ON MEROMORPHIC FUNCTIONS

Tien-Yu Peter Chern 1

Abstract

By introducing a general growth scale, say, φ -order, we establish a general theory on the value distribution of a-points for any nonconstant meromorphic functions. We next prove the following deficiency relation and its variations:

Let f be nonconstant meromorphic in the complex plane \mathbb{C} and of finite positive φ -order λ . If there is a positive number $\tau > 1$, such that

$$\log^+\left(\varphi\left(r+\frac{1}{U(r,f)}\right)\right) = o\left(U(r,f)\right)$$
 as $r \to +\infty$,

here $U(r, f) = \varphi(r)^{\lambda(r)}$ with $\lambda(r)$ being a proximate φ -order for T(r, f) the characteristic function of f, then

$$\sum_{a \in \widehat{\mathbb{C}}} \left\{ 1 - (1/\lambda) \lim \sup_{r \to +\infty} \frac{\overline{n}(r, f = a)\varphi(r)}{r\varphi'(r)T(r, f)} \right\}^{+} \le 2,$$

where $\overline{n}(r, f = a)$ is the number of distinct roots of the equation f(z) = a for $|z| \leq r$, $\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ is the extended complex plane, the summation is over all extended complex values and the upper bound 2 can be reached. We also obtain a complete and precise description on n(r, f = a) in terms of $\delta(a, f)$, T(r, f) and λ for any meromorphic function f(z) of perfectly regular order.

E-Mail address: pchern52@yahoo.com.tw

¹2000 Mathematics Subject Classification. Primary 30D30, 30D35.

Key Words and Phrases: meromorphic function, value distribution, φ -order.

This paper was supported in part by funds of Academia Sinica, Taipei and Beijing, and a fund from Michigan State University, U.S.A.