## Satellites and invariants of links

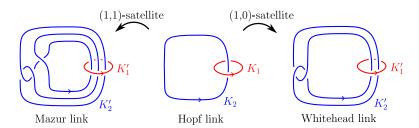
Sergey Melikhov

Steklov Math Institute

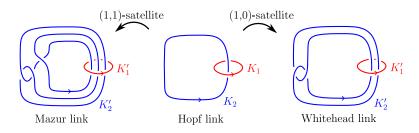
50th Birthday of A. V. Malutin, November 2025

• a  $(p_1, \ldots, p_m)$ -satellite of L, if it lies in a tubular neighborhood  $T = (T_1, \ldots, T_m)$  of L so that each  $[K'_i] = p_i[K_i] \in H_1(T_i)$ ;

• a  $(p_1, \ldots, p_m)$ -satellite of L, if it lies in a tubular neighborhood  $T = (T_1, \ldots, T_m)$  of L so that each  $[K'_i] = p_i[K_i] \in H_1(T_i)$ ;

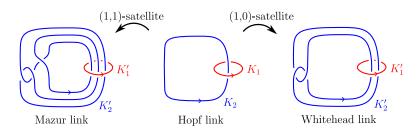


• a  $(p_1, \ldots, p_m)$ -satellite of L, if it lies in a tubular neighborhood  $T = (T_1, \ldots, T_m)$  of L so that each  $[K'_i] = p_i[K_i] \in H_1(T_i)$ ;



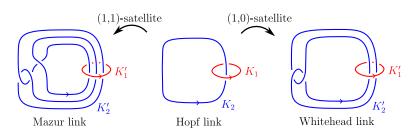
• a  $(p_1, ..., p_m)$ -braiding of L, if moreover each projection  $T_i \cong K_i \times D^2 \to K_i$  restricts to a covering map  $K'_i \to K_i$ ;

• a  $(p_1, \ldots, p_m)$ -satellite of L, if it lies in a tubular neighborhood  $T = (T_1, \ldots, T_m)$  of L so that each  $[K'_i] = p_i[K_i] \in H_1(T_i)$ ;



- a  $(p_1, ..., p_m)$ -braiding of L, if moreover each projection  $T_i \cong K_i \times D^2 \to K_i$  restricts to a covering map  $K'_i \to K_i$ ;
- a  $(p_1, \ldots, p_m)$ -cabling of L, if in addition each  $K'_i \subset \partial T_i$ .

• a  $(p_1, \ldots, p_m)$ -satellite of L, if it lies in a tubular neighborhood  $T = (T_1, \ldots, T_m)$  of L so that each  $[K'_i] = p_i[K_i] \in H_1(T_i)$ ;



- a  $(p_1, ..., p_m)$ -braiding of L, if moreover each projection  $T_i \cong K_i \times D^2 \to K_i$  restricts to a covering map  $K'_i \to K_i$ ;
- a  $(p_1, \ldots, p_m)$ -cabling of L, if in addition each  $K'_i \subset \partial T_i$ .

In the latter case each  $K'_i$  must be the  $(p_i, q_i)$ -cable of  $K_i$  for some  $q_i$  coprime to  $p_i$ , where  $q_i = lk(K'_i, K_i)$ .

$$v(L')=(p_1\cdots p_m)^k v(L)$$

for all  $p_1, \ldots, p_m \in \mathbb{Z} \setminus \{0\}$ , for every m-component link L and for every  $(p_1, \ldots, p_m)$ -cabling/ $(p_1, \ldots, p_m)$ -braiding/ $(p_1, \ldots, p_m)$ -satellite L' of L.

$$v(L')=(p_1\cdots p_m)^k v(L)$$

for all  $p_1, \ldots, p_m \in \mathbb{Z} \setminus \{0\}$ , for every m-component link L and for every  $(p_1, \ldots, p_m)$ -cabling/ $(p_1, \ldots, p_m)$ -braiding/ $(p_1, \ldots, p_m)$ -satellite L' of L.

For  $k \neq 0$ , strongly k-satellitable: same but with  $p_1, \ldots, p_m \in \mathbb{Z}$ .

$$v(L')=(p_1\cdots p_m)^k v(L)$$

for all  $p_1, \ldots, p_m \in \mathbb{Z} \setminus \{0\}$ , for every m-component link L and for every  $(p_1, \ldots, p_m)$ -cabling/ $(p_1, \ldots, p_m)$ -braiding/ $(p_1, \ldots, p_m)$ -satellite L' of L.

For  $k \neq 0$ , strongly k-satellitable: same but with  $p_1, \ldots, p_m \in \mathbb{Z}$ .

**Example.** The linking number is strongly 1-satellitable.

That is,  $lk(L') = p_1p_2 lk(L)$  for all  $p_1, p_2 \in \mathbb{Z}$ , for every 2-component link L and for every  $(p_1, p_2)$ -satellite L' of L.

$$v(L')=(p_1\cdots p_m)^k v(L)$$

for all  $p_1, \ldots, p_m \in \mathbb{Z} \setminus \{0\}$ , for every m-component link L and for every  $(p_1, \ldots, p_m)$ -cabling/ $(p_1, \ldots, p_m)$ -braiding/ $(p_1, \ldots, p_m)$ -satellite L' of L.

For  $k \neq 0$ , strongly k-satellitable: same but with  $p_1, \ldots, p_m \in \mathbb{Z}$ .

**Example.** The linking number is strongly 1-satellitable.

That is,  $lk(L') = p_1p_2 lk(L)$  for all  $p_1, p_2 \in \mathbb{Z}$ , for every 2-component link L and for every  $(p_1, p_2)$ -satellite L' of L.

**Example.** Given a link  $L = (K_1, ..., K_m)$ , let  $I_{ij} = lk(K_i, K_j)$ .

$$v(L')=(p_1\cdots p_m)^k v(L)$$

for all  $p_1, \ldots, p_m \in \mathbb{Z} \setminus \{0\}$ , for every m-component link L and for every  $(p_1, \ldots, p_m)$ -cabling/ $(p_1, \ldots, p_m)$ -braiding/ $(p_1, \ldots, p_m)$ -satellite L' of L.

For  $k \neq 0$ , strongly k-satellitable: same but with  $p_1, \ldots, p_m \in \mathbb{Z}$ .

**Example.** The linking number is strongly 1-satellitable.

That is,  $lk(L') = p_1p_2 lk(L)$  for all  $p_1, p_2 \in \mathbb{Z}$ , for every 2-component link L and for every  $(p_1, p_2)$ -satellite L' of L.

**Example.** Given a link  $L=(K_1,\ldots,K_m)$ , let  $I_{ij}=\operatorname{lk}(K_i,K_j)$ . Then (a)  $\lambda(L):=\prod_{i< j}I_{ij}$  is strongly (m-1)-satellitable

$$v(L')=(p_1\cdots p_m)^k v(L)$$

for all  $p_1, \ldots, p_m \in \mathbb{Z} \setminus \{0\}$ , for every m-component link L and for every  $(p_1, \ldots, p_m)$ -cabling/ $(p_1, \ldots, p_m)$ -braiding/ $(p_1, \ldots, p_m)$ -satellite L' of L.

For  $k \neq 0$ , strongly k-satellitable: same but with  $p_1, \ldots, p_m \in \mathbb{Z}$ .

**Example.** The linking number is strongly 1-satellitable.

That is,  $lk(L') = p_1p_2 lk(L)$  for all  $p_1, p_2 \in \mathbb{Z}$ , for every 2-component link L and for every  $(p_1, p_2)$ -satellite L' of L.

**Example.** Given a link  $L = (K_1, \dots, K_m)$ , let  $I_{ij} = \operatorname{lk}(K_i, K_j)$ . Then

- (a)  $\lambda(L) := \prod_{i < j} l_{ij}$  is strongly (m-1)-satellitable
- (b)  $\lambda^{\circ}(L) := I_{12}I_{23}\cdots I_{m-1,m}I_{m1}$  is strongly 2-satellitable

$$v(L')=(p_1\cdots p_m)^k v(L)$$

for all  $p_1, \ldots, p_m \in \mathbb{Z} \setminus \{0\}$ , for every m-component link L and for every  $(p_1, \ldots, p_m)$ -cabling/ $(p_1, \ldots, p_m)$ -braiding/ $(p_1, \ldots, p_m)$ -satellite L' of L.

For  $k \neq 0$ , strongly k-satellitable: same but with  $p_1, \ldots, p_m \in \mathbb{Z}$ .

**Example.** The linking number is strongly 1-satellitable.

That is,  $lk(L') = p_1p_2 lk(L)$  for all  $p_1, p_2 \in \mathbb{Z}$ , for every 2-component link L and for every  $(p_1, p_2)$ -satellite L' of L.

**Example.** Given a link  $L = (K_1, ..., K_m)$ , let  $I_{ij} = lk(K_i, K_j)$ . Then

- (a)  $\lambda(L) := \prod_{i < j} l_{ij}$  is strongly (m-1)-satellitable
- (b)  $\lambda^{\circ}(L) := I_{12}I_{23}\cdots I_{m-1,m}I_{m1}$  is strongly 2-satellitable
- (c) if m is even, then  $l_{12}l_{34}\cdots l_{m-1,m}$  is strongly 1-satellitable



$$v(L')=(p_1\cdots p_m)^k v(L)$$

for all  $p_1, \ldots, p_m \in \mathbb{Z} \setminus \{0\}$ , for every m-component link L and for every  $(p_1, \ldots, p_m)$ -cabling/ $(p_1, \ldots, p_m)$ -braiding/ $(p_1, \ldots, p_m)$ -satellite L' of L.

$$v(L')=(p_1\cdots p_m)^k v(L)$$

for all  $p_1, \ldots, p_m \in \mathbb{Z} \setminus \{0\}$ , for every m-component link L and for every  $(p_1, \ldots, p_m)$ -cabling/ $(p_1, \ldots, p_m)$ -braiding/ $(p_1, \ldots, p_m)$ -satellite L' of L.

v is k-satellitable  $\Rightarrow v(L') = v(L)$  whenever L' is a  $(1, \ldots, 1)$ -satellite of L

$$v(L')=(p_1\cdots p_m)^k v(L)$$

for all  $p_1, \ldots, p_m \in \mathbb{Z} \setminus \{0\}$ , for every m-component link L and for every  $(p_1, \ldots, p_m)$ -cabling/ $(p_1, \ldots, p_m)$ -braiding/ $(p_1, \ldots, p_m)$ -satellite L' of L.

v is k-satellitable  $\Rightarrow v(L') = v(L)$  whenever L' is a  $(1,\ldots,1)$ -satellite of L  $\Rightarrow v$  is an invariant of F-isotopy

$$v(L')=(p_1\cdots p_m)^k v(L)$$

for all  $p_1, \ldots, p_m \in \mathbb{Z} \setminus \{0\}$ , for every m-component link L and for every  $(p_1, \ldots, p_m)$ -cabling/ $(p_1, \ldots, p_m)$ -braiding/ $(p_1, \ldots, p_m)$ -satellite L' of L.

v is k-satellitable  $\Rightarrow v(L') = v(L)$  whenever L' is a  $(1, \ldots, 1)$ -satellite of L  $\Rightarrow v$  is an invariant of F-isotopy

F-isotopy: equivalence relation on links generated by ambient isotopy and the operation of replacing a given link with any its  $(1, \ldots, 1)$ -satellite.

$$v(L')=(p_1\cdots p_m)^k v(L)$$

for all  $p_1, \ldots, p_m \in \mathbb{Z} \setminus \{0\}$ , for every m-component link L and for every  $(p_1, \ldots, p_m)$ -cabling/ $(p_1, \ldots, p_m)$ -braiding/ $(p_1, \ldots, p_m)$ -satellite L' of L.

v is k-satellitable  $\Rightarrow v(L') = v(L)$  whenever L' is a  $(1, \ldots, 1)$ -satellite of L  $\Rightarrow v$  is an invariant of F-isotopy

F-isotopy: equivalence relation on links generated by ambient isotopy and the operation of replacing a given link with any its  $(1, \ldots, 1)$ -satellite. (Named after R. Fox who first considered it.)

$$v(L')=(p_1\cdots p_m)^k v(L)$$

for all  $p_1, \ldots, p_m \in \mathbb{Z} \setminus \{0\}$ , for every m-component link L and for every  $(p_1, \ldots, p_m)$ -cabling  $(p_1, \ldots, p_m)$ -braiding  $(p_1, \ldots, p_m)$ -satellite L' of L.

v is k-satellitable  $\Rightarrow v(L') = v(L)$  whenever L' is a  $(1, \ldots, 1)$ -satellite of L  $\Rightarrow v$  is an invariant of F-isotopy

F-isotopy: equivalence relation on links generated by ambient isotopy and the operation of replacing a given link with any its  $(1, \ldots, 1)$ -satellite. (Named after R. Fox who first considered it.)

**Example.** Since every knot is F-isotopic to an unknot, there are no non-constant *k*-satellitable invariants of knots.

$$v(L')=(p_1\cdots p_m)^k v(L)$$

for all  $p_1, \ldots, p_m \in \mathbb{Z} \setminus \{0\}$ , for every m-component link L and for every  $(p_1, \ldots, p_m)$ -cabling  $(p_1, \ldots, p_m)$ -braiding  $(p_1, \ldots, p_m)$ -satellite L' of L.

v is k-satellitable  $\Rightarrow v(L') = v(L)$  whenever L' is a  $(1, \ldots, 1)$ -satellite of L  $\Rightarrow v$  is an invariant of F-isotopy

F-isotopy: equivalence relation on links generated by ambient isotopy and the operation of replacing a given link with any its  $(1,\ldots,1)$ -satellite. (Named after R. Fox who first considered it.)

**Example.** Since every knot is F-isotopic to an unknot, there are no non-constant k-satellitable invariants of knots.

**Example.** The following almost satisfy the definition of a 1-braidable invariant — namely, they do so for links L with no unknotted components:

- bridge number of knots (Schubert 1954) and links (Williams 1992)
- braid index of links (Williams 1992)

$$\bar{\bar{\mu}}_{i_1\dots i_n}(L) = \begin{cases} \bar{\mu}_{i_1\dots i_n}(L) & \text{if } \delta_{i_1\dots i_n}(L) = 0, \\ 0 & \text{otherwise}. \end{cases}$$

$$\bar{\bar{\mu}}_{i_1...i_n}(L) = \begin{cases} \bar{\mu}_{i_1...i_n}(L) & \text{if } \delta_{i_1...i_n}(L) = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Then each  $\bar{\bar{\mu}}_{i_1...i_n}(L) \in \mathbb{Z}$  and

$$\bar{\bar{\mu}}_{i_1...i_n}(L) = \begin{cases} \bar{\mu}_{i_1...i_n}(L) & \text{if } \delta_{i_1...i_n}(L) = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Then each  $ar{ar{\mu}}_{i_1...i_n}(L) \in \mathbb{Z}$  and

ullet each  $ar{ar{\mu}}_{i_1...i_n}$  with precisely k occurrences of each index is k-satellitable

$$\bar{\bar{\mu}}_{i_1...i_n}(L) = \begin{cases} \bar{\mu}_{i_1...i_n}(L) & \text{if } \delta_{i_1...i_n}(L) = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Then each  $ar{ar{\mu}}_{i_1...i_n}(L)\in\mathbb{Z}$  and

- ullet each  $ar{ar{\mu}}_{i_1...i_n}$  with precisely k occurrences of each index is k-satellitable
- $\bar{\bar{\mu}}_{1122}$  is not strongly 2-satellitable:  $\bar{\bar{\mu}}_{1122}(W) \neq (1\cdot 0)^2 \cdot \bar{\bar{\mu}}_{1122}(H)$

$$\bar{\bar{\mu}}_{i_1...i_n}(L) = \begin{cases} \bar{\mu}_{i_1...i_n}(L) & \text{if } \delta_{i_1...i_n}(L) = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Then each  $ar{ar{\mu}}_{i_1...i_n}(L)\in\mathbb{Z}$  and

- ullet each  $ar{ar{\mu}}_{i_1...i_p}$  with precisely k occurrences of each index is k-satellitable
- $\bar{\bar{\mu}}_{1122}$  is not strongly 2-satellitable:  $\bar{\bar{\mu}}_{1122}(W) \neq (1\cdot 0)^2 \cdot \bar{\bar{\mu}}_{1122}(H)$
- ullet each  $ar{ar{\mu}}_{i_1...i_n}$  with pairwise distinct indices is strongly 1-satellitable

$$\bar{\bar{\mu}}_{i_1...i_n}(L) = \begin{cases} \bar{\mu}_{i_1...i_n}(L) & \text{if } \delta_{i_1...i_n}(L) = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Then each  $ar{ar{\mu}}_{i_1...i_n}(L) \in \mathbb{Z}$  and

- ullet each  $ar{ar{\mu}}_{i_1...i_n}$  with precisely k occurrences of each index is k-satellitable
- $\bar{\bar{\mu}}_{1122}$  is not strongly 2-satellitable:  $\bar{\bar{\mu}}_{1122}(W) \neq (1\cdot 0)^2 \cdot \bar{\bar{\mu}}_{1122}(H)$
- ullet each  $ar{ar{\mu}}_{i_1...i_n}$  with pairwise distinct indices is strongly 1-satellitable

**Example/Corollary.** The following invariant is 0-satellitable:

$$ar{ar{ar{\mu}}}_{i_1...i_n}(L) = egin{cases} 1 & ext{if } ar{ar{\mu}}_{i_1...i_n}(L) 
eq 0, \ 0 & ext{otherwise}. \end{cases}$$

$$\bar{\bar{\mu}}_{i_1...i_n}(L) = \begin{cases} \bar{\mu}_{i_1...i_n}(L) & \text{if } \delta_{i_1...i_n}(L) = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Then each  $ar{ar{\mu}}_{i_1...i_n}(L)\in\mathbb{Z}$  and

- ullet each  $ar{ar{\mu}}_{i_1...i_n}$  with precisely k occurrences of each index is k-satellitable
- ullet  $ar{ar{\mu}}_{1122}$  is not strongly 2-satellitable:  $ar{ar{\mu}}_{1122}(W) 
  eq (1\cdot 0)^2 \cdot ar{ar{\mu}}_{1122}(H)$
- ullet each  $ar{ar{\mu}}_{i_1...i_n}$  with pairwise distinct indices is strongly 1-satellitable

**Example/Corollary.** The following invariant is 0-satellitable:

$$ar{ar{ar{\mu}}}_{i_1...i_n}(L) = egin{cases} 1 & ext{if } ar{ar{\mu}}_{i_1...i_n}(L) 
eq 0, \ 0 & ext{otherwise}. \end{cases}$$

v is 0-satellitable: v(L') = v(L) whenever L' is a  $(p_1, \ldots, p_m)$ -satellite of L with  $p_i \neq 0$ .

- implicit in the abstract of Akhmetiev's talk (February 2021, Moscow Geometric Topology Seminar)
- rather explicit in Akhmetiev's 2016 book "Finite-Type Invariants of Magnetic Lines", but with the k-cableable condition replaced by its precursor version

- implicit in the abstract of Akhmetiev's talk (February 2021, Moscow Geometric Topology Seminar)
- rather explicit in Akhmetiev's 2016 book "Finite-Type Invariants of Magnetic Lines", but with the k-cableable condition replaced by its precursor version

Motivation: topological lower bounds for the energy of a magnetic field

- implicit in the abstract of Akhmetiev's talk (February 2021, Moscow Geometric Topology Seminar)
- rather explicit in Akhmetiev's 2016 book "Finite-Type Invariants of Magnetic Lines", but with the k-cableable condition replaced by its precursor version

Motivation: topological lower bounds for the energy of a magnetic field

"What invariants of knots can be extended to invariants of divergence-free vector fields?" [Arnold's Problems, Problem 1990-16] (discussed in detail in [Arnold–Khesin 1998; §8.A], not only for knots but also for links)

- implicit in the abstract of Akhmetiev's talk (February 2021, Moscow Geometric Topology Seminar)
- rather explicit in Akhmetiev's 2016 book "Finite-Type Invariants of Magnetic Lines", but with the k-cableable condition replaced by its precursor version

## Motivation: topological lower bounds for the energy of a magnetic field

"What invariants of knots can be extended to invariants of divergence-free vector fields?" [Arnold's Problems, Problem 1990-16] (discussed in detail in [Arnold–Khesin 1998; §8.A], not only for knots but also for links)

"The dream is to define such a hierarchy of invariants for generic vector fields such that, [when] all the invariants of order  $\leq k$  have zero value for a given field and there exists a nonzero invariant of order k+1, this nonzero invariant provides a lower bound for the field energy." [Arnold–Khesin 1998; §7.C "Higher-order linking integrals"]

- implicit in the abstract of Akhmetiev's talk (February 2021, Moscow Geometric Topology Seminar)
- rather explicit in Akhmetiev's 2016 book "Finite-Type Invariants of Magnetic Lines", but with the k-cableable condition replaced by its precursor version

## Motivation: topological lower bounds for the energy of a magnetic field

"What invariants of knots can be extended to invariants of divergencefree vector fields?" [Arnold's Problems, Problem 1990-16] (discussed in detail in [Arnold-Khesin 1998; §8.A], not only for knots but also for links)

"The dream is to define such a hierarchy of invariants for generic vector fields such that, [when] all the invariants of order < k have zero value for a given field and there exists a nonzero invariant of order k+1, this nonzero invariant provides a lower bound for the field energy." [Arnold-Khesin 1998; §7.C "Higher-order linking integrals"

No-go theorems: S. S. Podkorytov (2004), S. Baader-J. Marché (2012), E. A. Kudryavtseva (2016)

The Conway polynomial of an m-component link

$$\nabla_L(z) = z^{m-1}(c_0 + c_1 z^2 + \cdots + c_r z^{2r})$$

$$\nabla_L(z) = z^{m-1}(c_0 + c_1 z^2 + \cdots + c_r z^{2r})$$

Conjecture (P. M. Akhmetiev). There exists a 4-cableable invariant of 3-component links which is a polynomial in the coefficients  $c_0$ ,  $c_1$  of the Conway polynomial of the link and of its proper sublinks, but is not a function of the pairwise linking numbers.

$$\nabla_L(z) = z^{m-1} (c_0 + c_1 z^2 + \cdots + c_r z^{2r})$$

Conjecture (P. M. Akhmetiev). There exists a 4-cableable invariant of 3-component links which is a polynomial in the coefficients  $c_0$ ,  $c_1$  of the Conway polynomial of the link and of its proper sublinks, but is not a function of the pairwise linking numbers.

- Assertion B.1 in Proc. Steklov Inst. Math. 308 (2020), 42-55
- Theorems 14, 17 in J. Geom. Phys. 170 (2021), Paper No. 104379

$$\nabla_L(z) = z^{m-1}(c_0 + c_1 z^2 + \cdots + c_r z^{2r})$$

Conjecture (P. M. Akhmetiev). There exists a 4-cableable invariant of 3-component links which is a polynomial in the coefficients  $c_0$ ,  $c_1$  of the Conway polynomial of the link and of its proper sublinks, but is not a function of the pairwise linking numbers.

- Assertion B.1 in *Proc. Steklov Inst. Math.* **308** (2020), 42–55
- Theorems 14, 17 in *J. Geom. Phys.* 170 (2021), Paper No. 104379
- 5 talks at Moscow Geometric Topology Seminar (2019: abstract only; 2021, 2024, two talks in 2025: abstract and video at mathnet.ru)

$$\nabla_L(z) = z^{m-1} (c_0 + c_1 z^2 + \cdots + c_r z^{2r})$$

Conjecture (P. M. Akhmetiev). There exists a 4-cableable invariant of 3-component links which is a polynomial in the coefficients  $c_0$ ,  $c_1$  of the Conway polynomial of the link and of its proper sublinks, but is not a function of the pairwise linking numbers.

- Assertion B.1 in *Proc. Steklov Inst. Math.* **308** (2020), 42–55
- Theorems 14, 17 in *J. Geom. Phys.* 170 (2021), Paper No. 104379
- 5 talks at Moscow Geometric Topology Seminar (2019: abstract only; 2021, 2024, two talks in 2025: abstract and video at mathnet.ru)
- May 2025: "not proved" [video: MGT Seminar, May 16, mathnet.ru]

$$\nabla_L(z) = z^{m-1} (c_0 + c_1 z^2 + \dots + c_r z^{2r})$$

Conjecture (P. M. Akhmetiev). There exists a 4-cableable invariant of 3-component links which is a polynomial in the coefficients  $c_0$ ,  $c_1$  of the Conway polynomial of the link and of its proper sublinks, but is not a function of the pairwise linking numbers.

### Claimed to be proved by Akhmetiev a number of times in 2019–2025:

- Assertion B.1 in *Proc. Steklov Inst. Math.* **308** (2020), 42–55
- Theorems 14, 17 in *J. Geom. Phys.* 170 (2021), Paper No. 104379
- 5 talks at Moscow Geometric Topology Seminar (2019: abstract only; 2021, 2024, two talks in 2025: abstract and video at mathnet.ru)
- May 2025: "not proved" [video: MGT Seminar, May 16, mathnet.ru]

### Previous versions of the claimed result (2011-2016):

- Theorem 8 in arXiv:1105.5876v2
- Theorem 4.2 in *J. Phys.: Conf. Ser.* **544** (2014), Paper No. 012015
- Theorem 9 in the book (Lambert Acad. Publ., Saarbrücken, 2016)



$$\nabla_L(z) = z^{m-1} (c_0 + c_1 z^2 + \cdots + c_r z^{2r})$$

Conjecture (P. M. Akhmetiev). There exists a 4-cableable invariant of 3-component links which is a polynomial in the coefficients  $c_0$ ,  $c_1$  of the Conway polynomial of the link and of its proper sublinks, but is not a function of the pairwise linking numbers.

### Claimed to be proved by Akhmetiev a number of times in 2019–2025:

- Assertion B.1 in *Proc. Steklov Inst. Math.* **308** (2020), 42–55
- Theorems 14, 17 in *J. Geom. Phys.* 170 (2021), Paper No. 104379
- 5 talks at Moscow Geometric Topology Seminar (2019: abstract only; 2021, 2024, two talks in 2025: abstract and video at mathnet.ru)
- May 2025: "not proved" [video: MGT Seminar, May 16, mathnet.ru]

### Previous versions of the claimed result (2011-2016):

- Theorem 8 in arXiv:1105.5876v2
- Theorem 4.2 in *J. Phys.: Conf. Ser.* **544** (2014), Paper No. 012015
- Theorem 9 in the book (Lambert Acad. Publ., Saarbrücken, 2016)

Initial version of the conjecture in J. Geom. Phys. 53 (2005), 180-196

$$\nabla_L(z) = z^{m-1}(c_0 + c_1 z^2 + \cdots + c_r z^{2r})$$

Conjecture (P. M. Akhmetiev). There exists a 4-cableable invariant of 3-component links which is a polynomial in the coefficients  $c_0$ ,  $c_1$  of the Conway polynomial of the link and of its proper sublinks, but is not a function of the pairwise linking numbers.

- Assertion B.1 in Proc. Steklov Inst. Math. 308 (2020), 42–55
- Theorems 14, 17 in J. Geom. Phys. 170 (2021), Paper No. 104379
- 5 talks at Moscow Geometric Topology Seminar (2019: abstract only; 2021, 2024, two talks in 2025: abstract and video at mathnet.ru)
- May 2025: "not proved" [video: MGT Seminar, May 16, mathnet.ru]

$$\nabla_L(z) = z^{m-1} (c_0 + c_1 z^2 + \dots + c_r z^{2r})$$

**Conjecture (P. M. Akhmetiev).** There exists a 4-cableable invariant of 3-component links which is a polynomial in the coefficients  $c_0$ ,  $c_1$  of the Conway polynomial of the link and of its proper sublinks, but is not a function of the pairwise linking numbers.

### Claimed to be proved by Akhmetiev a number of times in 2019–2025:

- Assertion B.1 in *Proc. Steklov Inst. Math.* **308** (2020), 42–55
- Theorems 14, 17 in *J. Geom. Phys.* 170 (2021), Paper No. 104379
- 5 talks at Moscow Geometric Topology Seminar (2019: abstract only; 2021, 2024, two talks in 2025: abstract and video at mathnet.ru)
- May 2025: "not proved" [video: MGT Seminar, May 16, mathnet.ru]

# Remark. There is a formula for the behavior under cabling for:

- The Alexander polynomial of a knot (Seifert, 1950)
- The Alexander polynomial of a link (Sumners-Woods, 1977)
- The Conway potential function of a link (Cimasoni, 2005)



$$\nabla_L(z) = z^{m-1} (c_0 + c_1 z^2 + \cdots + c_r z^{2r})$$

Conjecture (P. M. Akhmetiev). There exists a 4-cableable invariant of 3-component links which is a polynomial in the coefficients  $c_0$ ,  $c_1$  of the Conway polynomial of the link and of its proper sublinks, but is not a function of the pairwise linking numbers.

### Claimed to be proved by Akhmetiev a number of times in 2019–2025:

- Assertion B.1 in Proc. Steklov Inst. Math. 308 (2020), 42-55
- Theorems 14, 17 in *J. Geom. Phys.* **170** (2021), Paper No. 104379
- 5 talks at Moscow Geometric Topology Seminar (2019: abstract only; 2021, 2024, two talks in 2025: abstract and video at mathnet.ru)
- May 2025: "not proved" [video: MGT Seminar, May 16, mathnet.ru]

# **Remark.** There is a formula for the behavior under cabling for:

- The Alexander polynomial of a knot (Seifert, 1950)
- The Alexander polynomial of a link (Sumners-Woods, 1977)
- The Conway potential function of a link (Cimasoni, 2005)

Communicated in 2021 (and again at/after each subsequent\_talk)

**Main Theorem.** For each  $m\geq 3$  there exists an (m+1)-cableable finite type invariant  $\bar{\bar{\omega}}$  of m-component links which is not a function of the pairwise linking numbers.

**Main Theorem.** For each  $m \geq 3$  there exists an (m+1)-cableable finite type invariant  $\bar{\bar{\omega}}$  of m-component links which is not a function of the pairwise linking numbers. ( $\Rightarrow$  Arnold-Akhmetiev Problem)

**Main Theorem.** For each  $m\geq 3$  there exists an (m+1)-cableable finite type invariant  $\bar{\bar{\omega}}$  of m-component links which is not a function of the pairwise linking numbers. ( $\Rightarrow$  Arnold–Akhmetiev Problem) Moreover,

(a)  $\bar{\bar{\omega}}$  is a polynomial in the coefficients  $c_0$ ,  $c_1$  of the Conway polynomials of the link and of its proper sublinks;

**Main Theorem.** For each  $m \geq 3$  there exists an (m+1)-cableable finite type invariant  $\bar{\omega}$  of m-component links which is not a function of the pairwise linking numbers. (⇒ Arnold–Akhmetiev Problem) Moreover,

(a)  $\bar{\omega}$  is a polynomial in the coefficients  $c_0$ ,  $c_1$  of the Conway polynomials of the link and of its proper sublinks; (\Rightarrow Akhmetiev Conjecture)

**Main Theorem.** For each  $m\geq 3$  there exists an (m+1)-cableable finite type invariant  $\bar{\bar{\omega}}$  of m-component links which is not a function of the pairwise linking numbers. ( $\Rightarrow$  Arnold–Akhmetiev Problem) Moreover,

- (a)  $\bar{\omega}$  is a polynomial in the coefficients  $c_0$ ,  $c_1$  of the Conway polynomials of the link and of its proper sublinks; ( $\Rightarrow$  Akhmetiev Conjecture)
- (b)  $\bar{\bar{\omega}}$  is strongly (m+1)-satellitable;

**Main Theorem.** For each  $m\geq 3$  there exists an (m+1)-cableable finite type invariant  $\bar{\bar{\omega}}$  of m-component links which is not a function of the pairwise linking numbers. ( $\Rightarrow$  Arnold–Akhmetiev Problem) Moreover,

- (a)  $\bar{\bar{\omega}}$  is a polynomial in the coefficients  $c_0$ ,  $c_1$  of the Conway polynomials of the link and of its proper sublinks; ( $\Rightarrow$  Akhmetiev Conjecture)
- (b)  $\bar{\bar{\omega}}$  is strongly (m+1)-satellitable;
- (c)  $\bar{\bar{\omega}}$  is of type  $2 + \frac{m(m+1)}{2}$  and of colored type 1;

**Main Theorem.** For each  $m \geq 3$  there exists an (m+1)-cableable finite type invariant  $\bar{\bar{\omega}}$  of m-component links which is not a function of the pairwise linking numbers. ( $\Rightarrow$  Arnold–Akhmetiev Problem) Moreover,

- (a)  $\bar{\omega}$  is a polynomial in the coefficients  $c_0$ ,  $c_1$  of the Conway polynomials of the link and of its proper sublinks; ( $\Rightarrow$  Akhmetiev Conjecture)
- (b)  $\bar{ar{\omega}}$  is strongly (m+1)-satellitable;
- (c)  $\bar{\bar{\omega}}$  is of type  $2 + \frac{m(m+1)}{2}$  and of colored type 1;
- (v is of colored type n: the standard extension  $\bar{v}$  to singular links vanishes on singular links with  $\geq n+1$  self-intersections of components)

**Main Theorem.** For each  $m \geq 3$  there exists an (m+1)-cableable finite type invariant  $\bar{\bar{\omega}}$  of m-component links which is not a function of the pairwise linking numbers. ( $\Rightarrow$  Arnold–Akhmetiev Problem) Moreover,

- (a)  $\bar{\bar{\omega}}$  is a polynomial in the coefficients  $c_0$ ,  $c_1$  of the Conway polynomials of the link and of its proper sublinks; ( $\Rightarrow$  Akhmetiev Conjecture)
- (b)  $\bar{ar{\omega}}$  is strongly (m+1)-satellitable;
- (c)  $\bar{\omega}$  is of type  $2 + \frac{m(m+1)}{2}$  and of colored type 1;
- (v is of colored type n: the standard extension  $\bar{v}$  to singular links vanishes on singular links with  $\geq n+1$  self-intersections of components)
- (d)  $\bar{\omega}(L)$  is not a function of invariants of proper sublinks of L, if m=3,4.

**Main Theorem.** For each  $m \geq 3$  there exists an (m+1)-cableable finite type invariant  $\bar{\omega}$  of m-component links which is not a function of the pairwise linking numbers. ( $\Rightarrow$  Arnold-Akhmetiev Problem) Moreover.

- (a)  $\bar{\omega}$  is a polynomial in the coefficients  $c_0$ ,  $c_1$  of the Conway polynomials of the link and of its proper sublinks; ( $\Rightarrow$  Akhmetiev Conjecture)
- (b)  $\bar{\bar{\omega}}$  is strongly (m+1)-satellitable;
- (c)  $\bar{\omega}$  is of type  $2 + \frac{m(m+1)}{2}$  and of colored type 1;
- (v is of colored type n: the standard extension  $\bar{v}$  to singular links vanishes on singular links with  $\geq n+1$  self-intersections of components)
- (d)  $\bar{\bar{\omega}}(L)$  is not a function of invariants of proper sublinks of L, if m=3,4.

Proof: Based on Conway potential function and Fibonacci and Lucas polynomials

**Main Theorem.** For each  $m \geq 3$  there exists an (m+1)-cableable finite type invariant  $\bar{\omega}$  of m-component links which is not a function of the pairwise linking numbers. (\Rightarrow Arnold-Akhmetiev Problem) Moreover,

- (a)  $\bar{\omega}$  is a polynomial in the coefficients  $c_0$ ,  $c_1$  of the Conway polynomials of the link and of its proper sublinks; (\Rightarrow Akhmetiev Conjecture)
- (b)  $\bar{\omega}$  is strongly (m+1)-satellitable;
- (c)  $\bar{\omega}$  is of type  $2 + \frac{m(m+1)}{2}$  and of colored type 1;
- (v is of colored type n: the standard extension  $\bar{v}$  to singular links vanishes on singular links with  $\geq n+1$  self-intersections of components)
- (d)  $\bar{\omega}(L)$  is not a function of invariants of proper sublinks of L, if m=3,4.

**Proof:** Based on Conway potential function and Fibonacci and Lucas polynomials

**Corollary.** The following invariant is 0-solenoidal:

$$ar{ar{ar{\omega}}}(L) = egin{cases} rac{ar{\omega}(L)}{\lambda(L)\lambda^{\circ}(L)} & ext{if } \lambda(L) 
eq 0; \ 0 & ext{otherwise}. \end{cases}$$

$$ar{
abla}_L(z) = rac{
abla_L(z)}{
abla_{\mathcal{K}_1}(z) \cdots 
abla_{\mathcal{K}_m}(z)},$$

is invariant under PL isotopy (= under addition and deletion of local knots)

$$\bar{\nabla}_L(z) = \frac{\nabla_L(z)}{\nabla_{K_1}(z) \cdots \nabla_{K_m}(z)},$$

is invariant under PL isotopy (= under addition and deletion of local knots)

**Remark.** Every k-satellitable invariant is an invariant of PL isotopy (since PL isotopy implies F-isotopy)

$$\bar{\nabla}_L(z) = \frac{\nabla_L(z)}{\nabla_{K_1}(z) \cdots \nabla_{K_m}(z)},$$

is invariant under PL isotopy (= under addition and deletion of local knots)

**Remark.** Every k-satellitable invariant is an invariant of PL isotopy (since PL isotopy implies F-isotopy)

$$\nabla_L(z) = z^{m-1} (c_0 + c_1 z^2 + \dots + c_r z^{2r})$$

$$\bar{\nabla}_L(z) = \frac{\nabla_L(z)}{\nabla_{K_1}(z) \cdots \nabla_{K_m}(z)},$$

is invariant under PL isotopy (= under addition and deletion of local knots)

**Remark.** Every k-satellitable invariant is an invariant of PL isotopy (since PL isotopy implies F-isotopy)

$$\nabla_L(z) = z^{m-1} \left( c_0 + c_1 z^2 + \dots + c_r z^{2r} \right)$$
  
$$\bar{\nabla}_L(z) = z^{m-1} \left( \alpha(L) + \beta(L) z^2 + \dots \right),$$

where 
$$\alpha(L) = c_0(L)$$
 and  $\beta(L) = c_1(L) - c_0(L)(c_1(K_1) + \cdots + c_1(K_m))$ .

$$\bar{\nabla}_L(z) = \frac{\nabla_L(z)}{\nabla_{K_1}(z) \cdots \nabla_{K_m}(z)},$$

is invariant under PL isotopy (= under addition and deletion of local knots)

**Remark.** Every k-satellitable invariant is an invariant of PL isotopy (since PL isotopy implies F-isotopy)

$$\nabla_L(z) = z^{m-1} \left( c_0 + c_1 z^2 + \dots + c_r z^{2r} \right)$$
  
$$\bar{\nabla}_L(z) = z^{m-1} \left( \alpha(L) + \beta(L) z^2 + \dots \right),$$

where  $\alpha(L) = c_0(L)$  and  $\beta(L) = c_1(L) - c_0(L)(c_1(K_1) + \cdots + c_1(K_m))$ . For m = 2:

$$\bar{\nabla}_L(z) = \frac{\nabla_L(z)}{\nabla_{K_1}(z) \cdots \nabla_{K_m}(z)},$$

is invariant under PL isotopy (= under addition and deletion of local knots)

**Remark.** Every k-satellitable invariant is an invariant of PL isotopy (since PL isotopy implies F-isotopy)

$$\nabla_L(z) = z^{m-1} \left( c_0 + c_1 z^2 + \dots + c_r z^{2r} \right)$$
  
$$\bar{\nabla}_L(z) = z^{m-1} \left( \alpha(L) + \beta(L) z^2 + \dots \right),$$

where  $\alpha(L) = c_0(L)$  and  $\beta(L) = c_1(L) - c_0(L)(c_1(K_1) + \cdots + c_1(K_m))$ .

• 
$$\alpha(L) = \operatorname{lk}(L)$$

$$\bar{\nabla}_L(z) = \frac{\nabla_L(z)}{\nabla_{K_1}(z) \cdots \nabla_{K_m}(z)},$$

is invariant under PL isotopy (= under addition and deletion of local knots)

**Remark.** Every k-satellitable invariant is an invariant of PL isotopy (since PL isotopy implies F-isotopy)

$$\nabla_L(z) = z^{m-1} \left( c_0 + c_1 z^2 + \dots + c_r z^{2r} \right)$$
  
$$\bar{\nabla}_L(z) = z^{m-1} \left( \alpha(L) + \beta(L) z^2 + \dots \right),$$

where  $\alpha(L) = c_0(L)$  and  $\beta(L) = c_1(L) - c_0(L)(c_1(K_1) + \cdots + c_1(K_m))$ .

- $\alpha(L) = \operatorname{lk}(L)$
- $\beta(L)$  is an integer lift of  $\bar{\mu}_{1122}$ ; "generalized Sato-Levine invariant"

$$\bar{\nabla}_L(z) = \frac{\nabla_L(z)}{\nabla_{K_1}(z) \cdots \nabla_{K_m}(z)},$$

is invariant under PL isotopy (= under addition and deletion of local knots)

**Remark.** Every k-satellitable invariant is an invariant of PL isotopy (since PL isotopy implies F-isotopy)

$$\nabla_L(z) = z^{m-1} \left( c_0 + c_1 z^2 + \dots + c_r z^{2r} \right)$$
  
$$\bar{\nabla}_L(z) = z^{m-1} \left( \alpha(L) + \beta(L) z^2 + \dots \right),$$

where  $\alpha(L) = c_0(L)$  and  $\beta(L) = c_1(L) - c_0(L)(c_1(K_1) + \cdots + c_1(K_m))$ .

- $\alpha(L) = \operatorname{lk}(L)$
- ullet eta(L) is an integer lift of  $ar{\mu}_{1122}$ ; "generalized Sato-Levine invariant"
- $\beta(L)$  generates the group of colored type 1 invariants modulo colored type 0 invariants (Kirk-Livingston, 1998)



$$\bar{\nabla}_L(z) = \frac{\nabla_L(z)}{\nabla_{K_1}(z) \cdots \nabla_{K_m}(z)},$$

is invariant under PL isotopy (= under addition and deletion of local knots)

**Remark.** Every k-satellitable invariant is an invariant of PL isotopy (since PL isotopy implies F-isotopy)

$$\nabla_L(z) = z^{m-1} \left( c_0 + c_1 z^2 + \dots + c_r z^{2r} \right)$$
$$\bar{\nabla}_L(z) = z^{m-1} \left( \alpha(L) + \beta(L) z^2 + \dots \right),$$

where  $\alpha(L) = c_0(L)$  and  $\beta(L) = c_1(L) - c_0(L)(c_1(K_1) + \cdots + c_1(K_m))$ .

- $\bullet$   $\alpha(L) = lk(L)$
- $\beta(L)$  is an integer lift of  $\bar{\mu}_{1122}$ ; "generalized Sato-Levine invariant"
- ullet  $\beta(L)$  generates the group of colored type 1 invariants modulo colored type 0 invariants (Kirk-Livingston, 1998)
- $\alpha(L)$  and  $\beta(L)$  form a complete set of invariants of self  $C_2$ -equivalence (aka Δ-link homotopy) (Nakanishi-Ohyama, 2003)

$$\bar{\nabla}_L(z) = \frac{\nabla_L(z)}{\nabla_{K_1}(z) \cdots \nabla_{K_m}(z)},$$

is invariant under PL isotopy (= under addition and deletion of local knots)

**Remark.** Every k-satellitable invariant is an invariant of PL isotopy (since PL isotopy implies F-isotopy)

$$\nabla_L(z) = z^{m-1} \left( c_0 + c_1 z^2 + \dots + c_r z^{2r} \right)$$
  
$$\bar{\nabla}_L(z) = z^{m-1} \left( \alpha(L) + \beta(L) z^2 + \dots \right),$$

where 
$$\alpha(L) = c_0(L)$$
 and  $\beta(L) = c_1(L) - c_0(L)(c_1(K_1) + \cdots + c_1(K_m))$ .

$$\bar{\nabla}_L(z) = \frac{\nabla_L(z)}{\nabla_{K_1}(z) \cdots \nabla_{K_m}(z)},$$

is invariant under PL isotopy (= under addition and deletion of local knots)

**Remark.** Every k-satellitable invariant is an invariant of PL isotopy (since PL isotopy implies F-isotopy)

$$\nabla_L(z) = z^{m-1} \left( c_0 + c_1 z^2 + \dots + c_r z^{2r} \right)$$
  
$$\bar{\nabla}_L(z) = z^{m-1} \left( \alpha(L) + \beta(L) z^2 + \dots \right),$$

where  $\alpha(L) = c_0(L)$  and  $\beta(L) = c_1(L) - c_0(L)(c_1(K_1) + \cdots + c_1(K_m))$ .

• 
$$\alpha(L) = \sum_{T} \prod_{\{i,j\} \in E(T)} I_{ij}$$
, where  $T$  runs over all spanning trees of  $K_m$  (Hosokawa–Hartley–Hoste)

$$\bar{\nabla}_L(z) = \frac{\nabla_L(z)}{\nabla_{K_1}(z) \cdots \nabla_{K_m}(z)},$$

is invariant under PL isotopy (= under addition and deletion of local knots)

**Remark.** Every k-satellitable invariant is an invariant of PL isotopy (since PL isotopy implies F-isotopy)

$$\nabla_L(z) = z^{m-1} \left( c_0 + c_1 z^2 + \dots + c_r z^{2r} \right)$$
  
$$\bar{\nabla}_L(z) = z^{m-1} \left( \alpha(L) + \beta(L) z^2 + \dots \right),$$

where 
$$\alpha(L) = c_0(L)$$
 and  $\beta(L) = c_1(L) - c_0(L)(c_1(K_1) + \cdots + c_1(K_m))$ .

- $\alpha(L) = \sum_{T} \prod_{\{i,j\} \in E(T)} I_{ij}$ , where T runs over all spanning trees of  $K_m$  (Hosokawa–Hartley–Hoste)
- $\beta(L)$  is a colored type 1 invariant

$$\bar{\nabla}_L(z) = \frac{\nabla_L(z)}{\nabla_{K_1}(z) \cdots \nabla_{K_m}(z)},$$

is invariant under PL isotopy (= under addition and deletion of local knots)

**Remark.** Every k-satellitable invariant is an invariant of PL isotopy (since PL isotopy implies F-isotopy)

$$\nabla_L(z) = z^{m-1} \left( c_0 + c_1 z^2 + \dots + c_r z^{2r} \right)$$
  
$$\bar{\nabla}_L(z) = z^{m-1} \left( \alpha(L) + \beta(L) z^2 + \dots \right),$$

where 
$$\alpha(L) = c_0(L)$$
 and  $\beta(L) = c_1(L) - c_0(L)(c_1(K_1) + \cdots + c_1(K_m))$ .

- $\alpha(L) = \sum_{T} \prod_{\{i,j\} \in E(T)} I_{ij}$ , where T runs over all spanning trees of  $K_m$  (Hosokawa–Hartley–Hoste)
- $\beta(L)$  is a colored type 1 invariant
- $\beta(L)$  is an invariant of self  $C_2$ -equivalence

Addendum 1 to Main Theorem.  $\bar{\omega}(L)$  is a polynomial in  $\beta(L)$ , in the  $\beta(\Lambda)$  for proper sublinks  $\Lambda \subset L$  and in the pairwise linking numbers.

Addendum 1 to Main Theorem.  $\bar{\omega}(L)$  is a polynomial in  $\beta(L)$ , in the  $\beta(\Lambda)$  for proper sublinks  $\Lambda \subset L$  and in the pairwise linking numbers.

Addendum 2 to Main Theorem. For a link  $L=(K_1,K_2,K_3)$  let  $I_{ij}=\operatorname{lk}(K_i,K_j),\ \lambda=I_{12}I_{23}I_{32}$  and  $\beta_{ij}=\beta(K_i,K_j)$ . Then

$$\bar{\bar{\omega}}(L) = \beta(L)\lambda - \alpha(L) \sum_{(i,j,k) \in \langle 3 \rangle!} I_{ij}I_{jk}\beta_{ik} - \lambda \sum_{(i,j,k) \in \langle 3 \rangle!} I_{ij}I_{jk} \frac{2I_{ik}^2 + I_{ij}I_{jk} + 1}{12},$$

where  $\langle 3 \rangle$ ! denotes the set  $\{(1,2,3), (2,3,1), (3,1,2)\}$  of all circular shifts of (1,2,3).

Addendum 1 to Main Theorem.  $\bar{\omega}(L)$  is a polynomial in  $\beta(L)$ , in the  $\beta(\Lambda)$  for proper sublinks  $\Lambda \subset L$  and in the pairwise linking numbers.

Addendum 2 to Main Theorem. For a link  $L=(K_1,K_2,K_3)$  let  $I_{ij}=\operatorname{lk}(K_i,K_j),\ \lambda=I_{12}I_{23}I_{32}$  and  $\beta_{ij}=\beta(K_i,K_j)$ . Then

$$\bar{\bar{\omega}}(L) = \beta(L)\lambda - \alpha(L) \sum_{(i,j,k) \in \langle 3 \rangle!} I_{ij}I_{jk}\beta_{ik} - \lambda \sum_{(i,j,k) \in \langle 3 \rangle!} I_{ij}I_{jk} \frac{2I_{ik}^2 + I_{ij}I_{jk} + 1}{12},$$

where  $\langle 3 \rangle !$  denotes the set  $\{(1,2,3),\,(2,3,1),\,(3,1,2)\}$  of all circular shifts of (1,2,3).

Terms correctly predicted by P. M. Akhmetiev  $(2005[\pm]/2014; 2021)$ :

$$\beta(L)\lambda - \alpha(L) \sum_{(i,j,k) \in \langle 3 \rangle!} l_{ij}l_{jk}\beta_{ik} - \lambda \sum_{(i,j,k) \in \langle 3 \rangle!} l_{ij}l_{jk} \frac{2l_{ik}^2 + l_{ij}l_{jk}}{12}$$

Remainder: 0 (2021) / a degree 9 polynomial in the  $l_{ii}$  (April 2025)

Conway potential function (sign-refined multi-variable Alexander polynomial)

$$\Omega_{\Lambda}(x_1,\ldots,x_n)=\Omega_L(x_{c(1)},\ldots,x_{c(m)})$$

$$\Lambda = (L, c)$$
 colored link:  $L = (K_1, \dots, K_m), \quad c \colon \{1, \dots, m\} \to \{1, \dots, n\}$ 

$$\Omega_{\Lambda}(x_1,\ldots,x_n)=\Omega_L(x_{c(1)},\ldots,x_{c(m)})$$

$$\Lambda = (L,c)$$
 colored link:  $L = (K_1,\ldots,K_m), \quad c\colon \{1,\ldots,m\} \to \{1,\ldots,n\}$ 

One-variable case: 
$$\Omega_{\Lambda}(x) = \frac{\nabla_{\Lambda}(x - x^{-1})}{x - x^{-1}}$$

$$\Omega_{\Lambda}(x_1,\ldots,x_n)=\Omega_L(x_{c(1)},\ldots,x_{c(m)})$$

$$\Lambda = (L,c)$$
 colored link:  $L = (K_1,\ldots,K_m), \quad c\colon \{1,\ldots,m\} \to \{1,\ldots,n\}$ 

One-variable case: 
$$\Omega_{\Lambda}(x) = \frac{\nabla_{\Lambda}(x - x^{-1})}{x - x^{-1}}$$

Multi-variable case: Treat  $z = x - x^{-1}$  as a quadratic equation in x.

$$\Omega_{\Lambda}(x_1,\ldots,x_n)=\Omega_L(x_{c(1)},\ldots,x_{c(m)})$$

 $\Lambda = (L,c)$  colored link:  $L = (K_1,\ldots,K_m), \quad c\colon \{1,\ldots,m\} \to \{1,\ldots,n\}$ 

One-variable case: 
$$\Omega_{\Lambda}(x) = \frac{\nabla_{\Lambda}(x - x^{-1})}{x - x^{-1}}$$

Multi-variable case: Treat  $z = x - x^{-1}$  as a quadratic equation in x.

Select a root  $x(z) = \frac{z}{2} \pm \sqrt{1 + \frac{z^2}{4}}$  and expand the radical as a formal power series in z according to Newton' formula  $(1+t)^r = 1 + rt + \frac{r(r-1)}{2}t^2 + \dots$ 

$$\Omega_{\Lambda}(x_1,\ldots,x_n)=\Omega_L(x_{c(1)},\ldots,x_{c(m)})$$

 $\Lambda = (L, c)$  colored link:  $L = (K_1, \dots, K_m), c: \{1, \dots, m\} \rightarrow \{1, \dots, n\}$ 

One-variable case: 
$$\Omega_{\Lambda}(x) = \frac{\nabla_{\Lambda}(x - x^{-1})}{x - x^{-1}}$$

Multi-variable case: Treat  $z = x - x^{-1}$  as a quadratic equation in x.

Select a root  $x(z)=rac{z}{2}\pm\sqrt{1+rac{z^2}{4}}$  and expand the radical as a formal power series in z according to Newton' formula  $(1+t)^r=1+rt+rac{r(r-1)}{2}t^2+\ldots$ 

Set 
$$\mho_{\Lambda}(z_1,\ldots,z_n)=\Omega_{\Lambda}\big(x(z_1),\ldots,x(z_n)\big)\in\mathbb{Q}[[z_1,\ldots,z_n]].$$

$$\Omega_{\Lambda}(x_1,\ldots,x_n)=\Omega_L(x_{c(1)},\ldots,x_{c(m)})$$

 $\Lambda = (L, c)$  colored link:  $L = (K_1, \dots, K_m)$ ,  $c: \{1, \dots, m\} \rightarrow \{1, \dots, n\}$ 

One-variable case: 
$$\Omega_{\Lambda}(x) = \frac{\nabla_{\Lambda}(x - x^{-1})}{x - x^{-1}}$$

Multi-variable case: Treat  $z = x - x^{-1}$  as a quadratic equation in x.

Select a root  $x(z)=\frac{z}{2}\pm\sqrt{1+\frac{z^2}{4}}$  and expand the radical as a formal power series in z according to Newton' formula  $(1+t)^r=1+rt+\frac{r(r-1)}{2}t^2+\dots$  Set  $\mho_\Lambda(z_1,\dots,z_n)=\Omega_\Lambda(x(z_1),\dots,x(z_n))\in\mathbb{Q}[[z_1,\dots,z_n]]$ .

**Theorem (M., 2003).** (a) Both choices of the root lead to the same  $\mho_{\Lambda}$ .

$$\Omega_{\Lambda}(x_1,\ldots,x_n)=\Omega_L(x_{c(1)},\ldots,x_{c(m)})$$

 $\Lambda = (L, c)$  colored link:  $L = (K_1, \dots, K_m), c: \{1, \dots, m\} \rightarrow \{1, \dots, n\}$ 

One-variable case: 
$$\Omega_{\Lambda}(x) = \frac{\nabla_{\Lambda}(x - x^{-1})}{x - x^{-1}}$$

Multi-variable case: Treat  $z = x - x^{-1}$  as a quadratic equation in x.

Select a root  $x(z)=rac{z}{2}\pm\sqrt{1+rac{z^2}{4}}$  and expand the radical as a formal power series in z according to Newton' formula  $(1+t)^r = 1 + rt + \frac{r(r-1)}{2}t^2 + \dots$ Set  $\mho_{\Lambda}(z_1,\ldots,z_n)=\Omega_{\Lambda}(x(z_1),\ldots,x(z_n))\in\mathbb{Q}[[z_1,\ldots,z_n]].$ 

**Theorem (M., 2003).** (a) Both choices of the root lead to the same  $\mho_{\Lambda}$ . (b) The coefficient of  $\mho_{\Lambda}$  at a term of total degree k is of type k+1.

$$\Omega_{\Lambda}(x_1,\ldots,x_n)=\Omega_L(x_{c(1)},\ldots,x_{c(m)})$$

 $\Lambda = (L, c)$  colored link:  $L = (K_1, \dots, K_m)$ ,  $c: \{1, \dots, m\} \rightarrow \{1, \dots, n\}$ 

One-variable case: 
$$\Omega_{\Lambda}(x) = \frac{\nabla_{\Lambda}(x - x^{-1})}{x - x^{-1}}$$

Multi-variable case: Treat  $z = x - x^{-1}$  as a quadratic equation in x.

Select a root  $x(z)=\frac{z}{2}\pm\sqrt{1+\frac{z^2}{4}}$  and expand the radical as a formal power series in z according to Newton' formula  $(1+t)^r=1+rt+\frac{r(r-1)}{2}t^2+\dots$  Set  $\mho_\Lambda(z_1,\dots,z_n)=\Omega_\Lambda(x(z_1),\dots,x(z_n))\in\mathbb{Q}[[z_1,\dots,z_n]].$ 

**Theorem (M., 2003).** (a) Both choices of the root lead to the same  $\mho_{\Lambda}.$ 

- (b) The coefficient of  $\mho_{\Lambda}$  at a term of total degree k is of type k+1.
- (c) The total degree of every nonzero term of  $\mho_{\Lambda}$  has the same parity as m.

$$\Omega_{\Lambda}(x_1,\ldots,x_n)=\Omega_L(x_{c(1)},\ldots,x_{c(m)})$$

 $\Lambda = (L, c)$  colored link:  $L = (K_1, \dots, K_m), c: \{1, \dots, m\} \rightarrow \{1, \dots, n\}$ 

One-variable case: 
$$\Omega_{\Lambda}(x) = \frac{\nabla_{\Lambda}(x - x^{-1})}{x - x^{-1}}$$

Multi-variable case: Treat  $z = x - x^{-1}$  as a quadratic equation in x.

Select a root  $x(z)=rac{z}{2}\pm\sqrt{1+rac{z^2}{4}}$  and expand the radical as a formal power series in z according to Newton' formula  $(1+t)^r = 1 + rt + \frac{r(r-1)}{2}t^2 + \dots$ Set  $\mho_{\Lambda}(z_1,\ldots,z_n)=\Omega_{\Lambda}(x(z_1),\ldots,x(z_n))\in\mathbb{Q}[[z_1,\ldots,z_n]].$ 

**Theorem (M., 2003).** (a) Both choices of the root lead to the same  $\mho_{\Lambda}$ .

- (b) The coefficient of  $\mho_{\Lambda}$  at a term of total degree k is of type k+1.
- (c) The total degree of every nonzero term of  $\mho_{\Lambda}$  has the same parity as m.
- (d)  $\mho_{\Lambda}(4y_1,\ldots,4y_n) \in \mathbb{Z}[[y_1,\ldots,y_n]].$

$$\mho_L(z_1,\ldots,z_m) = \sum_{T} \prod_{\{i,j\} \in E(T)} I_{ij} \prod_{v \in V(T)} z_v^{\deg(v)-1}$$

+(terms of total degrees  $\geq m$ ),

where T runs over all spanning trees of  $K_m$ .

$$\mho_L(z_1,\ldots,z_m) = \sum_T \prod_{\{i,j\}\in E(T)} I_{ij} \prod_{v\in V(T)} z_v^{\deg(v)-1}$$

+(terms of total degrees  $\geq m$ ),

where T runs over all spanning trees of  $K_m$ .

**Remark.** 
$$\prod_{v \in V(T)} z_v^{\deg(v)-1} \text{ has total degree } m-2 \text{ for each } T.$$

$$\mho_L(z_1,\ldots,z_m) = \sum_{T} \prod_{\{i,j\}\in E(T)} l_{ij} \prod_{v\in V(T)} z_v^{\deg(v)-1}$$

+(terms of total degrees  $\geq m$ ),

where T runs over all spanning trees of  $K_m$ .

**Remark.**  $\prod_{v \in V(T)} z_v^{\deg(v)-1}$  has total degree m-2 for each T.

**Corollary:** the Hosokawa–Hartley–Hoste formula for  $\alpha(L)$ 

$$\mho_L(z_1,\ldots,z_m) = \sum_{T} \prod_{\{i,j\}\in E(T)} I_{ij} \prod_{v\in V(T)} z_v^{\deg(v)-1}$$

+(terms of total degrees  $\geq m$ ),

where T runs over all spanning trees of  $K_m$ .

**Remark.** 
$$\prod_{v \in V(T)} z_v^{\deg(v)-1}$$
 has total degree  $m-2$  for each  $T$ .

**Corollary**: the Hosokawa–Hartley–Hoste formula for  $\alpha(L)$ 

Similar formulas:

- L. Traldi (1988), A. Yu. Buryak (2011) for  $\Omega_L(1+v_1,\ldots,1+v_m)$
- J. Levine (1999) for  $\Delta_L(1 + u_1, ..., 1 + u_m)$

**Theorem.** Let  $L=(K_1,\ldots,K_m)$  be an m-component link, for an  $S\subset [m]$  let  $L_S=(K_{s_1},\ldots,K_{s_n})$ , where  $S=\{s_1,\ldots,s_n\}$ , and let  $I_{ij}=\operatorname{lk}(L_{\{i,j\}})$ . Then

$$\omega(L) = \beta(L) - \left(\sum_{S \subsetneq [m]} \omega(L_S) \sum_F \prod_{\{i,j\} \in E(F)} l_{ij}\right) + (\text{a polynomial in } l_{ij}),$$

where F runs over all rooted forests with all roots in S and with the non-roots being precisely all the elements of  $[m] \setminus S$ .

A rooted forest is a graph whose every component is a rooted tree (that is, a tree with a distinguished vertex) containing at least one edge.

**Theorem.** Let  $L=(K_1,\ldots,K_m)$  be an m-component link, for an  $S\subset [m]$  let  $L_S=(K_{s_1},\ldots,K_{s_n})$ , where  $S=\{s_1,\ldots,s_n\}$ , and let  $I_{ij}=\operatorname{lk}(L_{\{i,j\}})$ . Then

$$\omega(L) = \beta(L) - \left(\sum_{S \subsetneq [m]} \omega(L_S) \sum_F \prod_{\{i,j\} \in E(F)} l_{ij}\right) + (\text{a polynomial in } l_{ij}),$$

where F runs over all rooted forests with all roots in S and with the non-roots being precisely all the elements of  $[m] \setminus S$ .

A rooted forest is a graph whose every component is a rooted tree (that is, a tree with a distinguished vertex) containing at least one edge.

**Corollary.**  $\omega(L) = \sum_{\Lambda} P_{\Lambda} \beta(\Lambda) + Q$ , where  $\Lambda$  runs over all sublinks of L and each  $P_{\Lambda}$  as well as Q are polynomials in the pairwise linking numbers of L.

$$\bar{\mathcal{V}}_L(z_1,\ldots,z_m) := \frac{\mathcal{V}_L(z_1,\ldots,z_m)}{\nabla_{K_1}(z_1)\cdots\nabla_{K_m}(z_m)}$$

$$\bar{\mathbb{U}}_L(z_1,\ldots,z_m):=\frac{\mathbb{U}_L(z_1,\ldots,z_m)}{\nabla_{K_1}(z_1)\cdots\nabla_{K_m}(z_m)}$$

**Step 2.** Let  $\ell_{ij} = \sqrt{\operatorname{lk}(K_i, K_j)} \in [0, \infty) \cup i[0, \infty)$  and  $\ell = \prod_{i < i} \ell_{ij}$ .

$$\bar{U}_L(z_1,\ldots,z_m):=\frac{U_L(z_1,\ldots,z_m)}{\nabla_{K_1}(z_1)\cdots\nabla_{K_m}(z_m)}$$

**Step 2.** Let  $\ell_{ij} = \sqrt{\operatorname{lk}(K_i, K_j)} \in [0, \infty) \cup i[0, \infty)$  and  $\ell = \prod_{i < j} \ell_{ij}$ .

$$\bar{\bar{\mathbb{O}}}_L(z_1,\ldots,z_m) := \frac{\ell^{4-m}\bar{\mathbb{O}}_L(\ell z_1,\ldots,\ell z_m)}{\prod_{i< j}\bar{\mathbb{O}}_{(K_i,K_i)}(\ell z_i,\ell z_j)}$$

$$\bar{\mathcal{Q}}_L(z_1,\ldots,z_m):=\frac{\mathcal{Q}_L(z_1,\ldots,z_m)}{\nabla_{\mathcal{K}_1}(z_1)\cdots\nabla_{\mathcal{K}_m}(z_m)}$$

Step 2. Let  $\ell_{ij}=\sqrt{\operatorname{lk}(K_i,K_j)}\in[0,\infty)\cup i[0,\infty)$  and  $\ell=\prod_{i< j}\ell_{ij}$ .

$$\overline{\overline{\mathbf{U}}}_{L}(z_{1},\ldots,z_{m}):=\frac{\ell^{4-m}\overline{\mathbf{U}}_{L}(\ell z_{1},\ldots,\ell z_{m})}{\prod_{i< j}\overline{\mathbf{U}}_{(K_{i},K_{j})}(\ell z_{i},\ell z_{j})}=\frac{\ell^{2-m}\overline{\mathbf{U}}_{L}(\ell z_{1},\ldots,\ell z_{m})}{\prod_{i< j}\frac{\overline{\mathbf{U}}_{(K_{i},K_{j})}(\ell_{ij}\frac{\ell}{\ell_{ij}}z_{i},\ell_{ij}\frac{\ell}{\ell_{ij}}z_{j})}{\ell_{::}^{2}}$$

$$\bar{\mathbb{U}}_L(z_1,\ldots,z_m):=\frac{\mathbb{U}_L(z_1,\ldots,z_m)}{\nabla_{K_1}(z_1)\cdots\nabla_{K_m}(z_m)}$$

**Step 2.** Let  $\ell_{ij}=\sqrt{\operatorname{lk}(K_i,K_j)}\in[0,\infty)\cup i[0,\infty)$  and  $\ell=\prod_{i< j}\ell_{ij}.$ 

$$\begin{split} &\bar{\bar{\mathbb{U}}}_L(z_1,\ldots,z_m) := \frac{\ell^{4-m}\,\bar{\mathbb{U}}_L(\ell z_1,\ldots,\ell z_m)}{\prod_{i < j}\,\bar{\bar{\mathbb{U}}}_{(\mathcal{K}_i,\mathcal{K}_j)}(\ell z_i,\ell z_j)} = \frac{\ell^{2-m}\,\bar{\mathbb{U}}_L(\ell z_1,\ldots,\ell z_m)}{\prod_{i < j}\,\frac{\bar{\bar{\mathbb{U}}}_{(\mathcal{K}_i,\mathcal{K}_j)}(\ell_{ij}\,\ell_{ij}\,z_i,\,\ell_{ij}\,\ell_{ij}\,z_j)}{\ell_{ij}^2}} \\ &\text{where } \frac{\bar{\bar{\mathbb{U}}}_{(\mathcal{K}_i,\mathcal{K}_j)}(\ell_{ij}\,u,\ell_{ij}\,v)}{\ell_{ii}^2} = 1 + au^2 + buv + cv^2 + \ldots \end{split}$$

$$\bar{\mathbb{U}}_L(z_1,\ldots,z_m):=\frac{\mathbb{U}_L(z_1,\ldots,z_m)}{\nabla_{K_1}(z_1)\cdots\nabla_{K_m}(z_m)}$$

**Step 2.** Let  $\ell_{ij}=\sqrt{{\sf Ik}(K_i,K_j)}\in [0,\infty)\cup i[0,\infty)$  and  $\ell=\prod_{i< j}\ell_{ij}.$ 

$$\begin{split} & \bar{\bar{\mathbb{O}}}_L(\textbf{z}_1,\ldots,\textbf{z}_m) := \frac{\ell^{4-m} \, \bar{\mathbb{O}}_L(\ell\textbf{z}_1,\ldots,\ell\textbf{z}_m)}{\prod_{i < j} \, \bar{\bar{\mathbb{O}}}_{(\textbf{K}_i,\textbf{K}_j)}(\ell\textbf{z}_i,\ell\textbf{z}_j)} = \frac{\ell^{2-m} \, \bar{\mathbb{O}}_L(\ell\textbf{z}_1,\ldots,\ell\textbf{z}_m)}{\prod_{i < j} \, \frac{\bar{\bar{\mathbb{O}}}_{(\textbf{K}_i,\textbf{K}_j)}(\ell_{ij} \, \frac{\ell}{\ell_{ij}} \textbf{z}_i, \, \ell_{ij} \frac{\ell}{\ell_{ij}} \textbf{z}_j)}{\ell_{ij}^2}} \\ & \text{where } \frac{\bar{\bar{\mathbb{O}}}_{(\textbf{K}_i,\textbf{K}_j)}(\ell_{ij} \textbf{u},\ell_{ij} \textbf{v})}{\ell_{ii}^2} = 1 + a\textbf{u}^2 + b\textbf{u}\textbf{v} + c\textbf{v}^2 + \ldots \end{split}$$

due to 
$$\bar{\mho}_{(K_i,K_j)}(u,v)=\ell_{ij}^2+au^2+buv+cv^2+\dots$$

$$\bar{\mathbb{U}}_L(z_1,\ldots,z_m):=\frac{\mathbb{U}_L(z_1,\ldots,z_m)}{\nabla_{\mathcal{K}_1}(z_1)\cdots\nabla_{\mathcal{K}_m}(z_m)}$$

Step 2. Let  $\ell_{ij}=\sqrt{\operatorname{lk}(K_i,K_j)}\in[0,\infty)\cup i[0,\infty)$  and  $\ell=\prod_{i< j}\ell_{ij}$ .

$$\bar{\bar{\mathbf{U}}}_{L}(z_{1},\ldots,z_{m}) := \frac{\ell^{4-m}\bar{\mathbf{U}}_{L}(\ell z_{1},\ldots,\ell z_{m})}{\prod_{i< j}\bar{\mathbf{U}}_{(K_{i},K_{j})}(\ell z_{i},\ell z_{j})} = \frac{\ell^{2-m}\bar{\mathbf{U}}_{L}(\ell z_{1},\ldots,\ell z_{m})}{\prod_{i< j}\frac{\bar{\mathbf{U}}_{(K_{i},K_{j})}(\ell_{ij}\frac{\ell}{\ell_{ij}}z_{i},\ell_{ij}\frac{\ell}{\ell_{ij}}z_{j})}{\ell_{ij}^{2}}}$$

$$\bar{\mathbf{U}}_{(K_{i},K_{j})}(\ell_{ii}u,\ell_{ii}v)$$

where  $rac{ar{\mho}_{(\mathcal{K}_i,\mathcal{K}_j)}(\ell_{ij}u,\ell_{ij}v)}{\ell_{ij}^2}=1+au^2+buv+cv^2+\dots$ 

due to  $\bar{\mho}_{(\mathcal{K}_i,\mathcal{K}_j)}(u,v)=\ell_{ij}^2+au^2+buv+cv^2+\dots$ 

Step 3. 
$$\bar{\bar{\mathbb{O}}}_L(z_1,\ldots,z_m) = \frac{\bar{\bar{\mathbb{O}}}_L(z_1,\ldots,z_m)}{\prod\limits_{\substack{(i,j,k)\in\langle m\rangle^{(3)}}} \left(1+\frac{1}{12}\ell_{ij}^2\ell_{ik}^2\ell^2z_jz_k\right)}$$
, where  $\langle m\rangle^{\underline{(3)}}$ 

denotes the set of all injections  $\langle 3 \rangle o \langle m \rangle$  that respect the cyclic order.

Addendum 3 to Main Theorem. For a link L of  $m \geq 3$  components  $\bar{\bar{\omega}}(L)$  is the coefficient of  $\bar{\bar{\bar{\omega}}}_L(z_1,\ldots,z_m)$  at  $z_1\cdots z_m$ .

Addendum 3 to Main Theorem. For a link L of  $m \geq 3$  components  $\bar{\bar{\omega}}(L)$  is the coefficient of  $\bar{\bar{\bar{\omega}}}_L(z_1,\ldots,z_m)$  at  $z_1\cdots z_m$ .

In terms of the coefficient  $\bar{\omega}(L)$  of  $\bar{\bar{\mathbb{G}}}_L(z_1,\ldots,z_m)$  at  $z_1\cdots z_m$ :

$$\bar{\bar{\omega}}(L) = \bar{\omega}(L) - \frac{1}{12}\lambda \sum_{(i,j,k)\in\langle m\rangle^{\underline{(3)}}} I_{ij}I_{ik} \sum_{(i_1,\dots,i_{m-2})\in([m]\setminus\{j,k\})!} I_{ji_1}I_{i_1i_2}\cdots I_{i_{m-3}i_{m-2}}I_{i_{m-2}k}$$

where  $I_{ij} = \operatorname{lk}(K_i, K_j)$  and  $\lambda = \prod_{i < i} I_{ij}$ ,

Addendum 3 to Main Theorem. For a link L of  $m \geq 3$  components  $\bar{\bar{\omega}}(L)$  is the coefficient of  $\bar{\bar{\mathbb{Q}}}_{L}(z_{1},\ldots,z_{m})$  at  $z_{1}\cdots z_{m}$ .

In terms of the coefficient  $\bar{\omega}(L)$  of  $\bar{\bar{\mathbb{G}}}_L(z_1,\ldots,z_m)$  at  $z_1\cdots z_m$ :

$$\bar{\bar{\omega}}(L) = \bar{\omega}(L) - \frac{1}{12}\lambda \sum_{(i,j,k)\in\langle m\rangle^{(3)}} I_{ij}I_{ik} \sum_{(i_1,\dots,i_{m-2})\in([m]\setminus\{j,k\})!} I_{ji_1}I_{i_1i_2}\cdots I_{i_{m-3}i_{m-2}}I_{i_{m-2}k}$$

where  $I_{ij} = \mathsf{lk}(\mathcal{K}_i, \mathcal{K}_j)$  and  $\lambda = \prod_{i < j} I_{ij}$ ,

In terms of the coefficient  $\omega(L)$  of  $\mho_L(z_1,\ldots,z_m)$  at  $z_1\cdots z_m$ :

$$\bar{\omega}(L) = \lambda \omega(L) - \sum_{\{j,k\} \subset [m]} \frac{\lambda}{l_{jk}} \omega_{jk} \sum_{(i_1,\ldots,i_{m-2}) \in ([m] \setminus \{j,k\})!} l_{ji_1} l_{i_1 i_2} \cdots l_{i_{m-3} i_{m-2}} l_{i_{m-2} k}$$

where  $\omega_{ii} = \omega(K_i, K_i)$ .

$$\omega(L)$$
 is also the coefficient of  $\bar{\mathbb{G}}_L(z_1,\ldots,z_m)=rac{\mathbb{G}_L(z_1,\ldots,z_m)}{\nabla_{\mathcal{K}_1}(z_1)\cdots\nabla_{\mathcal{K}_m}(z_m)}$  at  $z_1\cdots z_m$ .

 $\Leftrightarrow \lambda \omega(L)$  is not a function of invariants of proper sublinks of L.

 $\Leftrightarrow \lambda \omega(L)$  is not a function of invariants of proper sublinks of L.

**Proposition 1.**  $\omega(L)$  is not a function of invariants of proper sublinks of L.

 $\Leftrightarrow \lambda \omega(L)$  is not a function of invariants of proper sublinks of L.

**Proposition 1.**  $\omega(L)$  is not a function of invariants of proper sublinks of L.

**Proof.**  $\omega(L)$  has a remarkably simple crossing change formula for a positive self-intersection of the *i*th component of *L*:

$$\omega(L_{+}) - \omega(L_{-}) = \sum_{(j_{1}, \dots, j_{m-1}) \in ([m] \setminus \{i\})!} I_{i'j_{1}} I_{j_{1}j_{2}} \cdots I_{j_{m-2}j_{m-1}} I_{j_{m-1}i''}, \quad (\times)$$

where  $L_{\pm}=(K_1,\ldots,K_{i_{\pm}},\ldots,K_m)$ , the singular knot between  $K_{i_{+}}$  and  $K_{i_{-}}$  is smoothed to a two-component link  $(K_{i'},K_{i''})$  and  $I_{ik}=\operatorname{lk}(K_i,K_k)$ .

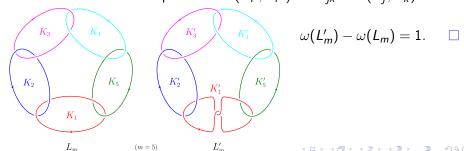
 $\Leftrightarrow \lambda \omega(L)$  is not a function of invariants of proper sublinks of L.

**Proposition 1.**  $\omega(L)$  is not a function of invariants of proper sublinks of L.

**Proof.**  $\omega(L)$  has a remarkably simple crossing change formula for a positive self-intersection of the *i*th component of *L*:

$$\omega(L_{+}) - \omega(L_{-}) = \sum_{(j_{1}, \dots, j_{m-1}) \in ([m] \setminus \{i\})!} l_{i'j_{1}} l_{j_{1}j_{2}} \dots l_{j_{m-2}j_{m-1}} l_{j_{m-1}i''}, \quad (\times)$$

where  $L_{\pm}=(K_1,\ldots,K_{i_{\pm}},\ldots,K_m)$ , the singular knot between  $K_{i_{+}}$  and  $K_{i_{-}}$  is smoothed to a two-component link  $(K_{i'},K_{i''})$  and  $I_{jk}=\operatorname{lk}(K_j,K_k)$ .



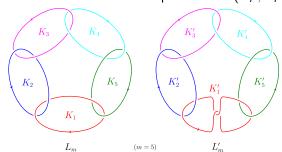
 $\Leftrightarrow \lambda \omega(L)$  is not a function of invariants of proper sublinks of L.

**Proposition 1.**  $\omega(L)$  is not a function of invariants of proper sublinks of L.

**Proof.**  $\omega(L)$  has a remarkably simple crossing change formula for a positive self-intersection of the *i*th component of *L*:

$$\omega(L_{+}) - \omega(L_{-}) = \sum_{(j_{1}, \dots, j_{m-1}) \in ([m] \setminus \{i\})!} l_{i'j_{1}} l_{j_{1}j_{2}} \dots l_{j_{m-2}j_{m-1}} l_{j_{m-1}i''}, \quad (\times)$$

where  $L_{\pm}=(K_1,\ldots,K_{i_{\pm}},\ldots,K_m)$ , the singular knot between  $K_{i_{+}}$  and  $K_{i_{-}}$  is smoothed to a two-component link  $(K_{i'},K_{i''})$  and  $I_{jk}=\operatorname{lk}(K_j,K_k)$ .



$$\omega(L'_m) - \omega(L_m) = 1.$$

**Proposition 2.** If m=3,  $\lambda\omega(L)$  (and hence  $\bar{\bar{\omega}}(L)$ ) is not a function of invariants of proper sublinks of L.

**Proof.** When all the  $I_{ij} = \ell$ , formula (×) takes the form

$$\omega(L_+) - \omega(L_-) = \ell^{m-2} \sum_{j,k \in [m] \setminus \{i\}, \ j \neq k} l_{i'j} l_{ki''}$$

**Proof.** When all the  $I_{ij} = \ell$ , formula (×) takes the form

$$\omega(L_+) - \omega(L_-) = \ell^{m-2} \sum_{j,k \in [m] \setminus \{i\}, \ j \neq k} l_{i'j} l_{ki''}$$

and its 3-component case takes the form

$$\omega(K_{i_+}, K_j, K_k) - \omega(K_{i_-}, K_j, K_k) = \ell(I_{i'j}I_{ki''} + I_{i'k}I_{ji''}).$$

**Proof.** When all the  $I_{ij} = \ell$ , formula (×) takes the form

$$\omega(L_+) - \omega(L_-) = \ell^{m-2} \sum_{j,k \in [m] \setminus \{i\}, \ j \neq k} l_{i'j} l_{ki''}$$

and its 3-component case takes the form

$$\omega(K_{i_+},K_j,K_k)-\omega(K_{i_-},K_j,K_k)=\ell(I_{i'j}I_{ki''}+I_{i'k}I_{jj''}).$$

Thus  $\omega(L)$  has exactly the same crossing change formula as

$$\omega'(L) := \ell^{m-3} \sum_{i < j < k} \omega(K_i, K_j, K_k).$$

**Proof.** When all the  $I_{ij} = \ell$ , formula (×) takes the form

$$\omega(L_+) - \omega(L_-) = \ell^{m-2} \sum_{j,k \in [m] \setminus \{i\}, \ j \neq k} l_{i'j} l_{ki''}$$

and its 3-component case takes the form

$$\omega(K_{i_+},K_j,K_k)-\omega(K_{i_-},K_j,K_k)=\ell(I_{i'j}I_{ki''}+I_{i'k}I_{ji''}).$$

Thus  $\omega(L)$  has exactly the same crossing change formula as

$$\omega'(L) := \ell^{m-3} \sum_{i < j < k} \omega(K_i, K_j, K_k).$$

Hence  $\omega(L) - \omega'(L)$  is a finite type invariant of link homotopy.

**Proof.** When all the  $I_{ij} = \ell$ , formula (×) takes the form

$$\omega(L_+) - \omega(L_-) = \ell^{m-2} \sum_{j,k \in [m] \setminus \{i\}, \ j \neq k} l_{i'j} l_{ki''}$$

and its 3-component case takes the form

$$\omega(K_{i_+},K_j,K_k)-\omega(K_{i_-},K_j,K_k)=\ell(I_{i'j}I_{ki''}+I_{i'k}I_{jj''}).$$

Thus  $\omega(L)$  has exactly the same crossing change formula as

$$\omega'(L) := \ell^{m-3} \sum_{i < j < k} \omega(K_i, K_j, K_k).$$

Hence  $\omega(L) - \omega'(L)$  is a finite type invariant of link homotopy.

But all such invariants are known to be polynomials in the pairwise linking numbers for 4- and 5-component links [Mellor-Thurston, 2000].

**Proof.** When all the  $I_{ii} = \ell$ , formula (×) takes the form

$$\omega(L_+) - \omega(L_-) = \ell^{m-2} \sum_{j,k \in [m] \setminus \{i\}, \ j \neq k} l_{i'j} l_{ki''}$$

and its 3-component case takes the form

$$\omega(K_{i_+},K_j,K_k)-\omega(K_{i_-},K_j,K_k)=\ell(I_{i'j}I_{ki''}+I_{i'k}I_{ji''}).$$

Thus  $\omega(L)$  has exactly the same crossing change formula as

$$\omega'(L) := \ell^{m-3} \sum_{i < i < k} \omega(K_i, K_i, K_k).$$

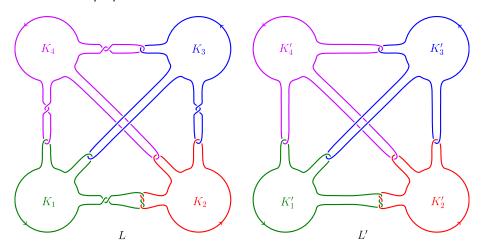
Hence  $\omega(L) - \omega'(L)$  is a finite type invariant of link homotopy.

But all such invariants are known to be polynomials in the pairwise linking numbers for 4- and 5-component links [Mellor-Thurston, 2000].

(But not for 6-component links [X.-S. Lin, 2000].)

**Proposition 4.** For m=4,  $\lambda\omega(L)$  (and hence  $\bar{\bar{\omega}}(L)$ ) is not a function of invariants of proper sublinks of L.

**Proposition 4.** For m=4,  $\lambda\omega(L)$  (and hence  $\bar{\bar{\omega}}(L)$ ) is not a function of invariants of proper sublinks of L.



Links 
$$L = S\left(\begin{smallmatrix} 2 & 1 & 1 & 1 & 1 & 0 & -1 \\ 1 & 1 & 1 & -1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ \end{smallmatrix}\right)$$
 and  $L' = S\left(\begin{smallmatrix} 2 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ \end{smallmatrix}\right)$ .