Predicting properties of quantum systems by regression on a quantum computer

Konstantin Antipin (joint work with Andrey Kardashin, Yerassyl Balkybek, Vladimir Palyulin)

October 4, 2025

Regression problem

Task: given a training set

$$\mathcal{T} = \left\{ (\rho_{\alpha_j}, \alpha_j) \right\}_{j=1}^T, \tag{1}$$

learn to predict the label $\alpha \in \mathbb{R}$ of a given ρ_{α} .

Let ρ_{α} be a labeled quantum state with the label α .

The connection between ρ_{α} and α could be such that:

• ρ_{α} is the output state of a parametrized channel Φ_{α} acting on some input ρ , e.g., the single-qubit depolarizing channel

$$\rho_{\alpha} \equiv \Phi_{\alpha}[\rho] = (1 - \alpha)\rho + \frac{\alpha}{2}\mathbb{1}$$

- $\rho_{\alpha}=|\psi_{\alpha}\rangle\langle\psi_{\alpha}|$ is such that $|\psi_{\alpha}\rangle$ is the ground state of a parametrized Hamiltonian H_{α}
- α is an entanglement measure of ρ_{α}

Methods

Expectation as the prediction

For a given ρ_{α} , our prediction **a** for α is the expectation

$$a(\rho_{\alpha}, H) = \operatorname{Tr} H \rho_{\alpha}. \tag{2}$$

We want to find an H giving a prediction **a** as close to α as possible.

The observable H can be represented by a spectral decomposition

$$H(\mathbf{x},\Pi) = \sum_{i} x_{i} \Pi_{i}, \tag{3}$$

where x_i are the eigenvalues with the eigenprojectors Π_i .

Preparing eigenprojectors

For a given ρ_{α} , our prediction **a** for α is the expectation

$$a(\rho_{\alpha}, H) = \operatorname{Tr} H \rho_{\alpha}, \tag{4}$$

$$H(\mathbf{x},\Pi) = \sum_{i} x_{i} \Pi_{i}. \tag{5}$$

The eigenprojectors Π_i can be constructed as

$$\Pi_i(\boldsymbol{\theta}) = U_{\boldsymbol{\theta}}^{\dagger} |i\rangle\langle i| U_{\boldsymbol{\theta}}. \tag{6}$$

where $\{|i\rangle\}_i$ is the computational basis, and U_{θ} is a unitary operator parametrized by $\theta \subset \mathbb{R}$.

Prediction

For a given ρ_{α} , our prediction **a** for α is the expectation

$$a(\rho_{\alpha}, H) = \text{Tr} H \rho_{\alpha}, \tag{7}$$

$$H(\mathbf{x}, \boldsymbol{\theta}) = \sum_{i} x_{i} \Pi_{i}(\boldsymbol{\theta}), \tag{8}$$

$$\Pi_i(\boldsymbol{\theta}) = U_{\boldsymbol{\theta}}^{\dagger} |i\rangle\langle i| U_{\boldsymbol{\theta}}. \tag{9}$$

Essentially, we take ρ_{α} , transform it with U_{θ} , and measure it in the computational basis:

$$\rho_{\alpha} \longrightarrow \bigcup_{\boldsymbol{\theta}} p_{i} \mapsto X_{i}$$

The prediction therefore becomes

$$\mathbf{a}(\rho_{\alpha}, \mathbf{x}, \boldsymbol{\theta}) = \sum_{i} x_{i} \langle i | U_{\boldsymbol{\theta}} \rho_{\alpha} U_{\boldsymbol{\theta}}^{\dagger} | i \rangle$$

$$= \sum_{i} x_{i} p_{i}$$
(10)

$$=\sum_{i}x_{i}p_{i}\tag{11}$$

Hardware-efficient ansatz

As an instance, if ρ_{α} is a three-qubit state, the unitary U_{θ} can be represented in the form of the hardware-efficient ansatz¹.

The more layers the ansatz has, the more expressive it is.

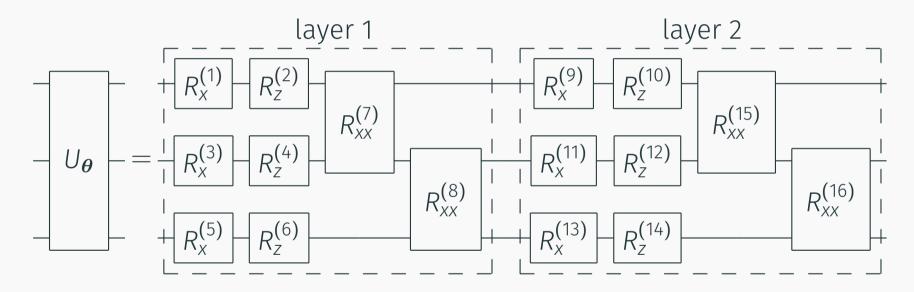


Figure 1: Example of a two-layered hardware-efficient ansatz for three qubits. Here, $R_i^{(k)} = e^{-i\theta_k \sigma_i}$ with σ_i being a Pauli operator, and the rotation angles $\theta_k \in \boldsymbol{\theta}$.

¹A. Kandala, et al. "Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets." Nature 549.7671 (2017): 242-246.

Least squares cost

$$\rho_{\alpha} \longrightarrow \bigcup_{\boldsymbol{\theta}} \qquad \qquad \downarrow^{p_i} \qquad i \mapsto X_i$$

For a given ρ_{α} , our prediction **a** for α is the expectation

$$\mathbf{a}(\rho_{\alpha}, \mathbf{x}, \boldsymbol{\theta}) = \sum_{i} x_{i} \langle i | U_{\boldsymbol{\theta}} \rho_{\alpha} U_{\boldsymbol{\theta}}^{\dagger} | i \rangle. \tag{12}$$

Given a training set $\mathcal{T} = \{(\rho_{\alpha_j}, \alpha_j)\}_{j=1}^T$, the optimal \mathbf{x} and $\boldsymbol{\theta}$ can be found as

$$(\mathbf{x}^*, \boldsymbol{\theta}^*) = \arg\min_{\mathbf{x}, \boldsymbol{\theta}} \sum_{j=1}^{T} \left(\alpha_j - \mathbf{a}_j(\mathbf{x}, \boldsymbol{\theta}) \right)^2, \tag{13}$$

where $a_i(\mathbf{x}, \boldsymbol{\theta}) \equiv a(\rho_{\alpha_i}, \mathbf{x}, \boldsymbol{\theta})$.

Prediction variance

We are interested not only in high accuracy of the prediction, but also in low variance of it.

As an example, consider the prediction of α for

$$\rho_{\alpha} = (1 - \alpha) |+\rangle \langle +| + \frac{\alpha}{2} \mathbb{1}, \qquad |+\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \qquad (14)$$

The observable

$$H = 1 - \sigma_X + h_y \sigma_y + h_z \sigma_z, \qquad h_y, h_z \in \mathbb{R}, \tag{15}$$

gives the desired expectation $\langle H \rangle_{\rho_{\alpha}} \equiv \text{Tr} H \rho_{\alpha} = \alpha$ for any h_y and h_z .

At the same time, it has the variance

$$\Delta_{\rho_{\alpha}}^{2} H \equiv \langle H^{2} \rangle_{\rho_{\alpha}} - \langle H \rangle_{\rho_{\alpha}}^{2} \tag{16}$$

$$= -\alpha^2 + 2\alpha + h_y^2 + h_z^2, \tag{17}$$

which is dependent on h_v and h_z .

Accounting for the variance

For a given ρ_{α} , our prediction **a** for α is the expectation

$$a(\rho_{\alpha}, \mathbf{x}, \boldsymbol{\theta}) = \operatorname{Tr} H(\mathbf{x}, \boldsymbol{\theta}) \, \rho_{\alpha}. \tag{18}$$

Given a training set $\mathcal{T} = \{(\rho_{\alpha_j}, \alpha_j)\}_{j=1}^T$, we seek to minimize both the least squares and the variance,

$$(\mathbf{X}^*, \boldsymbol{\theta}^*) = \arg\min_{\mathbf{X}, \boldsymbol{\theta}} \left(W_{\mathrm{ls}} f_{\mathrm{ls}}(\mathbf{X}, \boldsymbol{\theta}) + W_{\mathrm{var}} f_{\mathrm{var}}(\mathbf{X}, \boldsymbol{\theta}) \right), \tag{19}$$

where

$$f_{\mathrm{ls}}(\mathbf{x}, \boldsymbol{\theta}) = \sum_{j=1}^{T} \left(\alpha_j - \mathbf{a}_j(\mathbf{x}, \boldsymbol{\theta}) \right)^2, \qquad f_{\mathrm{var}}(\mathbf{x}, \boldsymbol{\theta}) = \sum_{j=1}^{T} \Delta_{\rho_{\alpha_j}}^2 H(\mathbf{x}, \boldsymbol{\theta}), \quad (20)$$

with $w_{\rm ls}, w_{\rm var} > 0$ being weights.

Quantum Cramer-Rao bound

Using certain relations known in quantum estimation theory, we can write

$$\frac{\Delta_{\rho_{\alpha}}^{2}H}{\left|\partial_{\alpha}\langle H\rangle_{\rho_{\alpha}}\right|^{2}}\geqslant\frac{1}{I_{q}(\rho_{\alpha})},\tag{21}$$

which is essentially the quantum Cramer-Rao bound².

The quantum Fisher information $I_q(\rho_\alpha)$ can be defined as

$$I_q(\rho_\alpha) = 8 \frac{1 - F(\rho_\alpha, \rho_{\alpha + d\alpha})}{d\alpha^2}, \tag{22}$$

where $F(\rho, \tau) = \text{Tr } \sqrt{\rho \sqrt{\tau \rho}}$.

Therefore, we can use $I_q(\rho_\alpha)$ for characterizing an observable H in the task of predicting the label α of a labeled state ρ_α .

²S. Sidhu, P. Kok. "Geometric perspective on quantum parameter estimation." AVS Quantum Science 2.1 (2020).

Analytical results

Equation for optimal observable

Our method is described by the following minimization problem:

$$H^* = \arg\min_{H} \left[W_{ls} \sum_{j=1}^{T} \left(\operatorname{Tr} H \rho_{\alpha_j} - \alpha_j \right)^2 + W_{var} \sum_{j=1}^{T} \left(\operatorname{Tr} H^2 \rho_{\alpha_j} - \operatorname{Tr}^2 H \rho_{\alpha_j} \right) \right]. \quad (23)$$

Optimal observable H^* satisfies the following equation:

$$\frac{1}{2} \left(\tilde{\rho}_{\alpha} H^* + H^* \tilde{\rho}_{\alpha} \right) - \frac{k}{T} \sum_{j=1}^{T} \alpha_j \rho_{\alpha_j} + \frac{(k-1)}{T} \sum_{j=1}^{T} \text{Tr} \left(H^* \rho_{\alpha_j} \right) \rho_{\alpha_j} = 0, \quad (24)$$

where

$$\tilde{\rho}_{\alpha} = \frac{1}{T} \sum_{j=1}^{T} \rho_{\alpha_j}, \qquad L = b - a, \qquad k = \frac{W_{\text{ls}}}{W_{\text{var}}}.$$
 (25)

Reduction to the Bayesian approach

$$H^* = \arg\min_{H} \left[W_{ls} \sum_{j=1}^{T} \left(\operatorname{Tr} H \rho_{\alpha_j} - \alpha_j \right)^2 + W_{var} \sum_{i=1}^{T} \left(\operatorname{Tr} H^2 \rho_{\alpha_j} - \operatorname{Tr}^2 H \rho_{\alpha_j} \right) \right]. \quad (26)$$

When $w_{\rm ls} = w_{\rm var}$, we have

$$H^* = \arg\min_{H} \sum_{j=1}^{T} \operatorname{Tr} \rho_{\alpha_j} (H - \alpha_j \mathbb{1})^2$$
 (27)

This is similar to the minimization of the Bayesian mean squared error (BMSE)

$$\Delta_B^2 \alpha \equiv \int_a^b \Pr(\alpha) \operatorname{Tr} \rho_\alpha (H - \alpha \mathbb{1})^2 d\alpha, \tag{28}$$

when the prior distribution $\Pr(\alpha)$ of the labels α is uniform, i.e., $\Pr(\alpha) = 1/(b-a)$.

Numerical results

Entanglement of Bell-type states

Consider the two-qubit state

$$\left|\Phi_{p}^{+}\right\rangle = \sqrt{p}\left|00\right\rangle + \sqrt{1-p}\left|11\right\rangle,\tag{29}$$

with $|ab\rangle \equiv |a\rangle \otimes |b\rangle$.

We want to learn to predict the *negativity* of $\rho_p = |\Phi_p^+\rangle\langle\Phi_p^+|$, an entanglement measure defined as

$$N(\rho) = \|\rho^{T_2}\|_1 - 1, \tag{30}$$

where $||A||_1 = \text{Tr } \sqrt{A^{\dagger}A}$ and $\rho^{T_2} \equiv (\mathbb{1} \otimes T)[\rho]$ is the partial transpose of ρ with respect to the second qubit.

We train our model on a set $\mathcal{T} = \{|\Phi_{p_j}^+\rangle, N_j\}_{j=1}^5$, where the coefficients p_i were picked randomly and uniformly.

Entanglement of Bell-type states

$$|\Phi_p^+\rangle = \sqrt{p} |00\rangle + \sqrt{1-p} |11\rangle,$$

 $N(\rho) = ||\rho^{T_2}||_1 - 1,$

With no assumptions on the data, our model finds H that accurately predicts N for $|\Phi_p^+\rangle$ and saturates the Cramer-Rao bound.

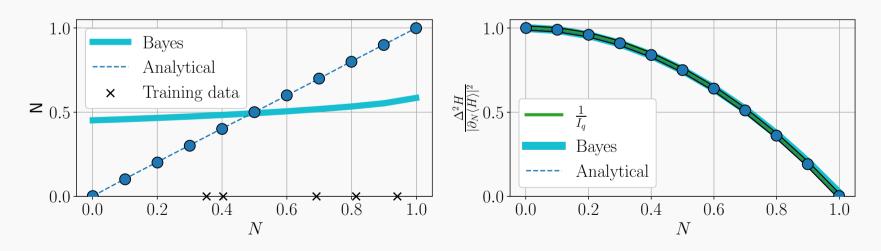


Figure 2: Left: predicted **N** vs. true *N* negativity of the Bell state. Right: Variance and quantum Cramer-Rao bound vs. *N*. The model was trained with $w_{\rm var} = 10^{-4}$ and $w_{\rm ls} = 1$.

Results: negativity of random mixed states

Consider $\mathcal{T} = \{\rho_j^{\otimes 4}, N_j\}_{j=1}^{1000}$ with ρ_j being random mixed states with the negativity N_j .

The more state is mixed, the less accurate is the prediction, and the greater is the variance.

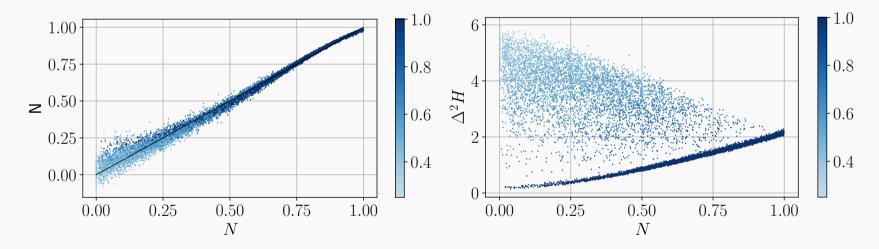


Figure 3: Predicted negativity **N** of 10⁴ random mixed states (left) and variance of the optimized observable H (right) vs. the true negativity N for c=4 copies. The color of points indicates the purity $P(\rho_N) = \text{Tr } \rho_N^2$ of the corresponding states ρ_N . The model was trained with $w_{\text{var}} = 10^{-4}$ and $w_{\text{ls}} = 1$.

Results: transverse field in the Ising Hamiltonian

Let $\mathcal{T} = \left\{ |\psi_{h_j}\rangle, h_j \right\}_{j=1}^{10}$, where $|\psi_h\rangle$ is the ground state of

$$H_h = \sum_{i=1}^{8} \left(\sigma_z^i \sigma_z^{i+1} + h \sigma_x^i \right) \tag{31}$$

For fixed $w_{ls} = 1$, smaller w_{var} give more precise predictions of h, but also greater variances.

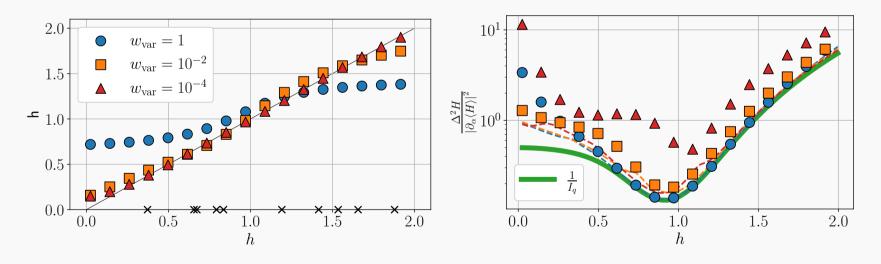


Figure 4: Left: predicted **h** vs. true *h* transverse field of the 8-qubit Ising Hamiltonian. Right: Variance of the trained observable, classical (dashed lines) and quantum (solid line) Cramer-Rao bounds vs. *h*.

Conclusion

Conclusion

Given a training set $\mathcal{T} = \{(\rho_{\alpha_j}, \alpha_j)\}_{j=1}^T$, we can train an observable H which may give good predictions for α and saturate the Cramer-Rao bound.

The proposed method assumes no knowledge about the connection between ρ_{α} and α .

Such connection could be:

- ρ_{α} is a random state with entanglement α
- $\rho_{\alpha}=\Phi_{\alpha}[\rho]$, where Φ_{α} is a parametrized channel and ρ is some fixed input state
- $\rho_{\alpha}=|\psi_{\alpha}\rangle\langle\psi_{\alpha}|$, where $|\psi_{\alpha}\rangle$ is the ground state of a parametrized Hamiltonian H_{α}

Under certain assumptions and conditions, our method reduces to the minimization of the Bayesian MSE.

The Bayesian approach produces observables with a large bias, as it prefers to minimize the variance.

Thank you!

Predicting properties of quantum systems by regression on a quantum computer Physical Review Research 7 (1), 013201 (2025) doi.org/10.1103/PhysRevResearch.7.013201