Homogenization problems of Navier-Stokes equation for the domain perforated along the boundary

27.06 12:30-12:45

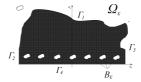
Murad Apayev

Lomonosov Moscow State University

apayevmr@gmail.com

We describe the domain. Let Ω denote a bounded domain in \mathbb{R}^2 , lying in the upper half-plane, whose boundary Γ is piecewise smooth and consists of several parts: $\Gamma = \Gamma_1 \cup \Gamma_2 \cup \Gamma_3 \cup \Gamma_4$, where Γ_4 is the segment $\left[-\frac{1}{2};\frac{1}{2}\right]$ on the abscissa axis, Γ_2 and Γ_3 belong to the lines $x_1=-\frac{1}{2}$ and $x_1=\frac{1}{2}$, respectively, $\Gamma \setminus \Gamma_4$ is smooth. Here and throughout $\varepsilon=\frac{1}{2\mathcal{N}+1}$ is the small parameter, \mathcal{N} is a natural number, $\mathcal{N} \gg 1$.

We use the following notation. Let G be an arbitrary two-dimensional domain with a smooth boundary lying in the circle $K=\{\xi:\xi_1^2+(\xi_2-\frac{1}{2})^2< a^2\},\ 0< a<\frac{1}{2}$. Let us denote $G_\varepsilon^j=\{x\in\Omega:\varepsilon^{-1}(x_1-j,x_2)\in G\},\ j\in\mathbb{Z},\ G_\varepsilon=\bigcup_j G_\varepsilon^j,\ \Gamma_\varepsilon=\partial G_\varepsilon$. We define the domain Ω_ε as $\Omega\setminus\overline{G_\varepsilon}$ (see Fig. 1).



We consider the following problem:

$$\begin{cases} \frac{\partial u_{\varepsilon}}{\partial t} - \nu \Delta u_{\varepsilon} + (u_{\varepsilon}, \nabla) u_{\varepsilon} = g(x), & x \in \Omega_{\varepsilon}, t > 0, \\ (\nabla, u_{\varepsilon}) = 0, & x \in \Omega_{\varepsilon}, t > 0, \\ \nu \frac{\partial u_{\varepsilon}}{\partial n} = 0, & x \in \Gamma_{4}, t > 0, \\ u_{\varepsilon} = 0, & x \in \Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3} \cup \Gamma_{\varepsilon}, t > 0, \\ u_{\varepsilon} = U(x), & x \in \Omega_{\varepsilon}, t = 0. \end{cases}$$

$$(1)$$

Here $u_{\varepsilon}=u_{\varepsilon}(x,t)=(u_{\varepsilon}^1,u_{\varepsilon}^2), g=g(x_1,x_2)=(g^1,g^2), g_j\in L_2(\Omega), n$ is the outer normal vector to the boundary and $\nu>0$. Also consider

the problem

$$\begin{cases} \frac{\partial u_0}{\partial t} - \nu \Delta u_0 + (u_0, \nabla) u_0 = g(x), & x \in \Omega, t > 0, \\ (\nabla, u_0) = 0, & x \in \Omega, t > 0, \\ u_0 = 0, & x \in \Gamma, t > 0, \\ u_0 = U(x), & x \in \Omega, t = 0. \end{cases}$$
 (2)

We continue the solutions of the problem (1) by zero inside the pores.

Theorem.Let u_{ε} be a solution to problem (1), u_0 be a solution to problem (2). Then, as the small parameter ε tends to zero, we have: $u_{\varepsilon} \to u_0$ strongly in $L_2((0,T),L_2(\Omega))$.