Lavrentiev-Bitsadze equation in partially perforated domain

25.06 10:00-10:30

Gregory A. Chechkin

M.V. Lomonosov Moscow State University

chechkin@mech.math.msu.su

We consider the equation

$$-u_{yy}^{\varepsilon} - (\operatorname{sign} y) u_{xx}^{\varepsilon} = f(x, y)$$

in a semi-perforated domain D_{ε} , the perforated part of which is located in the half-plane y>0 and has a locally periodic structure with a characteristic size ε , and the part lying in the lower half-plane y<0 has a homogeneous structure. On the outer boundary of the domain, the homogeneous Dirichlet condition is imposed, while on the boundary of the cavities, a boundary condition of the third kind (Robin condition) is imposed with a parameter ε^{α} , responsible for energy dissipation. The asymptotic behavior of the solution is investigated as the small parameter ε tends to zero. We assume that $f \in C^1(\mathbb{R}^2)$ and vanishes when y<0.

Three different cases are studied: $\alpha>1$ (subcritical case), $\alpha=1$ (critical case) and $\alpha<1$ (supercritical case).