A'' when

Some auxiliary results

$$A' = \frac{A_0}{2} + \sum_{k=1}^{\infty} A_k, \ A'' = \frac{A_0}{2} + \sum_{k=-\infty}^{-1} A_k$$

Main results

and operators A_k have matrices $(a_{i \ i-k})_{i,k=-\infty}^{\infty}$ (it is k-th diagonal).

Gohberg, I.C., Krein, M.G.: Theory and Applications of Volterra operators on Hilbert spaces, Translations of Mathematical Monographs, vol. 24. AMS Bookstore, Providence, Rhode Island (1970).

https://doi.org/10.1090/mmono/024

Operators in Hilbert couple

Operator A acts in the space $l_2(G_n)$, the norms of elements of block-matrices satisfy the inequality

$$||a_{ij}||_{G_j\to G_i}\leq ||A||_{B(\overline{H})}.$$

If the operator A is acting in $I_2(2^{-j}G_j)$ then the inequality

$$||a_{ij}||_{G_j \to G_i} \le 2^{i-j} ||A||_{B(\overline{H})}$$
 (1)

holds. Combining the two conditions, we obtain

$$||a_{ij}||_{G_j \to G_i} \le \min(1, 2^{i-j}) ||A||_{B(\overline{H})}.$$

Operators in Hilbert couple

$$||A_k||_{I_2(G_j)\to I_2(G_j)} \leq \min(1,2^k)||A||_{B(\overline{H})}.$$

Some auxiliary results

Main results

Kabanko, M.V.: Algebra of operators acting in Hilbert couple. Trans. Math. Fac. VSU 6, 54–60 (2001) https://doi.org/10.13140/RG.2.2.32163.98086 Kabanko, M.V., Ovchinnikov, V.I.: On irreducible representations of the algebra of operators of Hilbert couple. Trans. Math. Fac. VSU 5 (New series), pp. 52–60 (2001) https://www.researchgate.net/publication/325631534_On_irreducible_representations_of_the_algebra_of_operators_of_Hilbert_couple/citations

Sparse Hilbert couple

Let $\overline{K} = \{l_2(2^{2^j}), l_2(2^{-2^j})\}$ be a Hilbert couple.

Some auxiliary results

Main results

Ovchinnikov, V.I.: Optimal interpolation theorem for quasi-Banach spaces Ip with weights and for operators from von Neumann-Schatten classes in Hilbert pairs. Math. Notes 53(2), 94–99 (1993).

https://doi.org/10.1007/BF01208323

Ovchinnikov, V.I.: Interpolation of cross-normed ideals of operators defined on different spaces. Funct. Anal. Appl. 28(3), 213–215 (1994).

https://doi.org/10.1007/BF01078458

Some auxiliary results

Main results

Schatten-von Neumann class

Definition

Let H be a Hilbert space. If $0 < \alpha < \infty$ and the sequence of s–numbers of operator T is p-summable (i.e. $\{s_j(T)\}_{j=1}^{\infty} \in I_p$), then operator T is said to belong to the Schatten-von Neumann class $S_{\alpha}(H)$.

It is known that $S_{\alpha}(H)$ is a Banach space, and

$$\|T\|_{\mathcal{S}_{lpha}(H)} = \left(\sum_{j=1}^{\infty} \left(s_{j}(T)
ight)^{lpha}
ight)^{rac{1}{lpha}}$$

is a norm on $S_{\alpha}(H)$ if $1 < \alpha < \infty$. If $0 < \alpha < 1$, then $\|T\|_{S_{\alpha}(H)}$ is a quasi-norm and $S_{\alpha}(H)$ is a quasi-Banach space.

Operators in sparse Hilbert couple

Some auxiliary results

Main results

Theorem

Each operator in B(K) can be represented by a sum of the diagonal operator D and the operator $N \in S_{\alpha}(I_2)$ when $S_{\alpha}(I_2)$ is the Neumann-Schatten class in the space I_2 for any index $\alpha > 0$.

Proof Th3

Represantation in middle space 1₂

Now we consider a representation (I_2, φ) of the algebra $B(\overline{K})$ in the interpolation space I_2 :

$$\varphi: B(\overline{K}) \to B(I_2), \varphi(A) = A \mid_{I_2}.$$

Recall that the representation is faithful and irreducible and the operator $A \mid_{l_2}$ is equal to the sum of diagonal operator D and the compact operator N, i.e. $A \mid_{l_2} = D + N$. Further, consider the image of the

representation in the Calkin algebra $B(I_2)/C(I_2)$ $\pi: B(I_2) \to B(I_2)/C(I_2), \pi(A|_L) = \widetilde{A},$

where $C(l_2)$ is an ideal of compact operators in l_2 .

Some auxiliary results

Calkin algebra

Some auxiliary results

Main results

The operator $A|_{l_2} = D + N$ is invertible when it is acting in l_2 if and only if the image of the operator is not in the null-coset of Calkin algebra, i.e. the diagonal $D = \{a_{nn}\}_{n=1}^{\infty}$ has $\inf_n |a_{nn}| > 0$.

Main case

In this part of the paper, we passed to the question of the invertibility of an operator, which acts in the couple $\overline{H} = \left\{ I_2(2^{\frac{n}{2}}G_n), I_2(2^{-\frac{n}{2}}G_n) \right\}$. Each operator, which acts in the couple, can be represented as

Some auxiliary results

$$A = D + \sum_{k \in \mathbb{Z}, k \neq 0} A_k,$$

Main results

when D is an operator corresponding to the main diagonal in the matrix representation of A. The operators A_k are the diagonals which "parallel" to the main diagonal.

Gil, M.I.: Spectrum of infinite block matrices and

pi-triangular operators. Electron. J. Linear Algebra 16, 216–231 (2007).

https://doi.org/10.13001/1081-3810.1197

Theorem

Theorem 4

Let operator A be in $B(\overline{H})$. Suppose that the diagonal operator D in the space $l_2(G_n)$ is invertible and the inequality

$$||D^{-1}||_{I_2(G_n)} < \frac{\sqrt{2}-1}{2||A||_{B(\overline{H})}}$$

holds. Then A will be invertible in space $l_2(G_n)$.

Proof Th4

Kabanko, M.V. On invertibility of some classes of operators in weighted Hilbert spaces. Adv. Oper. Theory 7, 21 (2022).

https://doi.org/10.1007/s43036-022-00187-0

Some auxiliary results

Main results

THANK YOU!

Assume on the contrary, that some non-trivial subspace in H_{π} is invariant for $\pi(\mathfrak{A})$. It is true if and only if each vector in H_{π} is not cyclic vector for the image π . Let e be such not cyclic vector i.e. the closure $\overline{\mathfrak{A}(e)}$ does not coincide with H_{π} .

Let

$$f(x): H_0 + H_1 \to \mathbb{C}$$

be an arbitrary linear functional acting in a sum of spaces. We define a linear operator acting in a sum of spaces in the following way

$$T: H_0 + H_1 \to H_0 \cap H_1, \qquad Tx = f(x)a,$$

where a is fixed vector from $H_0 \cap H_1$. Obviously, T images sum of spaces $H_0 + H_1$ into the intersection $H_0 \cap H_1$.

Some auxiliary results

Then

$$T: H_{\pi} \rightarrow H_{\pi}$$

and hence $T \in \mathfrak{A}$.

We will choose a functional f in such a way that f(e)=1. Then Te=f(e)a=a and, therefore, $\overline{\mathfrak{A}(e)}$ contains the $H_0\cap H_1$. The property stating that the intersection is dense in an interpolation Hilbert space is well known. Then the closure of $H_0\cap H_1$ (and $\overline{\mathfrak{A}(e)}$) coincides with H_π . This contradicts the fact that the vector e is not cyclic. Thus the representation is irreducible.

Back to Th1

Some auxiliary results

Main results

Proof of Theorem 2

First, we observe that if T is injective in $H_0 + H_1$ then it has trivial kernels in H_0 and H_1 . To see that it is bijective we must prove that T is surjective in spaces of couple i.e. the image $T(H_0)$ coincides with H_0 and image $T(H_1)$ coincides with H_1 .

Let z be an element in H_1 such that it is not in $T(H_1)$. Recall that if an operator T acting in the sum H_0+H_1 then $z=T(x_0+x_1)$ with $x_0\in H_0$, $x_1\in H_1$. Thus on the one hand $z-T(x_1)=T(x_0)\in H_0$ and, on the other hand, $z-T(x_1)\in H_1$. Consequently, $T(x_0)\in H_0\cap H_1$. As the operator T is invertible in $H_0\cap H_1$ hence $x_0\in H_0\cap H_1$ and $x_0+x_1\in H_1$. Therefore, $z=T(x_0+x_1)\in T(H_1)$. We obtain contradiction and the theorem is proved.

Back to Th2

Suppose A is some operator acting in the couple \overline{K} and $(a_{ij})_{ij}^{\infty}$ is a matrix corresponding to the operator A in the space I_2 (with $a_{ij} \in \mathbb{C}$).

Thus

$$|a_{ij}| \leq \min(2^{2^i-2^j}, 2^{2^j-2^i}) ||A||_{\overline{K}}.$$

Let us consider an operator in the form

$$N = \sum_{m,n=1,m\neq n}^{\infty} A_{mn},$$

where the operators A_{mn} map the vector $\{\xi_j\}_{j=1}^{\infty}$ into the vector $\{\zeta_i\}_{i=1}^{\infty}$ by the rules $\zeta_m = a_{mn}\xi_n$ and $\zeta_i = 0$ if $i \neq m$.

Back to Th3

Some auxiliary results

The series

$$\sum_{m,n=1,m\neq n}^{\infty} \|A_{mn}\|_{l_2}^{\alpha}$$

Some auxiliary results

is convergent.

Thus the operator

Main results

$$N = \sum_{m,n=1,m\neq n} A_{mn},$$

is an absolutely convergent series and N belongs to the Neumann-Schatten class (for each $\alpha>0$).

Back to Th3

Operator A can be represented in the form

$$A = D\left(I + D^{-1} \sum_{k \in \mathbb{Z} \setminus \{0\}} A_k\right).$$

$$||A_k||_{I_2(G_n)} \leq 2^{-|\frac{k}{2}|} ||A||_{B(\overline{H})}.$$

by the condition of the theorem we have

$$\left\| D^{-1} \sum_{k \in \mathbb{Z} \setminus \{0\}} A_k \right\|_{L(G_k)} \le \frac{2 \|D^{-1}\|_{l_2(G_n)} \|A\|_{B(\overline{H})}}{\sqrt{2} - 1} < 1.$$

Thus, the operator

$$I + D^{-1} \sum_{k \in \mathbb{Z} \setminus \{0\}} A_k$$

is invertible in the space $I_2(G_n)$. Back to Th4

Some auxiliary

