Online conference on Quantum Optics and Related Topics 29 Sep – 5 Oct 2025

Quantum Information Processing and E_8 Lattice: From Contextuality to "Magic"

Alexander Yurievich Vlasov *†

*P.V. Ramzaev Research Institute of Radiation Hygiene

 † Alexander Friedmann Laboratory for Theoretical Physics

Saint Petersburg, Russia

qubeat@mail.ru

Brief outline

- Introduction.
- Dimension eight (quocts).
 - Korkin-Zolotarev-Gosset (E_8) lattice.
 - E_8 configuration with 120 states and 2025 bases.
- Dimension four (ququarts).
 - Witting configuration with 40 states and 40 bases.
 - Penrose dodecahedra and quantum cards
 - Note on quantum key distribution
 - Another configuration with 120 states and 210 bases.
 - Yet another configuration with 60 stabilizer states and 105 bases.
- Conclusion.

Introduction

Regular structures and symmetries can be useful for analysis of different configurations of states relevant for quantum information processing. Here are considered few themes related with eight-dimensional diamond lattice E_8 .

This lattice is defined in real vector space, but it was already used in applications relevant for quantum information science both for quantum systems with eight-dimensional space of states (quocts) and with four-dimensional one (ququarts).

Possible novel application are also discussed in the presented talk.

Korkin-Zolotarev-Gosset (E_8) lattice

Definition

 E_8 lattice is a set of points in \mathbb{R}^8 with properties:

• All eight coordinates are either integers or half-integers

$$(x_1,\ldots,x_8)$$
: all $x_i\in\mathbb{Z}$ or all $x_i\in\mathbb{Z}+\frac{1}{2}$

• The sum of the eight coordinates is an *even* integer

$$\sum x_i \equiv 0 \pmod{2}$$

Korkin-Zolotarev-Gosset (E_8) lattice

Definition

 E_8 lattice is a set of points in \mathbb{R}^8 with properties:

• All eight coordinates are either integers or half-integers

$$(x_1,\ldots,x_8)$$
: all $x_i\in\mathbb{Z}$ or all $x_i\in\mathbb{Z}+\frac{1}{2}$

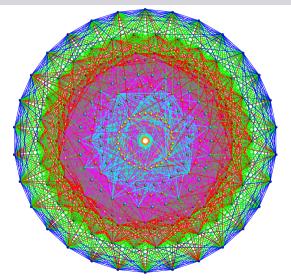
• The sum of the eight coordinates is an *even* integer

$$\sum x_i \equiv 0 \pmod{2}$$

J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, New York, 1999.

Minimal vectors of E_8 lattice

Minimal vectors


240 vectors (roots) with minimal norm = 2 include:

- 112 vectors $(\pm 1^{2 \text{ pos.}}, 0^{6 \text{ pos.}})$ with only two nonzero coefficients ± 1 in some positions
- 128 vectors $(\pm \frac{1}{2}^{8 \text{ pos.}})$ with coefficients $\pm \frac{1}{2}$ in all positions and *even* number of minus signs

Gosset polytope

 E_8 root vectors correspond to semiregular Gosset polytope with 240 vertexes (connected by 6720 edges)

Gosset (E_8) polytope

Picture source: Wikipedia

Symmetries: automorphism group $W(E_8)$

Symmetries of E_8 lattice is Weyl group $W(E_8)$, generated by

- all possible permutations of eight coordinates
- all even sign changes
- matrix

i.e., $I \otimes H \otimes H$, if to use notation with quantum gates

Symmetries: automorphism group $W(E_8)$

Symmetries of E_8 lattice is Weyl group $W(E_8)$, generated by

- all possible permutations of eight coordinates
- all even sign changes
- matrix

atrix
$$\begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 & 0 & 0 \\
1 & 1 & -1 & -1 & 1 & 0 \\
1 & 1 & -1 & -1 & 1 & 1 \\
0 & 1 & -1 & 1 & -1 & 1 \\
0 & 1 & 1 & -1 & -1 & 1 \\
1 & -1 & -1 & 1 & 1
\end{pmatrix},$$
e., $I \otimes H \otimes H$, if to use notation with quantum gates
$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

i.e., $I \otimes H \otimes H$, if to use notation with quantum gates

Number of symmetries: $|W(E_8)| = 696729600$.

$W(E_8)$ and quantum circuits

Classical reversible circuits can be constructed using universal set with NOT (X), Controlled-NOT (CX) and Controlled-Controlled-NOT (CCX) or Toffoli) gates.

3-qubit $Toffoli-H\otimes H$ circits

Let us consider circuits composed of X, CX, CCX gates (together with SWAP gates between qubits) and **pairs** of Hadamard gates $H_j H_k$ acting on two qubits with different indexes $1 \le j < k \le 3$.

Transformations corresponding to even sign changes also can be composed of such a set of gates and such quantum circuits can implement any symmetry of E_8 lattice (yet, global ± 1 multiplier formally is not physical).

This nonuniversal set of quantum gates may generate $|W(E_8)|/2 = 348364800$ different transformations.

$W(E_8)$ and quantum circuits

Classical reversible circuits can be constructed using universal set with NOT (X), Controlled-NOT (CX) and Controlled-Controlled-NOT (CCX) or Toffoli) gates.

3-qubit $Toffoli-H\otimes H$ circits

Let us consider circuits composed of X, CX, CCX gates (together with SWAP gates between qubits) and **pairs** of Hadamard gates $H_j H_k$ acting on two qubits with different indexes $1 \le j < k \le 3$.

Transformations corresponding to even sign changes also can be composed of such a set of gates and such quantum circuits can implement any symmetry of E_8 lattice (yet, global ± 1 multiplier formally is not physical).

This nonuniversal set of quantum gates may generate $|W(E_8)|/2 = 348364800$ different transformations.

Some references: M. Amy, N. J. Ross, and S. Wesley, arXiv:2407.11152 M. Planat, arXiv:0904.3691

E_8 roots as configuration of quantum states

Any pair of roots with opposite directions correspond to the same quantum state. Thus, configuration of 240 E_8 roots or vertexes of Gosset polytope corresponds to 120 different quantum states or rays in Hilbert space.

Sets with eight mutually orthogonal states (bases) have particular interest because laws of quantum mechanics allow such states to be measured simultaneously.

For the 120 rays produced from the 240 E_8 roots there are **2025** such bases.

An application to the analysis of quantum contextuality, was discussed in:

M. Waegell and P.K. Aravind, Parity proofs of the Kochen-Specker theorem based on the Lie algebra E8, arXiv:1502.04350, J. Phys. A: Math. Theor. 48, 225301 (2015).

Kochen-Specker theorem places some constrains on hidden-variables theories and can have certain relations with foundations of quantum information science.

E_8 roots as configuration of quantum states

Any pair of roots with opposite directions correspond to the same quantum state. Thus, configuration of 240 E_8 roots or vertexes of Gosset polytope corresponds to 120 different quantum states or rays in Hilbert space.

Sets with eight mutually orthogonal states (bases) have particular interest because laws of quantum mechanics allow such states to be measured simultaneously.

For the 120 rays produced from the 240 E_8 roots there are **2025** such bases.

Quantum key distribution

This configuration may also have applications in quantum communications. Choice of the same bases allows participants to exchange information or secret keys.

E_8 roots as configuration of quantum states

Any pair of roots with opposite directions correspond to the same quantum state. Thus, configuration of 240 E_8 roots or vertexes of Gosset polytope corresponds to 120 different quantum states or rays in Hilbert space.

Sets with eight mutually orthogonal states (bases) have particular interest because laws of quantum mechanics allow such states to be measured simultaneously.

For the 120 rays produced from the 240 E_8 roots there are **2025** such bases.

This configuration may also have applications in quantum communications. Choice of the same bases allows participants to exchange information or secret keys.

However, the eight-dimensional configuration with 2025 bases is rather complicated and *four-dimensional complex* version of the eight-dimensional Gosset polytope is discussed next.

Four-dimensional regular complex Witting polytope

Witting polytope

Formal definition of Witting polytope uses four complex reflections, but let us first recollect the complex coordinates of 240 vertexes (norm = 3 is used):

$$\begin{split} &(\pm \mathrm{i}\omega^{\lambda}\sqrt{3},0,0,0), \quad (0,\pm \mathrm{i}\omega^{\lambda}\sqrt{3},0,0), \quad (0,0,\pm \mathrm{i}\omega^{\lambda}\sqrt{3},0), \quad (0,0,0,\pm \mathrm{i}\omega^{\lambda}\sqrt{3}), \\ &(0,\pm\omega^{\mu},\mp\omega^{\nu},\pm\omega^{\lambda}), \ (\mp\omega^{\mu},0,\pm\omega^{\nu},\pm\omega^{\lambda}), \ (\pm\omega^{\mu},\mp\omega^{\nu},0,\pm\omega^{\lambda}), \ (\mp\omega^{\mu},\mp\omega^{\nu},\mp\omega^{\lambda},0), \\ &\text{where } \omega = \mathrm{e}^{2\pi\mathrm{i}/3} \ \text{and} \ \lambda,\mu,\nu \in \{0,1,2\}. \end{split}$$

H. S. M. Coxeter, Regular Complex Polytopes, CUP, 1991.

Four-dimensional regular complex Witting polytope

Witting polytope

Formal definition of Witting polytope uses four complex reflections, but let us first recollect the complex coordinates of 240 vertexes (norm = 3 is used):

$$\begin{split} &(\pm \mathrm{i}\omega^{\lambda}\sqrt{3},0,0,0), \quad (0,\pm \mathrm{i}\omega^{\lambda}\sqrt{3},0,0), \quad (0,0,\pm \mathrm{i}\omega^{\lambda}\sqrt{3},0), \quad (0,0,0,\pm \mathrm{i}\omega^{\lambda}\sqrt{3}), \\ &(0,\pm\omega^{\mu},\mp\omega^{\nu},\pm\omega^{\lambda}), \ (\mp\omega^{\mu},0,\pm\omega^{\nu},\pm\omega^{\lambda}), \ (\pm\omega^{\mu},\mp\omega^{\nu},0,\pm\omega^{\lambda}), \ (\mp\omega^{\mu},\mp\omega^{\nu},\mp\omega^{\lambda},0), \\ &\text{where } \omega = \mathrm{e}^{2\pi\mathrm{i}/3} \text{ and } \lambda,\mu,\nu \in \{0,1,2\}. \end{split}$$

 $(z_1, z_2, z_3, z_4) \equiv (x_1 + iy_1, x_2 + iy_2, x_3 + iy_3, x_4 + iy_4) \longrightarrow (x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4).$ After such realification, scaling by $\sqrt{2/3}$ and some 8-dimensional rotation, the configuration coincides with standard expressions for 240 vertexes of the Gosset polytope mentioned earlier.

These complex vertexes can be mapped into an eight-dimensional real vector space:

Witting configuration with 40 quantum states

40 quantum states

The vertexes of the Witting polytope can be divided into 40 groups of six points, the coordinates of which differ only in the global phase factor $e^{2\pi ik/6}$, $k = 0, \dots, 5$. Each such group corresponds to the same quantum state.

After normalization, we have 40 states: four basic states

$$(1,0,0,0), \qquad (0,1,0,0), \qquad (0,0,1,0), \qquad (0,0,0,1),$$

and 36 states, which can be expressed as

$$\frac{1}{\sqrt{3}}(0,1,-\omega^{\mu},\omega^{\nu}),\ \frac{1}{\sqrt{3}}(1,0,-\omega^{\mu},-\omega^{\nu}),\ \frac{1}{\sqrt{3}}(1,-\omega^{\mu},0,\omega^{\nu}),\ \frac{1}{\sqrt{3}}(1,\omega^{\mu},\omega^{\nu},0),$$

where
$$\omega = e^{2\pi i/3} = \frac{-1 + i\sqrt{3}}{2}$$
 and $\mu, \nu = 0, 1, 2$.

Witting configuration and Penrose dodecahedra

Configuration with 40 states described above has direct correspondence with model of quantum contextuality described by Penrose using geometry of dodecahedron:

M. Waegell and P. K. Aravind, The Penrose dodecahedron and the Witting polytope are identical in CP³,* arXiv:1701.06512 (2017), Phys. Lett. A **381**, 1853–1857 (2017).

* The appearance in the title of the projective space $\mathbb{C}P^3$, i.e., the space of rays in the four-dimensional complex space, corresponds to the transition from 240 complex vectors to 40 quantum states discussed above.

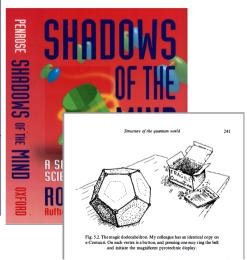
Witting configuration and Penrose dodecahedra

Configuration with 40 states described above has direct correspondence with model of quantum contextuality described by Penrose using geometry of dodecahedron:

M. Waegell and P. K. Aravind, The Penrose dodecahedron and the Witting polytope are identical in CP³,* arXiv:1701.06512 (2017), Phys. Lett. A **381**, 1853–1857 (2017).

* The appearance in the title of the projective space $\mathbb{C}P^3$, i.e., the space of rays in the four-dimensional complex space, corresponds to the transition from 240 complex vectors to 40 quantum states discussed above.

Penrose dodecahedra


Penrose model uses two entangled spin- $\frac{3}{2}$ particles and configurations with 40 states described by geometry of dodecahedron. The states were defined using rather complicated Majorana representation of higher spin particle using sets of points on Bloch sphere corresponding to poles of polynomials. Witting configuration provides simpler expressions for description of the same set of states.

Model with Penrose dodecahedron

Rodger Penrose,
On Bell non-locality without probabilities: some curious geometry,
Preprint, Oxford, 1992;
reprinted in: J. Ellis, D. Amati (eds.),
Quantum Reflections, 1–27, CUP, 2000.

J. Zimba and R. Penrose, On Bell non-locality without probabilities: more curious geometry, Stud. Hist. Phil. Sci. **24**, 697–720 (1993).

R. Penrose, **Shadows of the Mind**, Oxford University Press, 1994.

Witting configuration: table with 40 states

k	$ \xi_0^{k} angle$	$\ket{\xi_1^{k}}$	$\ket{\xi_2^{k}}$	$ \xi_3^{k} angle$
1	(1, 0, 0, 0)	(0, 1, 0, 0)	(0, 0, 1, 0)	(0, 0, 0, 1)
2	(0, 1, -1, 1)	(1, 0, -1, -1)	$(1,-1,\ 0,\ 1)$	(1, 1, 1, 0)
3	$(0, 1, -\omega, \overline{\omega})$	$(1, 0, -\overline{\omega}, -1)$	$(1,-\omega,\ 0,\ 1)$	$(1, \omega, \overline{\omega}, 0)$
4	$(0, 1, -\overline{\omega}, \omega)$	$(1, 0, -\omega, -1)$	$(1,-\overline{\omega},\ 0,\ 1)$	$(1, \overline{\omega}, \omega, 0)$
5	$(0, 1, -1, \omega)$	$(1, 0, -\omega, -\overline{\omega})$	$(1, -\omega, 0, \overline{\omega})$	$(1, \omega, \omega, 0)$
6	$(0, 1, -\omega, 1)$	$(1, 0, -1, -\overline{\omega})$	$(1, -\overline{\omega}, \ 0, \ \overline{\omega})$	$ (1, \ \overline{\omega}, \ 1, \ 0) $
7	$(0, 1, -\overline{\omega}, \overline{\omega})$	$(1, 0, -\overline{\omega}, -\overline{\omega})$	$(1,-1,\ 0,\ \overline{\omega})$	$(1, 1, \overline{\omega}, 0)$
8	$(0, 1, -1, \overline{\omega})$	$(1, 0, -\overline{\omega}, -\omega)$	$(1, -\overline{\omega}, 0, \omega)$	$(1, \ \overline{\omega}, \ \overline{\omega}, \ 0)$
9	$(0, 1, -\omega, \omega)$	$(1, 0, -\omega, -\omega)$	$(1,-1,\ 0,\ \omega)$	$(1, 1, \omega, 0)$
10	$(0, 1, -\overline{\omega}, 1)$	$(1, 0, -1, -\omega)$	$(1, -\omega, 0, \omega)$	$(1, \omega, 1, 0)$

A Yu Vlasov, QIP and E₈ lattice

October 1, 2025

Coxeter definition of Witting polytope

Complex reflection of order k

$$R\langle^k\phi\rangle = \mathbf{1} + (e^{2\pi i/k} - 1)\frac{|\phi\rangle\langle\phi|}{\langle\phi|\phi\rangle}.$$

Witting polytope, 4 'triflections'

$$R_1 = R\langle^3 \xi_0^1 \rangle, \quad R_2 = R\langle^3 \xi_3^2 \rangle, R_3 = R\langle^3 \xi_2^1 \rangle, \quad R_4 = R\langle^3 \xi_0^2 \rangle.$$

H. S. M. Coxeter, Regular Complex Polytopes, CUP, 1991.

Four 'triflections' R_k generate group with 155520 symmetries of complex Witting polytope with 240 vertexes. For Witting configuration with 40 states it is enough to use four operators $r_k = \overline{\omega} R_k$, $k = 1, \ldots, 4$ with unit determinants.

Such operators produce smaller group W with 51840 elements corresponding to 25920 different quantum gates (up to ± 1). Applications of different combinations of such gates to state $|0\rangle$ produce 40 states of Witting configuration.

Coxeter definition of Witting polytope

Complex reflection of order k

$$R\langle^k\phi\rangle = \mathbf{1} + (e^{2\pi i/k} - 1)\frac{|\phi\rangle\langle\phi|}{\langle\phi|\phi\rangle}.$$

Witting polytope, 4 'triflections'

$$R_1 = R\langle^3 \xi_0^1\rangle, \quad R_2 = R\langle^3 \xi_3^2\rangle, R_3 = R\langle^3 \xi_2^1\rangle, \quad R_4 = R\langle^3 \xi_0^2\rangle.$$

Four 'triflections' R_k generate group with 155520 symmetries of complex Witting polytope with 240 vertexes. For Witting configuration with 40 states it is enough to use four operators $r_k = \overline{\omega} R_k$, $k = 1, \ldots, 4$ with unit determinants.

Such operators produce smaller group W with 51840 elements corresponding to 25920 different quantum gates (up to ± 1). Applications of different combinations of such gates to state $|0\rangle$ produce 40 states of Witting configuration.

An entanglement between two particles is essential for initial Penrose model with two dodecahedra. Some notes can be found in A. Y. Vlasov, Penrose dodecahedron, Witting configuration and quantum entanglement, arXiv:2208.13644, Quanta 13, 38–46 (2024).

Witting configuration: 40 bases

$1 \left \left\{ \underline{ \xi_0^1\rangle, \xi_1^1\rangle, \xi_2^1\rangle, \xi_3^1\rangle} \right\} \right \equiv \left\{ 0\rangle, 1\rangle, 2\rangle, 3\rangle \right\},$
$2\left\{\underline{ \xi_{0}^{2}\rangle, \xi_{1}^{2}\rangle, \xi_{2}^{2}\rangle, \xi_{3}^{2}\rangle}\right\}, 3\left\{ \xi_{0}^{2}\rangle, \xi_{1}^{7}\rangle, \xi_{2}^{6}\rangle, \xi_{3}^{8}\rangle\right\}, 4\left\{ \xi_{0}^{2}\rangle, \xi_{1}^{9}\rangle, \xi_{2}^{10}\rangle, \xi_{3}^{5}\rangle\right\},$
$5\left \left\{\underline{ \xi_0^3\rangle, \xi_1^3\rangle, \xi_2^3\rangle, \xi_3^3\rangle}\right\}, 6\left \left\{ \xi_0^3\rangle, \xi_1^5\rangle, \xi_2^7\rangle, \xi_2^9\rangle\right\}, 7\left \left\{ \xi_0^3\rangle, \xi_1^{10}\rangle, \xi_2^8\rangle, \xi_3^6\rangle\right\},$
$8\left\{\underline{ \xi_0^4\rangle, \xi_1^4\rangle, \xi_2^4\rangle, \xi_3^4\rangle}\right\}, 9\left\{ \xi_0^4\rangle, \xi_1^6\rangle, \xi_2^5\rangle, \xi_3^{10}\rangle\right\}, 10\left\{ \xi_0^4\rangle, \xi_1^8\rangle, \xi_2^9\rangle, \xi_3^7\rangle\right\},$
$11\left\{\underline{ \xi_0^5\rangle, \xi_1^5\rangle, \xi_2^5\rangle, \xi_3^5\rangle}\right\}, 12\left\{ \xi_0^5\rangle, \xi_1^{90}\rangle, \xi_2^{9}\rangle, \xi_3^{2}\rangle\right\}, 13\left\{ \xi_0^5\rangle, \xi_1^3\rangle, \xi_2^4\rangle, \xi_3^{8}\rangle\right\},$
$14\left\{\underline{ \xi_0^6\rangle, \xi_1^6\rangle, \xi_2^6\rangle, \xi_3^6\rangle}\right\}, 15\left\{ \xi_0^6\rangle, \xi_1^8\rangle, \xi_2^{10}\rangle, \xi_3^{3}\rangle\right\}, 16\left\{ \xi_0^6\rangle, \xi_1^4\rangle, \xi_2^2\rangle, \xi_3^9\rangle\right\},$
$17\left\{\underline{ \xi_0^7\rangle, \xi_1^7\rangle, \xi_2^7\rangle, \xi_3^7\rangle}\right\}, 18\left\{ \xi_0^7\rangle, \xi_1^8\rangle, \xi_2^8\rangle, \xi_3^4\rangle\right\}, 19\left\{ \xi_0^7\rangle, \xi_1^2\rangle, \xi_2^3\rangle, \xi_3^{9}\rangle\right\},$
$20\left\{\underline{ \xi_0^8\rangle, \xi_1^8\rangle, \xi_2^8\rangle, \xi_3^8\rangle}\right\}, \ 21\left\{ \xi_0^8\rangle, \xi_1^4\rangle, \xi_2^3\rangle, \xi_3^5\rangle\right\}, \ 22\left \{ \xi_0^8\rangle, \xi_1^6\rangle, \xi_2^7\rangle, \xi_3^2\rangle\right\},$
$23\left\{\underline{ \xi_0^9\rangle, \xi_1^9\rangle, \xi_2^9\rangle, \xi_3^9\rangle}\right\}, \ 24\left\{ \xi_0^9\rangle, \xi_1^2\rangle, \xi_2^4\rangle, \xi_2^6\rangle\right\}, \ 25\left\{ \xi_0^9\rangle, \xi_1^7\rangle, \xi_2^5\rangle, \xi_3^3\rangle\right\},$
$\underline{26} \left\{ \underline{ \xi_0^{\text{ID}}\rangle, \xi_1^{\text{ID}}\rangle, \xi_2^{\text{ID}}\rangle, \xi_3^{\text{ID}}\rangle} \right\}, \ 27 \left\{ \xi_0^{\text{ID}}\rangle, \xi_1^3\rangle, \xi_2^2\rangle, \xi_3^7\rangle \right\}, \ 28 \left\{ \xi_0^{\text{ID}}\rangle, \xi_1^5\rangle, \xi_2^6\rangle, \xi_3^4\rangle \right\},$
$29 \Big\{ \xi_0^1\rangle, \xi_0^2\rangle, \xi_0^3\rangle, \xi_0^4\rangle \Big\}, \ 30 \Big\{ \xi_0^1\rangle, \xi_0^5\rangle, \xi_0^6\rangle, \xi_0^7\rangle \Big\}, \ 31 \Big\{ \xi_0^1\rangle, \xi_0^8\rangle, \xi_0^9\rangle, \xi_0^{10}\rangle \Big\},$
$32\left\{ \xi_1^1\rangle, \xi_1^2\rangle, \xi_1^8\rangle, \xi_1^8\rangle\right\},\ 33\left\{\left \xi_1^1\rangle, \xi_1^3\rangle, \xi_1^6\rangle, \xi_1^9\rangle\right\},\ 34\left\{\left \xi_1^1\rangle, \xi_1^4\rangle, \xi_1^7\rangle, \xi_1^{10}\rangle\right\},$
$35 \Big \Big\{ \xi_2^1\rangle, \xi_2^2\rangle, \xi_2^3\rangle, \xi_2^8\rangle \Big\}, \ 36 \Big \Big\{ \xi_2^1\rangle, \xi_2^3\rangle, \xi_2^6\rangle, \xi_2^6\rangle \Big\}, \ 37 \Big \Big\{ \xi_2^1\rangle, \xi_2^4\rangle, \xi_2^7\rangle, \xi_2^{10}\rangle \Big\},$
$38 \Big \Big\{ \xi_3^1\rangle, \xi_3^2\rangle, \xi_3^3\rangle, \xi_3^4\rangle \Big\}, \ 39 \Big \Big\{ \xi_3^1\rangle, \xi_3^5\rangle, \xi_3^6\rangle, \xi_3^7\rangle \Big\}, \ 40 \Big \Big\{ \xi_3^1\rangle, \xi_3^6\rangle, \xi_3^9\rangle, \xi_3^{10}\rangle \Big\}.$

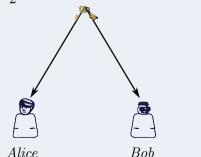
All 40 bases can be produced by applications of symmetries from group \mathcal{W} to 'computational basis' $\{|0\rangle, |1\rangle, |2\rangle, |3\rangle\}.$

Ten non-overlapping bases (underlined) $\{|\xi_0^{\mathsf{k}}\rangle, |\xi_1^{\mathsf{k}}\rangle, |\xi_2^{\mathsf{k}}\rangle, |\xi_3^{\mathsf{k}}\rangle\},$ k = 1, ..., 10include all 40 states.

They can be produced from computational basis by some subgroup $\mathcal{W}_n \subset \mathcal{W}$.

"Quantum cards"

More visual representation of quantum states and bases:


$1 \Big \Big\{ \xi_0^1\rangle, \xi_1^1\rangle, \xi_2^1\rangle, \xi_3^1\rangle \Big\} \; \equiv \; \Big\{ 0\rangle, 1\rangle, 2\rangle, 3\rangle \Big\},$	$1 \; \Big \; \Big\{ \boxed{ \bullet, , \boxed{ \circ, }, \boxed{ \bullet, } } \Big\} \; \equiv \; \Big\{ 0\rangle, 1\rangle, 2\rangle, 3\rangle \Big\},$
$2\left\{\underline{ \xi_0^2\rangle, \xi_1^2\rangle, \xi_2^2\rangle, \xi_3^2\rangle}\right\}, 3\left\{ \xi_0^2\rangle, \xi_1^7\rangle, \xi_2^6\rangle, \xi_3^8\rangle\right\}, 4\left\{ \xi_0^2\rangle, \xi_1^9\rangle, \xi_2^{10}\rangle, \xi_2^{5}\rangle\right\},$	$2 \left\{ \left[\begin{array}{c} \\ \\ \end{array} \right], \left[\begin{array}{$
$5\left\{\underline{ \xi_0^3\rangle, \xi_1^3\rangle, \xi_2^3\rangle, \xi_3^3\rangle}\right\}, 6\left\{ \xi_0^3\rangle, \xi_1^5\rangle, \xi_2^7\rangle, \xi_3^9\rangle\right\}, 7\left\{ \xi_0^3\rangle, \xi_1^{40}\rangle, \xi_2^{40}\rangle, \xi_3^{6}\rangle\right\},$	$5 \mid \left\{ \boxed{\vdots}, \boxed{\vdots}, \boxed{\vdots}, \boxed{\vdots} \right\}, \qquad 6 \mid \left\{ \boxed{\vdots}, \boxed{\vdots}, \boxed{\textcircled{3}}, \boxed{\textcircled{4}} \right\}, \qquad 7 \mid \left\{ \boxed{\vdots}, \boxed{\textcircled{3}}, \boxed{\textcircled{4}}, \boxed{\textcircled{4}} \right\},$
$8\left\{\underline{ \xi_0^4\rangle, \xi_1^4\rangle, \xi_2^4\rangle, \xi_3^4\rangle}\right\}, 9\left\{ \xi_0^4\rangle, \xi_1^6\rangle, \xi_2^5\rangle, \xi_3^{10}\rangle\right\}, 10\left\{ \xi_0^4\rangle, \xi_1^8\rangle, \xi_2^9\rangle, \xi_3^7\rangle\right\},$	$8 \mid \left\{ \boxed{1, 1, 1, 2, 3, 4, 4, 4, 4} \right\}, \qquad 9 \mid \left\{ \boxed{1, 1, 1, 2, 4, 4, 4, 4, 4}, \boxed{2, 4, 4, 4, 4} \right\}, \qquad 10 \mid \left\{ \boxed{1, 1, 1, 2, 4, 4, 4, 4, 4}, \boxed{2, 4, 4, 4, 4, 4} \right\},$
$11\left\{\underline{ \xi_0^5\rangle, \xi_1^5\rangle, \xi_2^5\rangle, \xi_3^5\rangle}\right\}, \ 12\left\{ \xi_0^5\rangle, \xi_1^{90}\rangle, \xi_2^9\rangle, \xi_3^2\rangle\right\}, \ 13\left\{ \xi_0^5\rangle, \xi_1^3\rangle, \xi_2^4\rangle, \xi_3^8\rangle\right\},$	$11 \left\{ \left[\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
$14\left\{\underline{ \xi_0^6\rangle, \xi_1^6\rangle, \xi_2^6\rangle, \xi_3^6\rangle}\right\}, \ 15\left\{ \xi_0^6\rangle, \xi_1^8\rangle, \xi_2^{10}\rangle, \xi_3^3\rangle\right\}, \ 16\left\{ \xi_0^6\rangle, \xi_1^4\rangle, \xi_2^2\rangle, \xi_3^9\rangle\right\},$	$14 \mid \left\{ \fbox{$\overset{\bullet}{\boxplus}, \fbox{$\overset{\bullet}{\boxplus}, \fbox{$\overset{\bullet}{\boxplus}, }$}, \fbox{$\overset{\bullet}{\blacksquare}, }$} \right\}, 15 \mid \left\{ \fbox{$\overset{\bullet}{\boxplus}, }, , , , , , , \r$
$17\left\{\underline{ \xi_0^7\rangle, \xi_1^7\rangle, \xi_2^7\rangle, \xi_3^7\rangle}\right\}, 18\left\{ \xi_0^7\rangle, \xi_1^9\rangle, \xi_2^8\rangle, \xi_3^4\rangle\right\}, 19\left\{ \xi_0^7\rangle, \xi_1^2\rangle, \xi_2^3\rangle, \xi_3^{10}\rangle\right\},$	$17 \mid \left\{ \fbox{\textcircled{?}}, \fbox{\textcircled{?}}, \fbox{\textcircled{?}}, \fbox{\textcircled{?}} \right\}, 18 \mid \left\{ \fbox{\textcircled{?}}, \fbox{\textcircled{?}}, \fbox{\textcircled{?}}, \fbox{\textcircled{?}} \right\}, 19 \mid \left\{ \fbox{\textcircled{?}}, \fbox{\textcircled{?}}, \fbox{\textcircled{?}}, \fbox{\textcircled{?}} \right\} \right\},$
$20\left\{\underline{ \xi_{0}^{8}\rangle, \xi_{1}^{8}\rangle, \xi_{2}^{8}\rangle, \xi_{3}^{8}\rangle}\right\}, \ 21\left\{ \xi_{0}^{8}\rangle, \xi_{1}^{4}\rangle, \xi_{2}^{3}\rangle, \xi_{3}^{5}\rangle\right\}, \ 22\left\{ \xi_{0}^{8}\rangle, \xi_{1}^{6}\rangle, \xi_{2}^{7}\rangle, \xi_{3}^{2}\rangle\right\},$	$20 \mid \left\{ \boxed{\textcircled{\&}}, \boxed{\textcircled{\&}}, \boxed{\textcircled{\&}}, \boxed{\textcircled{\&}} \right\}, 21 \mid \left\{ \boxed{\textcircled{\&}}, \boxed{\textcircled{\&}}, \boxed{\textcircled{\&}} \right\}, 22 \mid \left\{ \boxed{\textcircled{\&}}, \boxed{\textcircled{\&}}, \boxed{\textcircled{\&}} \right\}, \boxed{\updownarrow} \right\},$
$23\left\{\underline{ \xi_0^9\rangle, \xi_1^9\rangle, \xi_2^9\rangle, \xi_3^9\rangle}\right\}, \ 24\left\{ \xi_0^9\rangle, \xi_1^2\rangle, \xi_2^4\rangle, \xi_3^6\rangle\right\}, \ 25\left\{ \xi_0^9\rangle, \xi_1^7\rangle, \xi_2^5\rangle, \xi_3^3\rangle\right\},$	$ 23 \mid \left\{ \underbrace{\mathbb{H}}_{1}, \underbrace{\mathbb{H}}_{1}, \underbrace{\mathbb{H}}_{2}, \underbrace{\mathbb{H}}_{2} \right\}, 24 \mid \left\{ \underbrace{\mathbb{H}}_{1}, \underbrace{\mathbb{L}}_{1}, \underbrace{\mathbb{L}}_{2}, \underbrace{\mathbb{L}}_{2} \right\}, 25 \mid \left\{ \underbrace{\mathbb{H}}_{1}, \underbrace{\mathbb{L}}_{2}, \underbrace{\mathbb{L}}_{2}, \underbrace{\mathbb{L}}_{2} \right\}, $
$\underline{26}\left\{\underline{ \xi_0^{\text{ID}}\rangle, \xi_1^{\text{ID}}\rangle, \xi_2^{\text{ID}}\rangle, \xi_2^{\text{ID}}\rangle}\right\}, \ 27\left\{ \xi_0^{\text{ID}}\rangle, \xi_1^3\rangle, \xi_2^2\rangle, \xi_3^7\rangle\right\}, \ 28\left\{ \xi_0^{\text{ID}}\rangle, \xi_1^5\rangle, \xi_2^6\rangle, \xi_3^4\rangle\right\},$	$26 \mid \left\{ \fbox{\textcircled{1}}, \fbox{\textcircled{2}}, \fbox{\textcircled{3}}, \boxed{\textcircled{3}} \right\}, 27 \mid \left\{ \fbox{\textcircled{2}}, \fbox{\textcircled{1}}, \fbox{\textcircled{1}}, \fbox{\textcircled{2}} \right\}, 28 \mid \left\{ \fbox{\textcircled{2}}, \fbox{\textcircled{1}}, \fbox{\textcircled{3}}, \fbox{\textcircled{3}} \right\},$
$29 \left\{ \xi_0^1\rangle, \xi_0^2\rangle, \xi_0^3\rangle, \xi_0^4\rangle \right\}, \ 30 \left\{ \xi_0^1\rangle, \xi_0^5\rangle, \xi_0^6\rangle, \xi_0^7\rangle \right\}, \ 31 \left\{ \xi_0^1\rangle, \xi_0^8\rangle, \xi_0^9\rangle, \xi_0^{10}\rangle \right\},$	$29 \mid \left\{ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$32\Big\{\big \xi_1^1\rangle,\big \xi_1^2\rangle,\big \xi_1^5\rangle,\big \xi_1^8\rangle\Big\},\ 33\Big\{\big \xi_1^1\rangle,\big \xi_1^3\rangle,\big \xi_1^6\rangle,\big \xi_1^6\rangle\Big\},\ 34\Big\{\big \xi_1^1\rangle,\big \xi_1^4\rangle,\big \xi_1^6\rangle,\big \xi_1^{00}\rangle\Big\},$	$ 32 \mid \left\{ \boxed{\triangledown}, \boxed{\bot}, \boxed{\varpi}, \boxed{\varpi} \right\}, 33 \mid \left\{ \boxed{\triangledown}, \boxed{\bot}, \boxed{\Xi}, \boxed{\Xi} \right\}, 34 \mid \left\{ \boxed{\triangledown}, \boxed{\varpi}, \boxed{\Xi}, \boxed{\Xi} \right\}, $
$35\left\{ \xi_2^1\rangle, \xi_2^2\rangle, \xi_2^3\rangle, \xi_2^8\rangle\right\},\ 36\left\{ \xi_2^1\rangle, \xi_2^3\rangle, \xi_2^6\rangle, \xi_2^6\rangle\right\},\ 37\left\{ \xi_2^1\rangle, \xi_2^4\rangle, \xi_2^7\rangle, \xi_2^{10}\rangle\right\},$	$35 \mid \left\{ \boxed{\bullet}, \boxed{\bullet}, \boxed{\bullet}, \boxed{\$} \right\}, 36 \mid \left\{ \boxed{\bullet}, \boxed{\$}, \boxed{\$}, \boxed{\$} \right\}, 37 \mid \left\{ \boxed{\bullet}, \boxed{\bullet}, \boxed{\$}, \boxed{\$} \right\},$
$38 \Big \Big\{ \xi_3^1\rangle, \xi_3^2\rangle, \xi_3^3\rangle, \xi_3^4\rangle \Big\}, \ 39 \Big \Big\{ \xi_3^1\rangle, \xi_3^5\rangle, \xi_3^6\rangle, \xi_3^6\rangle, \xi_3^7\rangle \Big\}, \ 40 \Big \Big\{ \xi_3^1\rangle, \xi_3^6\rangle, \xi_3^9\rangle, \xi_3^{10}\rangle \Big\}.$	$38 \mid \left\{ \underbrace{\bullet}, \underbrace{,}, $

Quantum key distribution

Witting configuration with 40 states and 40 bases can be used for quantum key distribution. Alice and Bob measure pairs of entangled ququarts to produce a pair of keys for private communications.

Simplified scheme

$$|\Sigma\rangle = \frac{1}{2} \big(|0\rangle|0\rangle + |1\rangle|1\rangle + |2\rangle|2\rangle + |3\rangle|3\rangle \big)$$

More general case

$$|\Sigma^{\ell}\rangle = \frac{1}{2} \sum_{j=0,\dots,3} |\phi_{j,A}^{\ell}\rangle |\varphi_{j,B}^{\ell}\rangle,$$

where ℓ denotes different pairs of bases and $|\Sigma^{\ell}\rangle = |\Sigma\rangle$, if Bob uses complex-conjugated ('consistent') indexing $|\varphi_{j,B}^{\ell}\rangle = |\overline{\phi_{j,A}^{\ell}}\rangle$.

More details in *A. Y. Vlasov*, Scheme of quantum communications based on Witting polytope, arXiv:2503.18431.

Contextuality

1	$\left\{ \boxed{ \bullet \setminus , \boxed{ \circ \downarrow }, \boxed{ \bullet \downarrow }, \boxed{ \bullet \downarrow } \right\}$	$\equiv \{ $	$0\rangle, 1\rangle, 2\rangle, 3\rangle$,		>
2	$\left\{ \left[\begin{smallmatrix} \bullet \\ \bullet \end{smallmatrix}\right], \left[\begin{smallmatrix} \bullet \\ \bullet \end{smallmatrix}\right] \right\},$	3	$\left\{ \begin{bmatrix} \bullet \\ \bullet \end{bmatrix}, \begin{bmatrix} \varphi_0 \\ \circ \varphi \\ \bullet & \bullet \end{bmatrix}, \begin{bmatrix} \bullet & \bullet \\ \circ & \bullet \\ \bullet & \bullet \end{bmatrix}, \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \end{bmatrix} \right\},$	4	{ · , , , , , , , , , , , , , , , } , e
5	$\left\{ \left[\begin{array}{c} \bullet\\ \bullet\end{array}\right], \left[\begin{array}{c} \bullet\\ \bullet\end{array}\right], \left[\begin{array}{c} \bullet\\ \bullet\end{array}\right], \left[\begin{array}{c} \bullet\\ \bullet\end{array}\right] \right\},$	6	$\left\{ \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix}, \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix}, \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix}, \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix}, \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix} \right\}$	7	$\left \left\{ \left[\begin{array}{c} \bullet\\ \bullet\end{array}\right],\left[\begin{array}{c} \bullet\\ \bullet\end{array}\right],\left[\begin{array}{c} \bullet\\ \bullet\end{array}\right],\left[\begin{array}{c} \bullet\\ \bullet\end{array}\right] \right\},\ ight.$
8	$\left\{ \begin{bmatrix} a & a \\ & \bullet & v \end{bmatrix}, \begin{bmatrix} a & av \\ & \bullet & av \end{bmatrix}, \begin{bmatrix} a & av \\ & \bullet & v \end{bmatrix}, \begin{bmatrix} a & av \\ & \bullet & v \end{bmatrix} \right\},$	9	$\left\{ \begin{bmatrix} \mathbf{i} & \mathbf{a} \\ \mathbf{v} & \mathbf{v} \end{bmatrix}, \begin{bmatrix} \mathbf{i} & \mathbf{v} \\ \mathbf{v} & \mathbf{v} \end{bmatrix}, \begin{bmatrix} \mathbf{i} & \mathbf{o} \\ \mathbf{o} & \mathbf{v} \end{bmatrix}, \begin{bmatrix} \mathbf{i} & \mathbf{a} \\ \mathbf{o} & \mathbf{v} \end{bmatrix}, \begin{bmatrix} \mathbf{i} & \mathbf{a} \\ \mathbf{o} & \mathbf{v} \end{bmatrix} \right\},$	10	$\Big \Big\{ \boxed{\vdots}, \boxed{2}, \boxed{2}, \boxed{4}, \boxed{4} \Big\}, \mathbf{p}$
11	$\left\{ \begin{bmatrix} \mathbf{a} & \mathbf{a} \\ \mathbf{a} \\ \mathbf{v} & \mathbf{v} \end{bmatrix}, \begin{bmatrix} \mathbf{a} & \mathbf{v} \\ \mathbf{v} \\ \mathbf{a} & \mathbf{d} \end{bmatrix}, \begin{bmatrix} \mathbf{o} & \mathbf{v} \\ \mathbf{o} & \mathbf{v} \end{bmatrix}, \begin{bmatrix} \mathbf{a} & \mathbf{a} \\ \mathbf{v} & \mathbf{v} \end{bmatrix} \right\},$	12	$\left\{ \left[\begin{array}{c} \bullet \bullet \\ \bullet \bullet \end{array}\right], \left[\begin{array}{c} \bullet \bullet \bullet \\ \bullet \bullet \bullet \end{array}\right], \left[\begin{array}{c} \bullet \bullet \\ \bullet \bullet \end{array}\right], \left[\begin{array}{c} \bullet \bullet \\ \bullet \bullet \end{array}\right] \right\},$	13	$\left\{\left\langle \left\langle \left$
14	$\left\{ \begin{bmatrix} a & a \\ a & b \\ v & v \end{bmatrix}, \begin{bmatrix} a & a \\ v & v \end{bmatrix}, \begin{bmatrix} a & a \\ v & v \end{bmatrix}, \begin{bmatrix} a & a \\ v & v \end{bmatrix}, \begin{bmatrix} a & a \\ v & v \end{bmatrix} \right\},$	15	$\left\{ \left[\begin{array}{c} \vdots \vdots \\ \vdots \end{array}\right], \left[\begin{array}{c} x \\ \end{array}\right], \left[\begin{array}{c} \vdots \\ \end{array}\right], \left[\begin{array}{c} \vdots \\ \end{array}\right] \right\},$	16	$\left\{\left[\begin{array}{c} \left\{\left[\begin{array}{c} \bullet\\ \bullet\\ \bullet\\ \bullet\end{array}\right]\right\}, \left[\begin{array}{c} \bullet\\ \bullet\\ \bullet\end{array}\right]\right\}, \left[\begin{array}{c} \bullet\\ \bullet\\ \bullet\end{array}\right]\right\}$
17	$\left\{ \left[$	18	$\left\{ \left[\begin{array}{c} \bullet \bullet \\ \bullet \bullet \end{array} \right], \left[\begin{array}{c} \bullet \bullet \\ \bullet \bullet \end{array} \right], \left[\begin{array}{c} \bullet \bullet \\ \bullet \bullet \end{array} \right] \right\},$	19	$\left\{ \begin{bmatrix} 2 & 2 & 1 \\ 2 & 2 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 2 & 1 \\ 2 & 2 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 2 & 1 \\ 2 & 2 & 2 \end{bmatrix}, \begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} \right\},$
20	$\left\{ \underbrace{\otimes}_{\downarrow}, \underbrace{\otimes}_{\downarrow}, \underbrace{\otimes}_{\downarrow}, \underbrace{\otimes}_{\downarrow} \right\},$	21	$\left\{ \left[\begin{array}{c} \left\langle \left\langle \left\langle \right\rangle \right\rangle \right\rangle \right], \left[\left\langle \left\langle \right\rangle \right\rangle \right], \left[\left\langle \left\langle \left\langle \right\rangle \right\rangle \right] \right\}, \right] \right\}$	22	$\left\{ \left[\begin{array}{c} \left[\begin{array}{c} \left[\begin{array}{c} \left[\begin{array}{c} \left[$
23	$\left\{ \left[\underbrace{1,1}, \left[1,1], \left[\underbrace{1,1}, \left[\underbrace{1,1}$	24	$\left\{\left[\begin{smallmatrix} \bullet & \bullet \\ \bullet & \bullet \end{smallmatrix}\right], \left[\begin{smallmatrix} \bullet & \bullet \\ \bullet & \bullet \end{smallmatrix}\right], \left[\begin{smallmatrix} \bullet & \bullet \\ \bullet & \bullet \end{smallmatrix}\right], \left[\begin{smallmatrix} \bullet & \bullet \\ \bullet & \bullet \end{smallmatrix}\right]\right\},$	25	$\left\{\left\{\left[\begin{smallmatrix} \bullet & \bullet \\ \bullet & \bullet \end{smallmatrix}\right], \left[\begin{smallmatrix} \bullet & \bullet \\ \bullet & \bullet \end{smallmatrix}\right], \left[\begin{smallmatrix} \bullet & \bullet \\ \bullet & \bullet \end{smallmatrix}\right], \left[\begin{smallmatrix} \bullet & \bullet \\ \bullet & \bullet \end{smallmatrix}\right], \right\}$
26	$\left\{ \left[\begin{array}{c c} & & \\ & & \\ & & \\ \end{array} \right], \left[\begin{array}{c} & & \\ & & \\ \end{array} \right], \left[\begin{array}{c} & & \\ & & \\ \end{array} \right], \left[\begin{array}{c} & & \\ & & \\ \end{array} \right] \right\},$	27	$\left\{ \left[\left\langle \left\langle \left\langle \right\rangle \right\rangle ,\left\langle \left\langle \left\langle \right\rangle \right\rangle ,\left\langle \left\langle \left\langle \right\rangle \right\rangle \right\rangle ,\left\langle \left\langle \left\langle \right\rangle \right\rangle \right\rangle \right\} ,$	28	
29	$\left\{ \left[\begin{array}{c} \bullet \end{array} \right], \left[\begin{array}{c} \cdot \end{array} \right], \left[\begin{array}{c} \cdot \end{array} \right], \left[\begin{array}{c} \cdot \end{array} \right] \right\}, \right.$	30	$\left\{ \left[\begin{array}{c} \bullet \end{array} \right], \left[\begin{array}{c} \bullet \end{array} \right], \left[\begin{array}{c} \bullet \end{array} \right], \left[\begin{array}{c} \bullet \end{array} \right] \right\}, \right.$	31	$\left\{ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
32	$\left\{ \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix}, \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix}, \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix}, \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix} \right\},$	33	$\left\{ \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix}, \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix}, \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix}, \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix} \right\},$	34	$\left\{ \left\{ \begin{array}{c} \bullet \\ \circ \\ \bullet \end{array} \right\}, \left\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right\}, \left\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right\}, \left\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right\} \right\},$
35	$\left\{ \left[\left\langle \right\rangle ,\left[\right\rangle ,\left[\right\rangle ,\left[\right\rangle \right\rangle ,\left[\right\rangle \right\} ,$	36	$\left\{ \left[\bullet \right], \left[\left[\bullet \right], \left[\left[\left[\bullet \right] \right], \left[\left[\left[\left[\bullet \right] \right] \right], \left[$	37	$\left\{ \left[\left\langle \right\rangle \right\rangle , \left[\left\langle \right\rangle \right\rangle \right\rangle , \left[\left\langle \right\rangle \right\rangle \right\rangle \right\} ,$
38	$\left\{ \left[\begin{array}{c} \bullet \end{array} \right], \left[\begin{array}{c} \bullet \end{array} \right], \left[\begin{array}{c} \bullet \end{array} \right], \left[\begin{array}{c} \bullet \end{array} \right] \right\},$	39	$\left\{ \left[\begin{array}{c} \bullet \end{array} \right], \left[\begin{array}{c} \bullet \end{array} \right], \left[\begin{array}{c} \bullet \end{array} \right], \left[\begin{array}{c} \bullet \end{array} \right] \right\},$	40	$\Big \Big\{ lackbox{$\stackrel{\bullet}{\bullet}$}, lackbox{$\stackrel{\bullet}{\boxtimes}$}, lackbox{$\stackrel{\bullet}{\boxtimes}$}, lackbox{$\stackrel{\bullet}{\boxtimes}$} \Big\}.$

- > If only ten non-overlapping bases are used each state appears only in one of them.
- > For full set with 40 bases, any state may appear in four different bases, i.e., in different contexts.

Contextuality

_1	$\left\{ \boxed{ \bullet, , \bullet, , \bullet, , \bullet, } \right\} =$	$\equiv \left\{ 0\rangle, 1\rangle, 2\rangle, 3\rangle \right\},$	
2	$\left\{ \left[\begin{smallmatrix} \bullet & \bullet \\ \bullet & \bullet \end{smallmatrix}\right], \left[\begin{smallmatrix} \bullet & \bullet \\ \bullet & \bullet \end{smallmatrix}\right], \left[\begin{smallmatrix} \bullet & \bullet \\ \bullet & \bullet \end{smallmatrix}\right], \left[\begin{smallmatrix} \bullet & \bullet \\ \bullet & \bullet \end{smallmatrix}\right] \right\},$	$3 \left\{ \begin{bmatrix} \bullet \\ \bullet \end{bmatrix}, \begin{bmatrix} \bullet \circ \\ \bullet \circ \\ \bullet \bullet \end{bmatrix}, \begin{bmatrix} \bullet \circ \\ \bullet \circ \\ \bullet \bullet \end{bmatrix}, \begin{bmatrix} \bullet \circ \\ \bullet \circ \\ \bullet \bullet \end{bmatrix} \right\},$	$4 \left\{ \left[\begin{array}{c} \bullet \\ \bullet \end{array}\right], \left[\begin{array}{c} \bullet \bullet \\ \bullet \bullet \end{array}\right], \left[\begin{array}{c} \bullet \bullet \\ \bullet \bullet \end{array}\right], \left[\begin{array}{c} \bullet \bullet \\ \bullet \bullet \end{array}\right] \right\},$
5	$\left\{ \left\{ \left[\begin{array}{c} \bullet \\ \bullet \end{array} \right], \left[\begin{array}{c} \bullet \\ \bullet \end{array} \right], \left[\begin{array}{c} \bullet \\ \bullet \end{array} \right], \left[\begin{array}{c} \bullet \\ \bullet \end{array} \right] \right\}, \right\}$	$6 \left\{ \left[\begin{smallmatrix} \bullet \\ \bullet \end{smallmatrix}\right], \right\},$	$7 \mid \left\{ \begin{array}{ c c } \hline \vdots \\ \hline \vdots \\ \hline \end{array} \right\}, \begin{array}{ c c } \hline \vdots \\ \hline \end{array} \right\}, \begin{array}{ c c } \hline \vdots \\ \hline \end{array} \right\},$
8	$\left\{ \left[\begin{smallmatrix} a & a \\ \hline & \bullet & v \end{smallmatrix}\right], \left[\begin{smallmatrix} a & a \\ \hline & \bullet & v \end{smallmatrix}\right], \left[\begin{smallmatrix} b & o \\ \hline & \bullet & v \end{smallmatrix}\right], \left[\begin{smallmatrix} a & a \\ \hline & \bullet & v \end{smallmatrix}\right] \right\},$	$9 \left\{ \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix}, \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix}, \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix}, \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix}, \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix} \right\},$	$10 \mid \left\{ \left \left\langle $
11	$\left\{ \begin{bmatrix} a & a \\ b \\ \hline & v & v \end{bmatrix}, \begin{bmatrix} a & a \\ v \\ a & at \end{bmatrix}, \begin{bmatrix} a & 0 \\ 0 & v \end{bmatrix}, \begin{bmatrix} a & a \\ a \\ v & v \end{bmatrix} \right\},$	12 $\left\{ \left(\begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \right), \left(\begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \right), \left(\begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \right) \right\}$	13 \[\left\[\frac{\dagger^*}{\dagger^*} \right \left\[\frac{\dagger^*}{\dagger^*} \right\]
14	$\left\{ \begin{bmatrix} a & a \\ a & b \\ v & v \end{bmatrix}, \begin{bmatrix} a & a \\ v & v \end{bmatrix}, \begin{bmatrix} a & a \\ v & v \end{bmatrix}, \begin{bmatrix} a & a \\ a & b \end{bmatrix}, \begin{bmatrix} a & a \\ a & v \end{bmatrix} \right\}$	15 $\left\{ \left[\begin{array}{c} \vdots \\ \vdots \\ \end{array} \right], \left[\begin{array}{c} \vdots \\ \end{array} \right], \left[\begin{array}{c} \vdots \\ \end{array} \right], \left[\begin{array}{c} \vdots \\ \end{array} \right] \right\}$	$16 \left \left\{ \left \left\langle \left \left\langle \left \right\rangle \right\rangle \right\rangle \right\rangle \right\rangle \right\rangle \right\rangle \right\rangle \right \left \left\langle \left \left\langle \left \right\rangle \right\rangle \right\rangle \right\rangle \right\rangle \right\rangle \right $
17	$\left\{ \left[\left\{ \left[\left\langle $	$18 \left\{ \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right), \left(\begin{array}{c} \\ \\ \\ \end{array} \right), \left(\begin{array}{c} \\ \\ \\ \end{array} \right), \left(\begin{array}{c} \\ \\ \\ \end{array} \right) \right\},$	$19 \mid \left\{ \left[\begin{array}{c} \begin{array}{c} \\ \\ \end{array} \right], \left[\begin{array}{c} \\ \\ \end{array} \right], \left[\begin{array}{c} \\ \end{array} \right], \left[\begin{array}{c} \\ \\ \end{array} \right], \left[\begin{array}{c} \\ \end{array} \right], \left[\begin{array}{c} \\ \\ \end{array} \right], \left[\begin{array}{c} \\ \end{array} \right] \right\},$
20	$\left\{ \underbrace{\boxtimes}_{}, \underbrace{\boxtimes}_{}, \underbrace{\boxtimes}_{}, \underbrace{\boxtimes}_{} \right\}, \right.$	$21 \left\{ \left(\begin{array}{c} \begin{array}{c} \\ \\ \end{array} \right), \left(\begin{array}{c} \\ \\ \end{array} \right), \left(\begin{array}{c} \\ \\ \end{array} \right), \left(\begin{array}{c} \\ \\ \end{array} \right) \right\},$	22 {***, ***, ***, ***, ***, **, **, **, *
23	$\left\{ \left[\underbrace{\{ \underbrace{\{ \downarrow \}}_{i} \}, \left[\biguplus \right]_{i}, \left[\biguplus \right]_{i}, \left[\biguplus \right]_{i} \right]_{i}}_{i} \right\}$	$24 \left \left\{ \begin{array}{c} \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right\}, \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right\}, \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right\},$	$25 \mid \left\{ \left[\begin{array}{c} \bullet \bullet \\ \bullet \bullet \end{array} \right], \left[\begin{array}{c} \bullet \bullet \\ \bullet \bullet \end{array} \right], \left[\begin{array}{c} \bullet \bullet \\ \bullet \bullet \end{array} \right], \left[\begin{array}{c} \bullet \bullet \\ \bullet \bullet \end{array} \right], \left[\begin{array}{c} \bullet \bullet \\ \bullet \bullet \end{array} \right], \left[\begin{array}{c} \bullet \bullet \\ \bullet \bullet \end{array} \right] \right\},$
26	$\left\{ \boxed{\textcircled{1}, \textcircled{2}, \textcircled{3}, \textcircled{3}, \textcircled{4}} \right\},$	$27 \left\{ \left($	$28 \left \left\{ \left[\begin{smallmatrix} \bullet \bullet \bullet \\ \bullet \bullet \bullet \end{smallmatrix}\right], \left[\begin{smallmatrix} \bullet \bullet \bullet \\ \bullet \bullet \bullet \end{smallmatrix}\right], \left[\begin{smallmatrix} \bullet \bullet \bullet \\ \bullet \bullet \bullet \end{smallmatrix}\right], \left[\begin{smallmatrix} \bullet \bullet \bullet \\ \bullet \bullet \bullet \end{smallmatrix}\right], \left[\begin{smallmatrix} \bullet \bullet \bullet \\ \bullet \bullet \bullet \end{smallmatrix}\right] \right\},$
29	$\left\{ \left[\begin{array}{c} \bullet \end{array} \right], \left[\begin{array}{c} \bullet \end{array} \right], \left[\begin{array}{c} \bullet \end{array} \right], \left[\begin{array}{c} \bullet \end{array} \right] \right\}, \right.$	$30 \left\{ \begin{array}{c} \bullet \\ \end{array} \right\}, \begin{array}{c} \bullet \\ \end{array} \right\}, \begin{array}{c} \bullet \\ \end{array} \right\}, \begin{array}{c} \bullet \\ \end{array} \right\},$	$31 \mid \left\{ \boxed{\bullet}, \boxed{\circlearrowleft}, \boxed{\circlearrowleft}, \boxed{\circlearrowleft}, \boxed{\circlearrowleft} \right\}$
32	$\left\{ \left[\left\langle \left\langle \right\rangle \right\rangle ,\left[\left\langle \right\rangle \right\rangle ,\left[\left\langle \right\rangle \right\rangle \right\rangle ,\left[\left\langle \left\langle \right\rangle \right\rangle \right\rangle \right\} ,$	$33 \left\{ \begin{bmatrix} v \\ o \end{bmatrix}, \begin{bmatrix} v \\ o \end{bmatrix} \right\},$	$34 \mid \left\{ , \boxed{ $
35	$\left\{ \left[\left\langle \left\langle \right\rangle \right\rangle ,\left[\left\langle \right\rangle \right\rangle ,\left[\left\langle \right\rangle \right\rangle \right\rangle ,\left[\left\langle \right\rangle \right\rangle \right\rangle \right\} ,$	$36 \left\{ $	$37 \mid \left\{ \begin{array}{c} \bullet \\ \bullet \\ \end{array} \right\}, \begin{array}{c} \bullet \\ \bullet \\ \end{array} \right\}, \begin{array}{c} \bullet \\ \bullet \\ \end{array} \right\}, \begin{array}{c} \bullet \\ \bullet \\ \end{array} \right\},$
38	$\left \left\{ \left[\begin{smallmatrix} \bullet \\ \bullet \end{smallmatrix}\right], \left[\begin{smallmatrix} \bullet \\ \bullet \end{smallmatrix}\right], \left[\begin{smallmatrix} \bullet \\ \bullet \end{smallmatrix}\right], \left[\begin{smallmatrix} \bullet \\ \bullet \end{smallmatrix}\right]\right\},$	$39 \left \left\{ \begin{bmatrix} \bullet \\ \bullet \end{bmatrix}, \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix}, \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix}, \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix}, \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix} \right\},$	$40 \mid \left\{ \boxed{\bullet}, \boxed{\diamondsuit}, \boxed{\diamondsuit}, \boxed{\diamondsuit} \right\}.$

Conference QOART 2025

- ⇒ If only ten non-overlapping bases are used each state appears only in one of them.
- ⊳ For full set with 40 bases, any state may appear in four different bases, i.e., in different contexts.
- ♦ It is impossible in advance to mark some cards in such a way, that one and only one such card -would appear in any of 40 quadruples listed in the table.
- ♦ For set with only 10 underlined fours such choice is possible. For example, ten cards with the same suit can be marked.
- For full set such a method works only for first part of the table with 28 fours, but other 12 quadruples would have either four marked cards or none.

Contextuality and groups

- \triangleright The full set with 40 bases used for contextual measurements can be obtained from computational basis by symmetry group \mathcal{W} of Witting configuration generated by four operators (gates) r_k defined earlier.
- \triangleright The subgroup W_n , generated by two elements $h_1 = r_1 r_3$ and $h_2 = r_1/r_4$ with 720 symmetries can transform computational bases only into one of ten non-overlapping quadruples discussed above.
- \triangleright Thus, \mathcal{W}_n could be treated as 'non-contextual subgroup' of \mathcal{W} and, in turn, \mathcal{W} is some 'contextual closure' of \mathcal{W}_n .

Contextuality and groups

 \triangleright The full set with 40 bases used for contextual measurements can be obtained from computational basis by symmetry group \mathcal{W} of Witting configuration generated by four operators (gates) r_k defined earlier.

 \triangleright The subgroup W_n , generated by two elements $h_1 = r_1 r_3$ and $h_2 = r_1/r_4$ with 720 symmetries can transform computational bases only into one of ten non-overlapping quadruples discussed above.

 \triangleright Thus, \mathcal{W}_n could be treated as 'non-contextual subgroup' of \mathcal{W} and, in turn, \mathcal{W} is some 'contextual closure' of \mathcal{W}_n .

 \triangleright The subgroup W_n is also of particular interest in connection with the original Penrose model, which used 'asymmetric' entangled state

$$|\Omega_a\rangle = \frac{1}{2} \big(|0\rangle|3\rangle - |1\rangle|2\rangle + |2\rangle|1\rangle - |3\rangle|0\rangle \big),$$

because such a state is invariant with respect to W_n .

Symmetry group of Witting configuration in ATLAS

 $U_4(2) \cong S_4(3)$ \$ x 2.0 t the group generated by the 50 coupler reflections of coder \$ (tolflections) in the (su)western (8:8.0) Order = 25,920 = 26,34,5 (0.0.0.0) (0.00.00 (0 is r takes v to v = (1-v)(v,r)r/(r,r), where x,v = Zx,V,, hadvoice and 2 shows the isomerphies with U,(2): Ofa(2) # 3 x 6 : all 4 x 4 metrices over Fg preserving a non-singular Hermitian form: reducing mod 0 shows the isomorphism with $S_h(3)$. G.2 : the group of the incidence-preserving parametrions of the 27 lines on the general cubic surface in projective POUL(2) # 8U-(2) # PSU-(2) # 0 3-space : A. (6), b. (6), c., (15) (i.i = 1, ... 6, i/i). These lie in throne in 45 tritement plane: Orthogonal (2) 907(2) 5 9007(2) 5 507(2) 5 7007(2) 5 50.2 1 all 6 x 6 metrices over F. preserving a non-minuter quadratic form of (a, b, a, a) (30), (a, a, a, a, a) (15) (i, i, i, i, a, a, distinct), and two lines intersect if and only if they lie in With defect 1, for example after-manufactures-series (G(2) & G some tritengent plane. There are 36 "double sixes" such as (a, |b,|), in which each line of either "six" mosts all Orthogonal (3) 00m(3) N-2 x G.2 t all 5 x 5 metrices over Fo preserving a non-singular quadratic forms but one line of the other "six". 700_x(3) × 80₅(3) × 700₄(3) × 0.2; 0₅(3) × 0 6.2 : the stabilizer of a bitagraph is Masse's group (see \$.(2)) of symmetries of the 28 bitagraphs to the constraint 9 I the submorphism group of a superplished \$-ene of order (3.3) constating of \$0 vertices and \$0 atree, each object being incident with 4 of the other type quartic curve in the complex projective plane; the bitangents may be labelled with unordered pairs from \$0.4(3) \$ 2.6 1 all \$ x 5 matrices over \$2 preserving a non-placellar symplectic forms at 4-> are by 4-> br. 13 4-> are. Generating permutations may easily be obtained from Hesse's bifid maps PPp=(3) # S=(3) # Gs (see S₄(2)) e.g. (m123)0456) and (m012)3456)(m 1)(b 2). The 45 quartets (m0,0),51,140 (50) and (m0,1),81,mm) G.2 I the Warl group of E., generated by the 36 reflections in the minimal (rest) vectors of the E. lattice: (0,0,0,0,0,0;1,-1) (1), (1,-1,0,0,0,0;0,0) (15), (4.1.1.1.1.1.1.1.1) (20) (First been) or (a1,a1,0,0,0;0,0,0) (20), a(a1,a1,a1,a1,a1,a1,a1,a1) (orm sen) (16) (second base) where the occretizates before the semisolog may be freely permuted. The coordinates are obtained from the K_0 root lattice (see $O_2^{\bullet}(2)$) by imposing the conditions The Mari group permutes the 27 vectors (which belong to one court of the lattice in its sunl (1) Uniterv Inches 20n H(2⁰) - H(24-B...) the full extendrables group of the lettice is 2 v 0.2 and is obtained by estadular magnitum. \$64.153420e H(20.30.30.40.54), C(20) Reducing modulo 2 shows the isomorphism with 67(2). 2 x G ; the group reserved by the 45 complex reflections of order 2 is the vectors 05(2)w-8₄ (\$2,0,0,0,0)^C (5), (0,50,55,55,55)^C (40), where w = 23. Reducing seed $\theta = 13$ shows the interrelate with $0_{\sigma}(3)_{\sigma}$ 6 x 6 : the full entosorphism group of the lettice these amerate.

J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, ATLAS of Finite Groups, p. 26, OUP, 1985.

Yet another complexification of E_8 roots

The Witting configuration is not only possible configuration related with complexification of E_8 root vectors. Let's consider the group generated by matrices

$$P_{1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \quad P_{2} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}, \quad S = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2\iota & \iota' & \iota \\ 0 & \iota' & \iota & -\iota'' \\ 0 & \iota & -\iota'' & -\bar{\iota}' \end{pmatrix},$$

where
$$\iota = \frac{i}{\sqrt{7}}$$
, $\iota' = \frac{1+\iota}{2}$, $\iota'' = \frac{1+3\iota}{2}$.

Application of elements of such group to the vector (1,0,0,0) generates configuration with 240 four-dimensional complex vectors and after *realification* and some eight-dimensional rotation, the configuration coincides with expressions for 240 vertexes of the Gosset polytope used earlier.

Configuration with 120 states and 210 bases

- \triangleright Configuration with 240 complex vectors described above corresponds to 120 quantum states or 120 complex rays, because global phase can be only ± 1 .
- \triangleright The group with 5040 elements generated by matrices P_1 , P_2 and S is double cover of the alternating group A_7 of even permutations of seven elements (± 1 are mapped into trivial permutation) and denoted here \tilde{A}_7 .
- \triangleright All states of configuration can be produced by transformations from group $\tilde{\mathcal{A}}_7$ from state $|0\rangle$. Application of $\tilde{\mathcal{A}}_7$ to $\{|0\rangle, |1\rangle, |2\rangle, |3\rangle\}$ can produce 210 different bases. Each state of the configuration belongs to seven different bases.
- \triangleright 'Non-contextual subgroup' with 120 elements $\tilde{\mathcal{A}}_5 \subset \tilde{\mathcal{A}}_7$ can be generated by matrices $J = P_1^{-1}P_2P_1$ and $H = SP_2P_1S^{-1}P_1$. Application of subgroup $\tilde{\mathcal{A}}_5$ to $\{|0\rangle, |1\rangle, |2\rangle, |3\rangle\}$ produces 30 non-overlapping (non-contextual) bases.

Configuration with 120 states and 210 bases

- \triangleright Configuration with 240 complex vectors described above corresponds to 120 quantum states or 120 complex rays, because global phase can be only ± 1 .
- \triangleright The group with 5040 elements generated by matrices P_1 , P_2 and S is double cover of the alternating group A_7 of even permutations of seven elements (± 1 are mapped into trivial permutation) and denoted here \tilde{A}_7 .
- \triangleright All states of configuration can be produced by transformations from group $\tilde{\mathcal{A}}_7$ from state $|0\rangle$. Application of $\tilde{\mathcal{A}}_7$ to $\{|0\rangle, |1\rangle, |2\rangle, |3\rangle\}$ can produce 210 different bases. Each state of the configuration belongs to seven different bases.
- \triangleright 'Non-contextual subgroup' with 120 elements $\tilde{\mathcal{A}}_5 \subset \tilde{\mathcal{A}}_7$ can be generated by matrices $J = P_1^{-1}P_2P_1$ and $H = SP_2P_1S^{-1}P_1$. Application of subgroup $\tilde{\mathcal{A}}_5$ to $\{|0\rangle, |1\rangle, |2\rangle, |3\rangle\}$ produces 30 non-overlapping (non-contextual) bases.

More details in *A. Y. Vlasov*, Quantum entanglement and contextuality with complexifications of E₈ root system, arXiv:2210.15338.

Also: **ATLAS**, p. 10.

22 // 36

Relation between complex and real representation of E_8 roots

For two examples discussed above, transition between 4D complex and 8D real configurations can be described by a diagram that includes some ambiguity

$$|\xi\rangle\in\mathbb{C}P^3\xrightarrow{?\,\mathrm{e}^{\mathrm{i}\varphi}(\mathrm{phases\ ambiguity})} \boldsymbol{\xi}\in\mathbb{C}^4\xrightarrow{\mathrm{realification}} \mathbf{x}\in\mathbb{R}^8\xrightarrow{\mathrm{rotation}\ \mathcal{R}\in SO(8)} \mathbf{r}\in E_8.$$

Such ambiguity was avoided due to knowledge of 'correct' phases and vectors. After that, operation \mathcal{R} may look like some formality with orientation.

An opposite transition can be described as

$$\mathbf{r} \in E_8 \xrightarrow{\text{rotation } \mathcal{R}^{-1} \in SO(8)} \mathbf{v} \in \mathbb{R}^8 \xrightarrow{\text{complexification}} \boldsymbol{\xi} \in \mathbb{C}^4 \xrightarrow{\text{normalization}} |\xi\rangle \in \mathbb{C}P^3.$$

There is no phase ambiguity here, but knowledge of \mathcal{R} is necessary to produce proper complex configuration from E_8 roots.

Relation between complex and real representation of E_8 roots

For two examples discussed above, transition between 4D complex and 8D real configurations can be described by a diagram that includes some ambiguity

$$|\xi\rangle\in\mathbb{C}P^3\xrightarrow{?\,\mathrm{e}^{\mathrm{i}\varphi}(\mathrm{phases\ ambiguity})} \boldsymbol{\xi}\in\mathbb{C}^4\xrightarrow{\mathrm{realification}} \mathbf{x}\in\mathbb{R}^8\xrightarrow{\mathrm{rotation}\ \mathcal{R}\in SO(8)} \mathbf{r}\in E_8.$$

Such ambiguity was avoided due to knowledge of 'correct' phases and vectors. After that, operation \mathcal{R} may look like some formality with orientation.

An opposite transition can be described as

$$\mathbf{r} \in E_8 \xrightarrow{\text{rotation } \mathcal{R}^{-1} \in SO(8)} \mathbf{v} \in \mathbb{R}^8 \xrightarrow{\text{complexification}} \boldsymbol{\xi} \in \mathbb{C}^4 \xrightarrow{\text{normalization}} |\xi\rangle \in \mathbb{C}P^3.$$

There is no phase ambiguity here, but knowledge of \mathcal{R} is necessary to produce proper complex configuration from E_8 roots.

Let us consider complexification of E_8 roots without any rotation ($\mathcal{R} \equiv \mathbf{1}$).

Complexification of E_8 roots

Examples

The complex configuration with 240 vectors corresponds to 60 different states.

Complexification of E_8 roots

Example

The complex configuration with 240 vectors corresponds to 60 different states. They coincide with 60 stabilizer states for two qubits.

M. Ohta and K. Sakurai, Extremal magic states from symmetric lattices, arXiv:2506.11725 (2025).

Table with 60 states

60 states (up to normalization)

k	$ \varsigma_0^{k}\rangle$	$ \varsigma_1^{f k} angle$	$\ket{\varsigma_2^{k}}$	$ \varsigma_3^{\sf k} angle$
1	(1, 0, 0, 0)	(0, 1, 0, 0)	(0, 0, 1, 0)	(0, 0, 0, 1)
2	(1, 1, 0, 0)	(1,-1, 0, 0)	(0, 0, 1, 1)	(0, 0, 1, -1)
3	(1, -i, 0, 0)	(1, i, 0, 0)	(0, 0, 1, -i)	(0, 0, 1, i)
4	(1, 0, 1, 0)	(1, 0, -1, 0)	(0, 1, 0, 1)	(0, 1, 0, -1)
5	(1, 0, -i, 0)	(1, 0, i, 0)	(0, 1, 0, -i)	(0, 1, 0, i)
6	(0, 1, 1, 0)	(0, 1, -1, 0)	(1, 0, 0, 1)	(1, 0, 0, -1)
7	(0, 1, -i, 0)	(0, 1, i, 0)	(1, 0, 0, -i)	(1, 0, 0, i)
8	(1, 1, 1, 1)	(1, 1, -1, -1)	(1,-1, 1,-1)	(1,-1,-1, 1)
9	(1, 1, 1, -1)	(1, 1, -1, 1)	(1,-1, 1, 1)	(1,-1,-1,-1)
10	(1, 1, -i, -i)	(1, 1, i, i)	(1, -1, -i, i)	(1,-1, i, -i)
11	(1, 1, -i, i)	(1, 1, i, -i)	(1,-1,-i,-i)	(1,-1, i, i)
12	(1, -i, 1, -i)	(1, -i, -1, i)	(1, i, 1, i)	(1, i, -1, -i)
13	(1, -i, 1, i)	(1, -i, -1, -i)	(1, i, 1, -i)	$(1, \mathbf{i}, -1, \mathbf{i})$
14	(1, -i, -i, 1)	(1, -i, i, -1)	(1, i, -i, -1)	(1, i, i, 1)
15	(1, -i, -i, -1)	(1, -i, i, 1)	(1, i, -i, 1)	(1, i, i, -1)

Scheme with stabilizers

Stabilizers for 60 states (naturally arranged into 15 bases

k	$ \varsigma_0^{\mathbf{k}}\rangle$	$ \varsigma_1^{k}\rangle$	$ \varsigma_2^{\sf k} angle$	$ \varsigma_3^{\sf k} angle$
1	$I\otimes Z, Z\otimes I$	$-I\otimes Z, Z\otimes I$	$I \otimes Z, -Z \otimes I$	$-I \otimes Z, -Z \otimes I$
2	$I \otimes X, Z \otimes I$	$-I\otimes X, Z\otimes I$	$I \otimes X, -Z \otimes I$	$-I \otimes X, -Z \otimes I$
3	$-I\otimes Y$, $Z\otimes I$	$I \otimes Y$, $Z \otimes I$	$-I\otimes Y, -Z\otimes I$	$I \otimes Y, -Z \otimes I$
4	$I \otimes Z, X \otimes I$	$-I\otimes Z, X\otimes I$	$I \otimes Z, -X \otimes I$	$-I \otimes Z, -X \otimes I$
5	$I \otimes Z, -Y \otimes I$	$I \otimes Z, Y \otimes I$	$-I\otimes Z, -Y\otimes I$	$-I\otimes Z, Y\otimes I$
6	$X \otimes X, Y \otimes Y$	$-X \otimes X, -Y \otimes Y$	$X \otimes X, -Y \otimes Y$	$-X \otimes X, Y \otimes Y$
7	$X \otimes Y, -Y \otimes X$	$-X\otimes Y$, $Y\otimes X$	$-X \otimes Y, -Y \otimes X$	$X \otimes Y$, $Y \otimes X$
8	$I \otimes X, X \otimes I$	$I \otimes X, -X \otimes I$	$-I\otimes X, X\otimes I$	$-I \otimes X, -X \otimes I$
9	$X \otimes Z, Z \otimes X$	$-X\otimes Z$, $Z\otimes X$	$X \otimes Z, -Z \otimes X$	$-X \otimes Z, -Z \otimes X$
10	$I \otimes X, -Y \otimes I$	$I \otimes X, Y \otimes I$	$-I \otimes X, -Y \otimes I$	$-I\otimes X, Y\otimes I$
11	$X \otimes Y, -Y \otimes Z$	$-X\otimes Y$, $Y\otimes Z$	$-X\otimes Y, -Y\otimes Z$	$X \otimes Y, Y \otimes Z$
12	$-I\otimes Y$, $X\otimes I$	$-I\otimes Y, -X\otimes I$	$I \otimes Y$, $X \otimes I$	$I \otimes Y, -X \otimes I$
13	$X \otimes Z, Y \otimes X$	$-X \otimes Z, -Y \otimes X$	$X \otimes Z, -Y \otimes X$	$-X\otimes Z$, $Y\otimes X$
14	$-Y \otimes Z, -Z \otimes Y$	$Y \otimes Z, -Z \otimes Y$	$-Y \otimes Z$, $Z \otimes Y$	$Y \otimes Z, Z \otimes Y$
15	$-I\otimes Y, -Y\otimes I$	$-I\otimes Y$, $Y\otimes I$	$I \otimes Y, -Y \otimes I$	$I \otimes Y, Y \otimes I$

For each state $|\varsigma_j^{\mathsf{k}}\rangle$ the table represents two commuting operators (stabilizers) with property

$$S|\varsigma_j^{\bf k}\rangle=|\varsigma_j^{\bf k}\rangle$$

Bases for 60 states

There are 105 bases for 60 states, and they can be separated into two sets. In the first set, there are 15 bases $\left\{ |\varsigma_0^{\mathsf{k}}\rangle, |\varsigma_1^{\mathsf{k}}\rangle, |\varsigma_2^{\mathsf{k}}\rangle, |\varsigma_3^{\mathsf{k}}\rangle \right\} \, \mathsf{k} = 1, \dots, 15.$

First set with 15 bases for 60 states $\left\{ |\varsigma_0^1\rangle, |\varsigma_1^1\rangle, |\varsigma_2^1\rangle, |\varsigma_3^1\rangle \right\}$ $\left\{ |\varsigma_0^2\rangle, |\varsigma_1^2\rangle, |\varsigma_2^2\rangle, |\varsigma_3^2\rangle \right\}$ $\left\{ |\varsigma_0^3\rangle, |\varsigma_1^3\rangle, |\varsigma_2^3\rangle, |\varsigma_3^3\rangle \right\}$ $\left\{ |\varsigma_0^4\rangle, |\varsigma_1^4\rangle, |\varsigma_2^4\rangle, |\varsigma_3^4\rangle \right\}$ $\left\{ |\varsigma_0^{\mathbf{5}}\rangle, |\varsigma_1^{\mathbf{5}}\rangle, |\varsigma_2^{\mathbf{5}}\rangle, |\varsigma_3^{\mathbf{5}}\rangle \right\}$ $\{|\varsigma_0^6\rangle, |\varsigma_1^6\rangle, |\varsigma_2^6\rangle, |\varsigma_3^6\rangle$ 4 $\left\{ |\varsigma_0^7\rangle, |\varsigma_1^7\rangle, |\varsigma_2^7\rangle, |\varsigma_3^7\rangle \right\}$ $\left\{ |\varsigma_0^8\rangle, |\varsigma_1^8\rangle, |\varsigma_2^8\rangle, |\varsigma_3^8\rangle \right\}$ $\{|\varsigma_0^9\rangle, |\varsigma_1^9\rangle, |\varsigma_2^9\rangle, |\varsigma_3^9\rangle$ $\left\{ |\varsigma_0^{10} angle, |\varsigma_1^{10} angle, |\varsigma_2^{10} angle, |\varsigma_3^{10} angle \right\}$ $\{|\zeta_0^{11}\rangle, |\zeta_1^{11}\rangle, |\zeta_2^{11}\rangle, |\zeta_3^{11}\rangle$ $\left\{ |\varsigma_0^{12}\rangle, |\varsigma_1^{12}\rangle, |\varsigma_2^{12}\rangle, |\varsigma_3^{12}\rangle \right\}$ 12 10 11

 $\{|\varsigma_0^{14}\rangle, |\varsigma_1^{14}\rangle, |\varsigma_2^{14}\rangle, |\varsigma_3^{14}\rangle$

14

 $\left\{ |\zeta_0^{13}\rangle, |\zeta_1^{13}\rangle, |\zeta_2^{13}\rangle, |\zeta_3^{13}\rangle \right\}$

15

13

 $\left\{ |\zeta_0^{15}\rangle, |\zeta_1^{15}\rangle, |\zeta_2^{15}\rangle, |\zeta_3^{15}\rangle \right\}$

Bases for 60 states

There are 105 bases for 60 states, and they can be separated into two sets. In the first set, there are 15 bases $\left\{ |\varsigma_0^{\mathsf{k}}\rangle, |\varsigma_1^{\mathsf{k}}\rangle, |\varsigma_2^{\mathsf{k}}\rangle, |\varsigma_3^{\mathsf{k}}\rangle \right\} \, \mathsf{k} = 1, \dots, 15.$

First set with 15 bases for 60 states $\left\{ |\varsigma_0^1\rangle, |\varsigma_1^1\rangle, |\varsigma_2^1\rangle, |\varsigma_3^1\rangle \right\}$ $\left\{ |\varsigma_0^2\rangle, |\varsigma_1^2\rangle, |\varsigma_2^2\rangle, |\varsigma_3^2\rangle \right\}$ $\left\{ |\varsigma_0^3\rangle, |\varsigma_1^3\rangle, |\varsigma_2^3\rangle, |\varsigma_3^3\rangle \right\}$ $\left\{ |\varsigma_0^4\rangle, |\varsigma_1^4\rangle, |\varsigma_2^4\rangle, |\varsigma_3^4\rangle \right\}$ $\left\{ |\varsigma_0^5\rangle, |\varsigma_1^5\rangle, |\varsigma_2^5\rangle, |\varsigma_3^5\rangle \right\}$ $\{|\varsigma_0^6\rangle, |\varsigma_1^6\rangle, |\varsigma_2^6\rangle, |\varsigma_3^6\rangle$ 4 $\left\{ |\varsigma_0^7\rangle, |\varsigma_1^7\rangle, |\varsigma_2^7\rangle, |\varsigma_3^7\rangle \right\}$ $\left\{ |\varsigma_0^8\rangle, |\varsigma_1^8\rangle, |\varsigma_2^8\rangle, |\varsigma_3^8\rangle \right\}$ $\{|\varsigma_0^9\rangle, |\varsigma_1^9\rangle, |\varsigma_2^9\rangle, |\varsigma_3^9\rangle$ $\left\{ |\varsigma_0^{10} angle, |\varsigma_1^{10} angle, |\varsigma_2^{10} angle, |\varsigma_3^{10} angle \right\}$ $\left\{ |\varsigma_0^{11}\rangle, |\varsigma_1^{11}\rangle, |\varsigma_2^{11}\rangle, |\varsigma_3^{11}\rangle \right\}$ $\left\{ |\varsigma_0^{12}\rangle, |\varsigma_1^{12}\rangle, |\varsigma_2^{12}\rangle, |\varsigma_3^{12}\rangle \right\}$ 12 10 11 $\left\{ |\zeta_0^{13}\rangle, |\zeta_1^{13}\rangle, |\zeta_2^{13}\rangle, |\zeta_3^{13}\rangle \right\}$ $\{|\varsigma_0^{14}\rangle, |\varsigma_1^{14}\rangle, |\varsigma_2^{14}\rangle, |\varsigma_3^{14}\rangle$ 15 $\left\{ |\zeta_0^{15}\rangle, |\zeta_1^{15}\rangle, |\zeta_2^{15}\rangle, |\zeta_3^{15}\rangle \right\}$ 13 14

The second set includes 90 bases.

October 1, 2025

Yet another 90 bases for 60 states

Second set with 90 bases for 60 states

1	$\left\{ \varsigma_0^1\rangle, \varsigma_1^1\rangle, \varsigma_2^2\rangle, \varsigma_3^2\rangle \right\}$	2	$\left\{ \varsigma_0^1\rangle, \varsigma_1^1\rangle, \varsigma_2^3\rangle, \varsigma_3^3\rangle \right\}$	3	$\{ \varsigma_0^1\rangle, \varsigma_2^1\rangle, \varsigma_2^4\rangle, \varsigma_3^4\rangle\}$
4	$\left\{ \varsigma_0^1\rangle, \varsigma_2^1\rangle, \varsigma_2^5\rangle, \varsigma_3^5\rangle \right\}$	5	$\left\{ \varsigma_0^1\rangle, \varsigma_3^1\rangle, \varsigma_0^6\rangle, \varsigma_1^6\rangle \right\}$	6	$\{ \varsigma_0^1\rangle, \varsigma_3^1\rangle, \varsigma_0^7\rangle, \varsigma_1^7\rangle\}$
7	$\left\{ \varsigma_1^1\rangle, \varsigma_2^1\rangle, \varsigma_2^6\rangle, \varsigma_3^6\rangle \right\}$	8	$\left\{ \varsigma_1^1\rangle, \varsigma_2^1\rangle, \varsigma_2^7\rangle, \varsigma_3^7\rangle \right\}$	9	$\left\{ \varsigma_1^1\rangle, \varsigma_3^1\rangle, \varsigma_0^4\rangle, \varsigma_1^4\rangle \right\}$
10	$\left\{ \! \varsigma_1^1\rangle, \varsigma_3^1\rangle, \varsigma_0^5\rangle, \varsigma_1^5\rangle \right\}$	11	$\left\{ \varsigma_{2}^{1}\rangle, \varsigma_{3}^{1}\rangle, \varsigma_{0}^{2}\rangle, \varsigma_{1}^{2}\rangle \right\}$	12	$\left\{ \varsigma_{2}^{1}\rangle, \varsigma_{3}^{1}\rangle, \varsigma_{0}^{3}\rangle, \varsigma_{1}^{3}\rangle \right\}$
13	$\left\{ \varsigma_0^2\rangle, \varsigma_1^2\rangle, \varsigma_2^3\rangle, \varsigma_3^3\rangle \right\}$	14	$\left\{ \varsigma_0^2\rangle, \varsigma_2^2\rangle, \varsigma_2^8\rangle, \varsigma_3^8\rangle \right\}$	15	$\left\{ \varsigma_0^2\rangle, \varsigma_2^2\rangle, \varsigma_2^{10}\rangle, \varsigma_3^{10}\rangle \right\}$
16	$\left\{ \varsigma_0^2\rangle, \varsigma_3^2\rangle, \varsigma_2^9\rangle, \varsigma_3^9\rangle \right\}$	17	$\left\{ \varsigma_0^2\rangle, \varsigma_3^2\rangle, \varsigma_2^{11}\rangle, \varsigma_3^{11}\rangle \right\}$	18	$\left\{ \varsigma_1^2\rangle, \varsigma_2^2\rangle, \varsigma_0^9\rangle, \varsigma_1^9\rangle \right\}$
19	$\left\{ \varsigma_1^2\rangle, \varsigma_2^2\rangle, \varsigma_0^{11}\rangle, \varsigma_1^{11}\rangle \right\}$	20	$\left\{ \varsigma_1^2\rangle, \varsigma_3^2\rangle, \varsigma_0^8\rangle, \varsigma_1^8\rangle \right\}$	21	$\left\{ \varsigma_1^2\rangle, \varsigma_3^2\rangle, \varsigma_0^{10}\rangle, \varsigma_1^{10}\rangle \right\}$
22	$\left\{ \varsigma_{2}^{2}\rangle, \varsigma_{3}^{2}\rangle, \varsigma_{0}^{3}\rangle, \varsigma_{1}^{3}\rangle \right\}$	23	$\left\{ \varsigma_0^3\rangle, \varsigma_2^3\rangle, \varsigma_2^{12}\rangle, \varsigma_3^{12}\rangle \right\}$	24	$\left\{ \varsigma_0^3\rangle, \varsigma_2^3\rangle, \varsigma_2^{15}\rangle, \varsigma_3^{15}\rangle \right\}$
25	$\left\{ \varsigma_0^3\rangle, \varsigma_3^3\rangle, \varsigma_2^{13}\rangle, \varsigma_3^{13}\rangle \right\}$	26	$\left\{ \varsigma_0^3\rangle, \varsigma_3^3\rangle, \varsigma_2^{14}\rangle, \varsigma_3^{14}\rangle \right\}$	27	$\{ \varsigma_1^3\rangle, \varsigma_2^3\rangle, \varsigma_0^{13}\rangle, \varsigma_1^{13}\rangle\}$
28	$\left\{ \varsigma_1^3\rangle, \varsigma_2^3\rangle, \varsigma_0^{14}\rangle, \varsigma_1^{14}\rangle \right\}$	29	$\left\{ \varsigma_1^3\rangle, \varsigma_3^3\rangle, \varsigma_0^{12}\rangle, \varsigma_1^{12}\rangle \right\}$	30	$\left\{ \varsigma_1^3\rangle, \varsigma_3^3\rangle, \varsigma_0^{15}\rangle, \varsigma_1^{15}\rangle \right\}$
31	$\left\{ \varsigma_0^4\rangle, \varsigma_1^4\rangle, \varsigma_2^5\rangle, \varsigma_3^5\rangle \right\}$	32	$\left\{ \varsigma_0^4\rangle, \varsigma_2^4\rangle, \varsigma_1^8\rangle, \varsigma_3^8\rangle \right\}$	33	$\{ \varsigma_0^4\rangle, \varsigma_2^4\rangle, \varsigma_1^{12}\rangle, \varsigma_3^{12}\rangle\}$
34	$\left\{ \varsigma_0^4\rangle, \varsigma_3^4\rangle, \varsigma_1^9\rangle, \varsigma_3^9\rangle \right\}$	35	$\left\{ \left \varsigma_{0}^{4}\right\rangle ,\left \varsigma_{3}^{4}\right\rangle ,\left \varsigma_{1}^{13}\right\rangle ,\left \varsigma_{3}^{13}\right\rangle \right\}$	36	$\{ \varsigma_1^4\rangle, \varsigma_2^4\rangle, \varsigma_0^9\rangle, \varsigma_2^9\rangle\}$
37	$\left\{ \varsigma_1^4\rangle, \varsigma_2^4\rangle, \varsigma_0^{13}\rangle, \varsigma_2^{13}\rangle \right\}$	38	$\left\{ \varsigma_{1}^{4}\rangle, \varsigma_{3}^{4}\rangle, \varsigma_{0}^{8}\rangle, \varsigma_{2}^{8}\rangle \right\}$	39	$\{ \varsigma_1^4\rangle, \varsigma_3^4\rangle, \varsigma_0^{12}\rangle, \varsigma_2^{12}\rangle\}$
40	$\left\{ \varsigma_{2}^{4}\rangle, \varsigma_{3}^{4}\rangle, \varsigma_{0}^{5}\rangle, \varsigma_{1}^{5}\rangle \right\}$	41	$\left\{ \varsigma_0^5\rangle, \varsigma_2^5\rangle, \varsigma_1^{10}\rangle, \varsigma_3^{10}\rangle \right\}$	42	$\{ \varsigma_0^5\rangle, \varsigma_2^5\rangle, \varsigma_1^{15}\rangle, \varsigma_3^{15}\rangle\}$
43	$\left\{ \varsigma_0^5\rangle, \varsigma_3^5\rangle, \varsigma_1^{11}\rangle, \varsigma_3^{11}\rangle \right\}$	44	$\left\{\!\left \varsigma_{0}^{5}\right\rangle,\left \varsigma_{3}^{5}\right\rangle,\left \varsigma_{1}^{14}\right\rangle,\left \varsigma_{3}^{14}\right\rangle\right\}$	45	$\left\{ \varsigma_{1}^{5}\rangle, \varsigma_{2}^{5}\rangle, \varsigma_{0}^{11}\rangle, \varsigma_{2}^{11}\rangle \right\}$

46 $\left\{ \varsigma_1^5\rangle, \varsigma_2^5\rangle, \varsigma_0^{14}\rangle, \varsigma_2^{14}\rangle \right\}$	47	$\left \left\{ \varsigma_1^5\rangle, \varsigma_3^5\rangle, \varsigma_0^{10}\rangle, \varsigma_2^{10}\rangle\right\}\right 48\left \left\{ \varsigma_1^5\rangle, \varsigma_3^5\rangle, \varsigma_0^{15}\rangle, \varsigma_2^{15}\rangle\right\}\right $
49 $\left\{ \varsigma_0^6\rangle, \varsigma_1^6\rangle, \varsigma_2^7\rangle, \varsigma_3^7\rangle \right\}$	50	$\left \left\{ \varsigma_0^6\rangle, \varsigma_2^6\rangle, \varsigma_1^8\rangle, \varsigma_2^8\rangle \right\} \right 51 \left \left\{ \varsigma_0^6\rangle, \varsigma_2^6\rangle, \varsigma_1^{14}\rangle, \varsigma_2^{14}\rangle \right\} \right $
52 $\left\{ \varsigma_0^6\rangle, \varsigma_3^6\rangle, \varsigma_1^9\rangle, \varsigma_2^9\rangle \right\}$	53	$\left \left\{\left \zeta_{0}^{6}\right\rangle,\left \zeta_{3}^{6}\right\rangle,\left \zeta_{1}^{15}\right\rangle,\left \zeta_{2}^{15}\right\rangle\right\}\right 54\left \left\{\left \zeta_{1}^{6}\right\rangle,\left \zeta_{2}^{6}\right\rangle,\left \zeta_{0}^{9}\right\rangle,\left \zeta_{3}^{9}\right\rangle\right\}\right $
55 $\left\{ \varsigma_1^6\rangle, \varsigma_2^6\rangle, \varsigma_0^{15}\rangle, \varsigma_3^{15}\rangle \right\}$	56	$\left\{ \varsigma_1^6\rangle, \varsigma_3^6\rangle, \varsigma_0^8\rangle, \varsigma_3^8\rangle \right\} \left[57 \left\{ \varsigma_1^6\rangle, \varsigma_3^6\rangle, \varsigma_0^{14}\rangle, \varsigma_3^{14}\rangle \right\} \right]$
58 $\left\{ \varsigma_{2}^{6}\rangle, \varsigma_{3}^{6}\rangle, \varsigma_{0}^{7}\rangle, \varsigma_{1}^{7}\rangle \right\}$	59	$\left\{ \varsigma_0^7\rangle, \varsigma_2^7\rangle, \varsigma_1^{10}\rangle, \varsigma_2^{10}\rangle \right\} = \left\{ 0 \left\{ \varsigma_0^7\rangle, \varsigma_2^7\rangle, \varsigma_0^{13}\rangle, \varsigma_3^{13}\rangle \right\}$
61 $\{ \varsigma_0^7\rangle, \varsigma_3^7\rangle, \varsigma_1^{11}\rangle, \varsigma_2^{11}\rangle\}$	62	$\left\{ \varsigma_0^7\rangle, \varsigma_3^7\rangle, \varsigma_0^{12}\rangle, \varsigma_3^{12}\rangle \right\} = 63 \left\{ \varsigma_1^7\rangle, \varsigma_2^7\rangle, \varsigma_0^{11}\rangle, \varsigma_3^{11}\rangle \right\}$
64 $\left\{ \varsigma_1^7\rangle, \varsigma_2^7\rangle, \varsigma_1^{12}\rangle, \varsigma_2^{12}\rangle \right\}$	65	$\left \left\{ \varsigma_1^7\rangle, \varsigma_3^7\rangle, \varsigma_0^{10}\rangle, \varsigma_3^{10}\rangle\right\}\right 66\left \left\{ \varsigma_1^7\rangle, \varsigma_3^7\rangle, \varsigma_1^{13}\rangle, \varsigma_2^{13}\rangle\right\}\right $
67 $\left\{ \varsigma_0^8\rangle, \varsigma_1^8\rangle, \varsigma_2^{10}\rangle, \varsigma_3^{10}\rangle \right\}$	68	$\left \left\{ \varsigma_0^8\rangle, \varsigma_2^8\rangle, \varsigma_1^{12}\rangle, \varsigma_3^{12}\rangle \right\} \right 69 \left\{ \varsigma_0^8\rangle, \varsigma_3^8\rangle, \varsigma_1^{14}\rangle, \varsigma_2^{14}\rangle \right\}$
70 $\left\{ \varsigma_1^8\rangle, \varsigma_2^8\rangle, \varsigma_0^{14}\rangle, \varsigma_3^{14}\rangle \right\}$	71	$\left \left\{ \varsigma_1^8\rangle, \varsigma_3^8\rangle, \varsigma_0^{12}\rangle, \varsigma_2^{12}\rangle \right\} \right 72 \left \left\{ \varsigma_2^8\rangle, \varsigma_3^8\rangle, \varsigma_0^{10}\rangle, \varsigma_1^{10}\rangle \right\} \right $
73 $\left\{ \varsigma_0^9\rangle, \varsigma_1^9\rangle, \varsigma_2^{11}\rangle, \varsigma_3^{11}\rangle \right\}$	74	$\left \left\{ \varsigma_0^9\rangle, \varsigma_2^9\rangle, \varsigma_1^{13}\rangle, \varsigma_3^{13}\rangle\right\}\right $ 75 $\left\{ \varsigma_0^9\rangle, \varsigma_3^9\rangle, \varsigma_1^{15}\rangle, \varsigma_2^{15}\rangle\right\}$
76 $\left\{ \varsigma_1^9\rangle, \varsigma_2^9\rangle, \varsigma_0^{15}\rangle, \varsigma_3^{15}\rangle \right\}$	77	$\left \left\{ \varsigma_1^9\rangle, \varsigma_3^9\rangle, \varsigma_0^{13}\rangle, \varsigma_2^{13}\rangle \right\} \right 78 \left \left\{ \varsigma_2^9\rangle, \varsigma_3^9\rangle, \varsigma_0^{11}\rangle, \varsigma_1^{11}\rangle \right\} \right $
79 $\left\{ \varsigma_0^{10}\rangle, \varsigma_2^{10}\rangle, \varsigma_1^{15}\rangle, \varsigma_3^{15}\rangle \right\}$	80	$\left \left\{\left \zeta_{0}^{10}\right\rangle,\left \zeta_{3}^{10}\right\rangle,\left \zeta_{0}^{13}\right\rangle,\left \zeta_{3}^{13}\right\rangle\right\}\right 81\left\{\left \zeta_{1}^{10}\right\rangle,\left \zeta_{2}^{10}\right\rangle,\left \zeta_{1}^{13}\right\rangle,\left \zeta_{2}^{13}\right\rangle\right\}\right $
82 $\left\{ \zeta_1^{10}\rangle, \zeta_3^{10}\rangle, \zeta_0^{15}\rangle, \zeta_2^{15}\rangle \right\}$	83	$\left \left\{\left \zeta_{0}^{11}\right\rangle,\left \zeta_{2}^{11}\right\rangle,\left \zeta_{1}^{14}\right\rangle,\left \zeta_{3}^{14}\right\rangle\right\}\right 84\left\{\left \zeta_{0}^{11}\right\rangle,\left \zeta_{3}^{11}\right\rangle,\left \zeta_{0}^{12}\right\rangle,\left \zeta_{3}^{12}\right\rangle\right\}\right $
85 $\left\{ \varsigma_1^{11}\rangle, \varsigma_2^{11}\rangle, \varsigma_1^{12}\rangle, \varsigma_2^{12}\rangle \right\}$	86	$\left \left\{\left \zeta_{1}^{11}\right\rangle,\left \zeta_{3}^{11}\right\rangle,\left \zeta_{0}^{14}\right\rangle,\left \zeta_{2}^{14}\right\rangle\right\}\right 87\left\{\left \zeta_{0}^{12}\right\rangle,\left \zeta_{1}^{12}\right\rangle,\left \zeta_{2}^{15}\right\rangle,\left \zeta_{3}^{15}\right\rangle\right\}\right $
88 $\left\{ \varsigma_{2}^{12}\rangle, \varsigma_{3}^{12}\rangle, \varsigma_{0}^{15}\rangle, \varsigma_{1}^{15}\rangle \right\}$	89	$\left \left\{\left \varsigma_{0}^{13}\right\rangle,\left \varsigma_{1}^{13}\right\rangle,\left \varsigma_{2}^{14}\right\rangle,\left \varsigma_{3}^{14}\right\rangle\right\}\right 90\left\{\left \varsigma_{2}^{13}\right\rangle,\left \varsigma_{3}^{13}\right\rangle,\left \varsigma_{0}^{14}\right\rangle,\left \varsigma_{1}^{14}\right\rangle\right\}\right $

Structure of 105 bases for 60 states

Some properties of 60 stabilizer states and 105 bases mentioned here already were considered in relation with contextuality in quantum mechanics and have some analogs with configurations discussed earlier.

M. Waegell and P. K. Aravind, Parity proofs of the Kochen-Specker theorem based on 60 complex rays in four dimensions, arXiv:1109.1299, J. Phys. A 44, 505303 (2011).

Structure of 105 bases for 60 states

Some properties of 60 stabilizer states and 105 bases mentioned here already were considered in relation with contextuality in quantum mechanics and have some analogs with configurations discussed earlier.

M. Waegell and P. K. Aravind, Parity proofs of the Kochen-Specker theorem based on 60 complex rays in four dimensions, arXiv:1109.1299, J. Phys. A 44, 505303 (2011).

Problem with definition of contextual closure group

Unlike previous configurations, 105 bases are not homogeneous with respect to intersections: only bases from the second set can have single state in common, but non-overlapping bases from the first set always have two common states with some bases from the second set. Due to such property, a group that acts transitively on all 105 bases cannot exist.

Stabilizer circuits

Pauli group

$$X = \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad Y = \sigma_y = \begin{pmatrix} 0 & -\mathrm{i} \\ \mathrm{i} & 0 \end{pmatrix}, \quad Z = \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Clifford gates and stabilizer group (\mathcal{G})

$$S = \begin{pmatrix} 1 & 0 \\ 0 & \mathbf{i} \end{pmatrix}, \quad H = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \quad \mathsf{C}_X = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

For two qubits Clifford gates generate group \mathcal{G} with 92160 elements corresponding to 11520 different quantum gates (up to phase multiplier).

Stabilizer circuits

Pauli group

$$X = \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad Y = \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad Z = \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

For two qubits stabilizer group corresponds to 11520 different quantum gates.

Rational subgroup of stabilizer group $(\acute{\mathcal{G}})$

$$S = \begin{pmatrix} 1 & 0 \\ 0 & \mathbf{i} \end{pmatrix}, \quad \acute{H} = \mathrm{e}^{\pi \mathrm{i}/4} H = \frac{1+\mathrm{i}}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \quad \mathsf{C}_{X} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Rational subgroup \mathcal{G} has 46080 elements corresponding to the same 11520 gates.

Constructions of 'rational' stabilizer group

Rational stabilizer group \mathcal{G}_2

It is more convenient to work with group \mathcal{G} generated with 'rational' Hadamard gate H, because action of such group on (1,0,0,0) produces 240 vectors from complexification of E_8 root system. Group with standard Hadamard gate H would duplicate number of vectors by pairs with irrational phase multiplier $(1+i)/\sqrt{2}$. Anyway there are only 60 different states after normalization.

Group \mathcal{G}_2 can also be generated by second order complex reflections with respect to 60 stabilizer states $R\langle {}^{2}\varsigma_{i}^{k}\rangle$. The minimal number of such reflections necessary for generation of a whole group is five, for example $R\langle {}^2\varsigma_0^{\mathsf{k}}\rangle$ with $\mathsf{k}=1,2,3,4,8$.

Problem with 'contextual closure'

In previous examples, *any basis* could be generated from computational basis by groups of symmetries of configuration, but some subgroup could generate only a 'non-contextual' set with non-overlapping bases.

The two-qubit stabilizer group acts transitively both on first set with 15 bases and on the second set with 90 bases, but it is not possible to transform basis from the first set into the second one using gate from stabilizer group.

For 60 stabilizer states, only 15 non-overlapping ('non-contextual') bases can be generated by Clifford gates.

Problem with 'contextual closure'

In previous examples, *any basis* could be generated from computational basis by groups of symmetries of configuration, but some subgroup could generate only a 'non-contextual' set with non-overlapping bases.

The two-qubit stabilizer group acts transitively both on first set with 15 bases and on the second set with 90 bases, but it is not possible to transform basis from the first set into the second one using gate from stabilizer group.

For 60 stabilizer states, only 15 non-overlapping ('non-contextual') bases can be generated by Clifford gates.

Some gate outside of stabilizer group is necessary for construction of all 105 bases. However, any 'contextual closure group' constructed in such a way is infinite, e.g., see G. Nebe, E. M. Rains, and N. J. A. Sloane, The invariants of the Clifford groups, arXiv:math/0001038, Designs, Codes and Cryptography 24, 99–122 (2001).

Extra gate for contextual bases

Controlled phase gate

An example of gate for transition between bases form different sets is $controlled\ phase$ gate:

$$\mathsf{C}_S = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \mathrm{i} \end{pmatrix} = R \langle {}^4\varsigma_3^1 \rangle.$$

It is possible to transform a basis from the first set into a basis from the second one using this gate:

$$\mathsf{C}_S \colon \left\{ |\varsigma_0^2\rangle, |\varsigma_1^2\rangle, |\varsigma_2^2\rangle, |\varsigma_3^2\rangle \right\} \mapsto \left\{ |\varsigma_0^2\rangle, |\varsigma_1^2\rangle, |\varsigma_2^3\rangle, |\varsigma_3^3\rangle \right\}.$$

Clifford+CS group

Construction of 'contextual bases'

For two qubits Clifford gates together with C_S can be used for generation of all 105 bases discussed above, but group generated in such a way is infinite and only finite number of transformations should be used for such a purpose.

Clifford+CS group

For two qubits Clifford gates together with C_S can be used for generation of all 105 bases discussed above, but group generated in such a way is infinite and only finite number of transformations should be used for such a purpose.

This group (also known as Clifford+CS) is universal for quantum computation.

ARTICLE OPEN

Optimal two-qubit circuits for universal fault-tolerant quantum computation

Andrew N. Glaudell , Neil J. Ross and Jacob M. Taylor

We study two-qubit circuits over the Clifford+CS gate set, which consists of the Clifford gates together with the controlled-phase gate CS = diag(1, 1, 1, 0). The Clifford+CS gate set is universal for quantum computation and its elements can be implemented fault-tolerantly in most error-correcting schemes through magic state distillation. Since non-Clifford gates are typically more expensive to perform in a fault-tolerant manner, it is often desirable to construct circuits that use few CS gates. In the present paper, we introduce an efficient and optimal synthesis algorithm for two-qubit Clifford+CS operators. Our algorithm inputs a Clifford+CS operator U and outputs a Clifford+CS circuit for U, which uses the least possible number of CS gates. Because the algorithm is deterministic, the circuit it associates to a Clifford+CS operator can be viewed as a normal form for that operator. We give an explicit description of these normal forms and use this description to derive a worst-case lower bound of $Slog_2(\frac{1}{C}) + O(1)$ on the number of CS gates required to c-approximate elements of SU(4). Our work leverages a wide variety of mathematical tools that may find further applications in the study of fault-tolerant quantum circuits.

npj Quantum Information (2021)7:103; https://doi.org/10.1038/s41534-021-00424-z

Complexification of E_8 lattice and 'magic'

 $240~E_8$ roots used for construction of the configuration with 60 states correspond to the 'first shell' of E_8 lattice with norm 2. The 'second shell' of E_8 lattice with 2160 vectors of norm 4 after complexification and normalization produces 540 states: the 60 stabilizer states (again) and 480 'maximally magic' states found recently due to analysis of so-called *stabilizer Rényi entropy (SRE)*.

M. Ohta and K. Sakurai, Extremal magic states from symmetric lattices, arXiv:2506.11725 (2025).

 $Q.\ Liu,\ I.\ Low,\ and\ Z.\ Yin,$ Maximal magic for two-qubit states, arXiv:2502.17550 (2025).

Here, the term 'magic' or 'non-stabilizerness' of quantum states is used to characterize their difference from states obtained using Clifford circuits.

Conclusion

- Structures and symmetries of E_8 lattice can be useful for applications in quantum information science.
- Four different configurations derived from E_8 were considered.
- Structure of symmetry groups of such configurations can be used for characterization of quantum contextuality.
- Considered configurations can be useful for quantum key distribution.
- Problem of contextuality in such protocols has interesting relation with analysis of resources for universal and fault-tolerant quantum computations.

Thank you for attention!