Complex Structures and Moduli Problem in Representation Theory

Alexey N. Parshin

Kulikov Fest

Steklov Mathematical Institute
3-7 December 2012

2 1-22 1217 121212 = m 6 p

Moduli of Elliptic Curves

- $\begin{array}{l} \blacktriangleright \ \Delta_{\pm}^* = \{\lambda \in \mathbb{C}^* \mid |\lambda| \lessgtr 1\} = \\ \{ \text{isomorphism classes of elliptic curves } E_{\lambda} = \\ \mathbb{C}^*/\{\lambda^n, \ n \in \mathbb{Z}\} + \\ \text{primitive vector, up to a sign, from } \ \mathsf{H}^1(E_{\lambda}, \mathbb{Z}) \} \end{array}$
- $M = \Delta_+^* \sqcup \Delta_-^* \leftarrow \mathcal{E} \leftarrow X$
- $\triangleright \mathcal{E} = \bigcup_{\lambda \in M} E_{\lambda}$
- ▶ $X = \bigcup_{\lambda \in M} L_{\lambda}$, where L_{λ} is the line bundle corresponding to the sheaf $\mathcal{O}_{E_{\lambda}}(-1)$

neocioal oco Fuu Khu bas CUOU 1212 121 121

Moduli of Curves as Moduli of Representations

 $\mathcal{E} = \{$ equivalence classes of irreducible infinite-dimensional representations of a Heisenberg group $G \}$

 $X = \{ \text{equivalence classes of irreducible infinite-dimensional representations of a group <math>\hat{G} = G \rtimes \mathbb{Z} \}$

What happens with representation when λ tends to λ_0 lying on the circle $|\lambda|=1$?

Induced representations (definition)

Let G be a group and $H\subset G$ is a subgroup. For a character $\chi:H\to\mathbb{C}^*$ we define the induced representation π_χ of the group G.

Let V_{χ} be the space of all complex-valued functions f on G which satisfy the following conditions:

- 1. $f(gh) = \chi(h)f(g)$ for all $h \in G_{\chi}$.
- 2. The support Supp(f) is contained in a union of a finite number of left cosets of G_{χ} .

Left translations define a representation π_{χ} of the group G on $V_{\chi}.$

Representations of discrete nilpotent groups

G discrete nilpotent group

 $\pi: G \to \operatorname{End}(V)$ irreducible representation

 $H\subset G$ a subgroup, $\chi:H o \mathbb{C}^*$ character

$$V(H,\chi) := \{ v \in V : \text{for all } h \in H \ \pi(h)v = \chi(h)v \}.$$

V is of *finite type* iff there exists a pair H, χ such that $V(H, \chi) \neq (0)$ and $dimV(H, \chi) < \infty$.

Conjecture 1. Any irreducible representation of finite type is monomial (induced by an abelian character $\chi: H \to \mathbb{C}^*$ of a subgroup $H \subset G$).

The monomial property is known for unitary representations on Hilbert spaces (*I. Brown*, 1973).

Discrete Heisenberg groups

H, P, C (finitely generated) abelian groups

$$\langle -, - \rangle : H \times P \rightarrow C$$
 biadditive pairing

The set $H \times P \times C$ with the composition law

$$(n, p, c)(m, q, a) = (n + m, p + q, c + a + \langle n, q \rangle),$$

where $n, m \in H, p, q \in P$ and $c, a \in C$, is called the discrete Heisenberg group G.

Theorem (jointly with *S. A. Arnal'*). Every irreducible finite type representation of the discrete Heisenberg group is monomial.

Induced representations (examples)

We introduce the complex tori

$$\mathbb{T}_H = \operatorname{Hom}(H, \mathbb{C}^*), \mathbb{T}_P = \operatorname{Hom}(P, \mathbb{C}^*) \text{ and } \mathbb{T}_C = \operatorname{Hom}(C, \mathbb{C}^*) \ni \chi_C; \mathbb{T}_G = \mathbb{T}_H \times \mathbb{T}_P \times \mathbb{T}_C \ni \chi.$$

There is a pairing $H \times P \to \mathbb{C}^*$ such that :

$$(h, p) \mapsto \chi_{\mathbb{C}}(\langle h, p \rangle)$$

Let H_{χ} be the left kernel of this pairing. Then $G_{\chi}=H_{\chi}PC$ is a subgroup in G and $\chi|G_{\chi}$ is a character of G_{χ} . We set $\pi_{\chi}=\operatorname{ind}_{G_{\chi}}^{G}(\chi)$.

We also have an embedding $H \to \mathbb{T}_P$ and thus action of $h \in H$ by a translation h^* on \mathbb{T}_P . The embedding of \mathbb{T}_{H/H_χ} into \mathbb{T}_H gives a translation t^* on \mathbb{T}_H for any $t \in \mathbb{T}_{H/H_\chi}$.

Induced representations (properties)

The representations π_{χ} , $\chi = \chi_H \otimes \chi_P \otimes \chi_C$ are irreducible and are of finite type:

there are no nontrivial invariant subspaces, and the Schur lemma holds.

The representations V_χ and $V_{\chi'}$ are equivalent if and only if

- 1. $\chi_{\rm C} = \chi'_{\rm C}$.
- 2. There exists $h \in H$ such that $\chi'_P = h^*(\chi_P)$.
- 3. There exists $t \in \mathbb{T}_{H/H_{\chi}} = \operatorname{Hom}(H/H_{\chi}, \mathbb{C}^*) \subset \mathbb{T}_H$ such that $\chi'_H = t^*(\chi_H)$.

The equivalence classes of representations $V_\chi \Leftrightarrow$ orbits of the groups $\mathbb{T}_{H/H_\chi} \times H/H_\chi$ in subsets $\mathbb{T}_H \times \mathbb{T}_{H'} \times \{\chi_C\}$ of the torus \mathbb{T}_G .

Example: the group $G = \text{Heis}(3, \mathbb{Z})$

$$G = \left(\begin{array}{ccc} 1 & n & c \\ 0 & 1 & p \\ 0 & 0 & 1 \end{array}\right)$$

where
$$H=P=C=\mathbb{Z}$$
 and $\langle n,p\rangle=np$.
Let $\chi_H(n)=w^n,\ \chi_{H'}(p)=z^p,\ \chi_C(c)=\lambda^c$ with $(n,p,c)\in G$. Then

$$\mathbb{T}_H = \{ w \in \mathbb{C}^* \}, \quad \mathbb{T}_P = \{ z \in \mathbb{C}^* \}, \quad \mathbb{T}_C = \{ \lambda \in \mathbb{C}^* \}$$
 and if $\chi = (w, z, \lambda)$ and $\chi' = (w', z', \lambda')$ then
$$V_{\chi'} \cong V_\chi \Leftrightarrow \lambda' = \lambda, \text{ for some } n \in \mathbb{Z} \ z' = z \lambda^n$$

and if
$$\lambda^N = 1$$
 then $(w'w^{-1})^N = 1$.

Type I representations

▶ First, let $|\lambda| \neq 1$. Then

$$H_{\chi}=(0)$$
, $\Rightarrow V_{\chi}$ is infinite-dimensional $=\operatorname{ind}_{PC}^{\mathcal{G}}(\chi)$.

We have the action of the group $\mathbb{C}^* \times \mathbb{Z}$ on the set $\mathbb{T}_G = \mathbb{C}^* \times \mathbb{C}^* \times \mathbb{C}^*$ by the formula (where $u \in \mathbb{C}^*$, $n \in \mathbb{Z}$):

$$(u, n)(w, z, \lambda) = (uw, \lambda^n z, \lambda).$$

We define the space \mathcal{M}_{GP} as the quotient of the domain $\{\chi: |\lambda| \neq 1\} \subset \mathbb{T}_G$ by this action. The quotient-space is a two-dimensional complex manifold \mathcal{E} fibrated over $M = \mathbb{C}^* \setminus \{\lambda| = 1\}$ with the fibers = elliptic curves $E_{\lambda} = \mathbb{C}^* / \lambda^{\mathbb{Z}}$.

▶ The space \mathcal{M}_{GP} is the parameter space for this class of the infinite-dimensional representations of G.

Type I representations

The representations from the space \mathcal{M}_{GP} depend on the choice of a subgroup $P \subset G$. This subgroup has the following properties as a subgroup of the quotient $G/C \cong \mathbb{Z} \oplus \mathbb{Z}$:

- ▶ P is isomorphic to \mathbb{Z} and is a direct summand in G/C
- ► *P* is generated by a vector (x, y) with co-prime integers x, y
- ightharpoonup P is defined by a point in projective line $\mathbb{P}^1(\mathbb{Q})$

Theorem. Let V be an irreducible infinite-dimensional finite type representation of the group G. Then class of V belongs to \mathcal{M}_{GP} for some choice of the subgroup P. If two representations V and V' are equivalent then they belong to the same space \mathcal{M}_{GP} .

Type II representations

Second, what happens when $|\lambda|=1$ and $\lambda^N=1$ for some $N\in\mathbb{Z}$.

Theorem (jointly with *S. A. Arnal'*). Let *V* be an irreducible monomial representation of the group *G*, $V = ind_{H(V)}^G(\chi)$, where $\chi: H \to \mathbb{C}^*$ is a character and χ_C be it's restriction on the center of *G*. The following properties are equivalent:

- \triangleright V is finite-dimensional and dimV = N
- $\chi_C(c) = \lambda^c$ with λ of finite order N in \mathbb{C}^*
- ▶ $[G:H(V)] < \infty$
- $H(V) = N\mathbb{Z} \cdot \mathbb{Z} \cdot \mathbb{Z} = NH \cdot P \cdot C$

We see that inducing subgroup is the same for all representations of given dimension.

Classification of irreducible representations. Viewpoint of functional analysis

G a locally compact group, H Hilbert space

- Unitary representation $\pi: G \to U(H)$ continuous homomorphism into the unitary group
- $\check{G} = \{ \text{equivalence classes of irreducible unitary representations for the group } G \}$ with a natural topology (where the matrix elements of representations are continuous).
- ► Classification problem. Describe the topological space Ğ

Classification of irreducible representations. Viewpoint of algebraic geometry

G a group

- ► Family of (irreducible) representations/k where k is an algebraically closed field:
 - $f: E \to S$ vector bundle over a variety S/k and $\pi: G \to Aut_S(E)$ homomorphism such that for any point $s \in S(k)$ the representation π_s on the fiber E_s is irreducible.
- ▶ $\mathcal{M}_G(S) = \{\text{equivalence classes of families of representations over } S \text{ for the group } G\}$
- ▶ **Moduli problem**. Find a universal family $F : \mathcal{E} \to \mathcal{M}$ such that for all S there is a natural bijection

$$Hom(S, \mathcal{M}) \to \mathcal{M}_G(S)$$
,

where the \mathcal{M} is a variety or scheme or a stack.

Solutions of the moduli problem

- ▶ Parameter space is a variety M_G together with a family of representations E_G such that
 - ▶ for every point $P \in M_G$ the representation $(E_G)_P$ is irreducible,
 - for every irreducible representation $\pi: G \to Aut_{\mathbb{C}}(V)$ of the group G there exists a unique point $P \in M_G$ and an isomorphism $V \cong (E_G)_P$.
- a parameter space M_G is the coarse moduli scheme for the group G or the moduli problem can be solved by a stack M_G^{st} . The natural map $M_G \to M_G^{st}$ is bijection for the \mathbb{C} -points.

The moduli space

Let $\mathcal{M}_G^{\mathit{fin}}$ be the parameter space of all finite-dimensional representations of the group G and let μ_N be the group of N-th roots of unity. Then

$$\mathcal{M}_{\mathsf{G}}^{\mathsf{fin}} = \bigsqcup_{\mathsf{N},\mu_{\mathsf{N}}} \mathbb{C}^*/\mu_{\mathsf{N}} \times \mathbb{C}^*/\mu_{\mathsf{N}}$$

Define

$$\mathcal{M}_{\textit{G}} = \bigsqcup_{\textit{P} \in \mathbb{P}^1(\mathbb{Q})} \mathcal{M}_{\textit{GP}} \bigsqcup \mathcal{M}_{\textit{G}}^{\textit{fin}} = \mathcal{M}_{\textit{G}}^{\textit{infin}} \bigsqcup \mathcal{M}_{\textit{G}}^{\textit{fin}}$$

Theorem*. \mathcal{M}_G^{fin} is the moduli stack of the finite-dimensional representations of the group G. \mathcal{M}_G^{infin} is the moduli stack of the infinite-dimensional representations of the group G.

The moduli space

Let $\mathcal{M}_G^{\mathit{fin}}$ be the parameter space of all finite-dimensional representations of the group G and let μ_N be the group of N-th roots of unity. Then

$$\mathcal{M}_{\mathsf{G}}^{\mathsf{fin}} = \bigsqcup_{\mathsf{N},\mu_{\mathsf{N}}} \mathbb{C}^*/\mu_{\mathsf{N}} \times \mathbb{C}^*/\mu_{\mathsf{N}}$$

Define

$$\mathcal{M}_{\textit{G}} = \bigsqcup_{\textit{P} \in \mathbb{P}^1(\mathbb{Q})} \mathcal{M}_{\textit{GP}} \bigsqcup \mathcal{M}_{\textit{G}}^{\textit{fin}} = \mathcal{M}_{\textit{G}}^{\textit{infin}} \bigsqcup \mathcal{M}_{\textit{G}}^{\textit{fin}}$$

Theorem*. \mathcal{M}_G^{fin} is the moduli stack of the finite-dimensional representations of the group G. \mathcal{M}_G^{infin} is the moduli stack of the infinite-dimensional representations of the group G.

▶ In this theory we have no room for the representations V_{χ} with another λ 's. They are unitary representations for the C^* -algebras with irrational rotations

Trace problem

The representations V_{χ} have no characters (the traces of representation $\pi_{\chi}(g)$, $g \in G$ operators will diverge). This problem can be solved by an extension of the group G to a larger one. We use a well-known construction from the theory of loop groups. We have to add some "loop rotations" to G.

Trace problem

- The representations V_χ have no characters (the traces of representation $\pi_\chi(g)$, $g \in G$ operators will diverge). This problem can be solved by an extension of the group G to a larger one. We use a well-known construction from the theory of loop groups. We have to add some "loop rotations" to G.
- ▶ G \Rightarrow $\hat{G} = G \times A$, where $A \subset \text{Hom}(H, P)$, $A \neq (0)$,

$$A \sim \left(\begin{array}{cc} \operatorname{Id} & 0 \\ A & \operatorname{Id} \end{array} \right) \quad \text{acts on } H \oplus P.$$

Trace problem

- The representations V_χ have no characters (the traces of representation $\pi_\chi(g)$, $g \in G$ operators will diverge). This problem can be solved by an extension of the group G to a larger one. We use a well-known construction from the theory of loop groups. We have to add some "loop rotations" to G.
- $G \Rightarrow \hat{G} = G \rtimes A$, where $A \subset \operatorname{Hom}(H, P)$, $A \neq (0)$,

$$A \sim \left(\begin{array}{cc} \operatorname{Id} & 0 \\ A & \operatorname{Id} \end{array} \right) \quad \operatorname{acts on} \ H \oplus P.$$

▶ One needs to extend the automorphisms of the abelian group $H \oplus P$ to automorphisms of the entire Heisenberg group.

Trace properties

Under simple and natural conditions, the representation of G on V_χ can be extended to a representation $\hat{\pi}_\chi$ of the extended group \hat{G} on the same space. Let $\mathbb{T}_A = \operatorname{Hom}(A, \mathbb{C}^*)$ and $\mathbb{T}_{\hat{G}} = \mathbb{T}_G \times \mathbb{T}_A$. If $\hat{\chi} = (\chi, \chi_A) \in \mathbb{T}_{\hat{G}}$, then we set

$$\hat{\pi}_{\hat{\chi}} = \hat{\pi}_{\chi} \otimes \chi_{A}.$$

We have $\operatorname{Tr} \hat{\pi}_{\hat{\chi}} = \operatorname{Tr} \hat{\pi}_{\chi} \cdot \chi_A$ if the trace is defined.

- ► The trace $\operatorname{Tr} \hat{\pi}_{\hat{\chi}}(g)$ is defined on a sufficiently big "domain" $\hat{G}(\chi)$ in the group \hat{G} .
- Let $\hat{\chi}, \hat{\chi}' \in \mathbb{T}_{\hat{G}}$. The representations $\hat{\pi}_{\hat{\chi}}$ and $\hat{\pi}_{\hat{\chi}'}$ are equivalent if and only if $\hat{G}(\chi) = \hat{G}(\chi')$ and $\operatorname{Tr} \; \hat{\pi}_{\hat{\chi}}(g) = \operatorname{Tr} \; \hat{\pi}_{\hat{\chi}'}(g)$ for all $g \in \hat{G}(\chi)$.

Example:
$$\hat{G} = \text{Heis}(3, \mathbb{Z}) \rtimes \mathbb{Z}$$

Example:
$$\hat{G} = \text{Heis}(3, \mathbb{Z}) \times \mathbb{Z}$$

Let $\hat{G} = \begin{pmatrix} 1 & n & \frac{1}{2}n(n-1) & c \\ 0 & 1 & n & p \\ 0 & 0 & 1 & k \\ 0 & 0 & 0 & 1 \end{pmatrix}$,

$$\chi_H(n)=w^n$$
, $\chi_P(p)=z^p$, $\chi_C(c)=\lambda^c$ and $\chi_A(k)=t^k$. Then

$$\hat{G}(\hat{\chi}) = \{g = (n, p, c, k) | k > 0\} & \text{if } |\lambda| < 1, \\
\hat{G}(\hat{\chi}) = G & \text{if } |\lambda| = 1, \ \lambda^{N} = 1, \ N \in \mathbb{N} \\
\hat{G}(\hat{\chi}) = \{g = (n, p, c, k) | k < 0\} & \text{if } |\lambda| > 1,$$

and

Tr
$$\hat{\pi}_{\hat{\chi}}(0, p, c, k) = \lambda^c t^k z^p \sum_{n \in \mathbb{Z}} z^{kn} \lambda^{np+1/2kn(n-1)}$$

converges for all $z \in \mathbb{C}^*$ and $|\lambda| \leq 1$, $k \geq 0$.

Tr
$$\hat{\pi}_{\hat{x}}(n, p, c, k) = 0$$
 for $n \neq 0$.

Characters and theta-functions

We have

$$\operatorname{Pic}(E_{\lambda}) = H^{1}(E_{\lambda}, \mathcal{O}^{*}) = H^{1}(H, \mathcal{O}^{*}(\mathbb{T}_{P})) \to A = \mathbb{Z} \ni k,$$

$$\operatorname{Pic}(E_{\lambda}) = \{ \varphi(n, z) = a^{-n} z^{-kn} \lambda^{-1/2kn(n-1)} : a \in \mathbb{C}^{*}, \ k \in \mathbb{Z} \}.$$

Let L be the line bundle corresponding to a cocycle φ . Then

$$H^0(E_\lambda, L) = \{f(z), z \in \mathbb{T}_P : f(\lambda^n z) = \varphi(n, z)f(z)\}$$

and it suffices to impose the condition $f(\lambda z) = a^{-1}z^{-k}f(z)$. The theta-series

$$\vartheta_{p,k,a}(z,\lambda) := z^p \sum_{n \in \mathbb{Z}} a^n z^{kn} \lambda^{np+1/2kn(n-1)}$$

(they are the Poincare series for φ) are convergent for all $z \in \mathbb{C}^*$, $0 < |\lambda| < 1$, k > 0 and form a basis in the space $H^0(E_\lambda, L)$ for $0 \le p < k$. Finally,

$$\operatorname{Tr}\hat{\pi}_{\hat{x}}(0, p, c, k) = \lambda^{c} t^{k} \vartheta_{p,k,1}(z, \lambda).$$

Let L_{λ} be the line bundle corresponding to the sheaf $\mathcal{O}_{E_{\lambda}}(-1)$. Denote by $L_{\lambda}^* \subset L_{\lambda}$ the corresponding G_m -bundle. Then we have

The parameter space for representations $\pi_{\hat{\chi}}$ $\hat{\chi} \sim (\lambda, w, z, t | \in \mathbb{C}^*)$ with $|\lambda| \neq 1$ is

$$X=\bigcup_{\lambda}L_{\lambda}^{*},$$

which is quotient of $(\lambda, z, t) \in \mathbb{C}^*$ by the relation

$$\lambda' = \lambda$$
, $z' = z\lambda^n$, $t' = tz^n\lambda^{\frac{1}{2}n(n-1)}$ for some $n \in \mathbb{Z}$

▶ The characters of representations $\pi_{\hat{\chi}}$ are the functions on L_{λ}^* coming from the sections of the line bundles L_{λ}^{-k} .

Boundary behavior

We assume:

- ▶ the extension Q of the pairing $\langle n, k(n) \rangle$, $n \in H$ on $V = H \otimes \mathbb{R}$ is positive-definite
- $ightharpoonup C=\mathbb{Z}$, $\lambda\in\mathbb{T}_C=\mathbb{C}^*$ and $\chi(c)=\lambda^c$
- $\chi_H \equiv 1$ and $\chi_P \equiv 1$

The classical limit formulas for theta-functions imply the following behavior of the trace near the $\chi_0=\lambda_0^c$, where λ_0 is a root of unity:

$$\operatorname{Tr} \hat{\pi}_{\hat{\chi}}(g) \sim \operatorname{Tr} \hat{\pi}_{\hat{\chi}_0}(g) \cdot [H : H_{\chi_0}]^{-1} (\operatorname{Det}_V Q)^{-1} A \log |\lambda|^{-\frac{1}{2} \operatorname{rk} H},$$

when $\chi \to \chi_0$. Here $A = (\sqrt{\pi}/2)^{\mathrm{rk}H}$. The trace of the (finite-dimensional) representation $\hat{\pi}_{\hat{\chi}_0}$ can be computed in terms of a Gauss sum.

Examples

- ▶ 1) finite-dimensional representations/k of semi-simple Lie algebras with char(k) > 0 (sl(2, k), I. R. Shafarevich, A. N. Rudakov, 1967; arbitrary algebra, R. Veldkamp ,1972)
- 2) smooth representations/C of reductive algebraic groups over a p-adic field
 (J. N. Bernstein , A. V. Zelevinsky, 1976)
- ▶ 3) finite-dimensional representations/ℂ of discrete finitely presented groups (*A. Lubotzky, A. Magid*, 1985)
- ▶ **Answers**: 1) affine variety (actually a stack).
 - 2) countable disjoint unions of complex tori as parameter spaces (= moduli stacks,remarked by *S. O. Gorchinskiy*)
 - 3) affine varieties as parameter spaces (= moduli stacks,
 - D. Mumford, GIT, 1965, C. S. Seshadri 1967, C. T. Simpson 1994)

Classification problem for representations of discrete nilpotent groups

G discrete nilpotent group V irreducible representation of finite type, according to Conjecture 1 a monomial one induced from some subgroup H

Conjecture 2. There exists a moduli stack \mathcal{M}_G of these V's glued from complex tori

$$\mathcal{M}_G = \bigcup_{H \subset G} \mathbb{T}_{H/[H,H]} / \sim$$

In particular, how to glue the two stacks \mathcal{M}_G^{infin} and \mathcal{M}_G^{fin} from the previous example of the Heisenberg group $Heis(3,\mathbb{Z})$?