Nonlinear elliptic variational inequalities with contacting and non-contacting measurable bilateral obstacles

27.06 10:00-10:30

Alexander A. Kovalevsky

Krasovskii Institute of Mathematics and Mechanics UB RAS, Ural Federal University

alexkvl71@mail.ru

We consider variational inequalities with invertible operators $\mathcal{A}_s\colon W^{1,p}_0(\Omega)\to W^{-1,p'}(\Omega),\ s\in\mathbb{N}$, in divergence form and constraint set $V\subset W^{1,p}_0(\Omega)$ defined by a measurable lower obstacle $\varphi\colon\Omega\to\overline{\mathbb{R}}$ and a measurable upper obstacle $\psi\colon\Omega\to\overline{\mathbb{R}}$, where Ω is a nonempty bounded open set in \mathbb{R}^n $(n\geqslant 2)$ and p>1.

It is assumed that the sequence $\{\mathcal{A}_s\}$ G-converges to an invertible operator $\mathcal{A}\colon W^{1,p}_0(\Omega)\to W^{-1,p'}(\Omega)$. For the obstacles φ and ψ , some different cases are considered.

In the first case, it is assumed that, for every nonempty open set ω in \mathbb{R}^n with $\overline{\omega} \subset \Omega$, there exist functions $\varphi_{\omega}, \psi_{\omega} \in W_0^{1,p}(\Omega)$ such that $\varphi \leqslant \varphi_{\omega} \leqslant \psi_{\omega} \leqslant \psi$ a.e. in Ω and $\varphi_{\omega} < \psi_{\omega}$ a.e. in ω . In this case, we have meas $\{\varphi = \psi\} = 0$.

In the second case, it is assumed that the following conditions are satisfied:

- (C₁) int $\{\varphi = \psi\} \neq \emptyset$ and meas $(\partial \{\varphi = \psi\} \cap \Omega) = 0$;
- (C₂) there exist functions $\bar{\varphi}, \bar{\psi} \in W_0^{1,p}(\Omega)$ such that $\varphi \leqslant \bar{\varphi} \leqslant \bar{\psi} \leqslant \psi$ a.e. in Ω and meas $(\{\varphi \neq \psi\} \setminus \{\bar{\varphi} \neq \bar{\psi}\}) = 0$.

In this case, we have meas $\{\varphi = \psi\} > 0$.

Finally, in the third case, it is assumed that $\varphi \leqslant 0$ and $\psi \geqslant 0$ a.e. in Ω . This case admits both possibilities: meas $\{\varphi = \psi\} = 0$ and meas $\{\varphi = \psi\} > 0$. Therein, an additional condition on the coefficients of the operators \mathcal{A}_s is required.

We expose our recent results showing that in all the described cases, the solutions u_s of the considered variational inequalities converge weak-ly in $W_0^{1,p}(\Omega)$ to the solution u of a similar variational inequality with the operator $\mathcal A$ and the constraint set V. We note that in the first and third cases, $\mathcal A_s u_s \to \mathcal A u$ strongly in $W^{-1,p'}(\Omega)$, while in the second case, this is not true in general. Furthermore, in the second case, the sequence of energy integrals $\langle \mathcal A_s u_s, u_s \rangle$ does not converge to $\langle \mathcal A u, u \rangle$ in general.