The Lüroth problem and the Cremona group

Arnaud Beauville

Université de Nice

Moscow, December 2012

Definitions

• A variety V is unirational if \exists generically surjective rational map $\mathbb{P}^n \dashrightarrow V$.

Definitions

- A variety V is unirational if \exists generically surjective rational map $\mathbb{P}^n \dashrightarrow V$.
- V is rational if \exists birational map $\mathbb{P}^n \xrightarrow{\sim} V$.

Definitions

- A variety V is unirational if \exists generically surjective rational map $\mathbb{P}^n \dashrightarrow V$.
- V is rational if \exists birational map $\mathbb{P}^n \xrightarrow{\sim} V$.
- Lüroth problem: unirational \implies rational?

Definitions

- A variety V is unirational if \exists generically surjective rational map $\mathbb{P}^n \dashrightarrow V$.
- V is rational if \exists birational map $\mathbb{P}^n \xrightarrow{\sim} V$.
- Lüroth problem: unirational ⇒ rational?

Lüroth (1875): yes for curves.

Definitions

- A variety V is unirational if \exists generically surjective rational map $\mathbb{P}^n \dashrightarrow V$.
- V is rational if \exists birational map $\mathbb{P}^n \xrightarrow{\sim} V$.
- Lüroth problem: unirational ⇒ rational?

Lüroth (1875): yes for curves.

(Quite easy with Riemann surface theory; but Lüroth's proof is algebraic.)

Castelnuovo (1894): a unirational surface is rational.

Castelnuovo (1894): a unirational surface is rational.

Enriques (1912): proposed counter-example : $V_{2,3} \subset \mathbb{P}^5$.

Castelnuovo (1894): a unirational surface is rational.

Enriques (1912): proposed counter-example : $V_{2,3} \subset \mathbb{P}^5$.

Actually Enriques proves unirationality,

Castelnuovo (1894): a unirational surface is rational.

Enriques (1912): proposed counter-example : $V_{2,3} \subset \mathbb{P}^5$.

Actually Enriques proves unirationality, and relies on an earlier paper of Fano (1908) for the non-rationality.

Castelnuovo (1894): a unirational surface is rational.

Enriques (1912): proposed counter-example : $V_{2,3} \subset \mathbb{P}^5$.

Actually Enriques proves unirationality, and relies on an earlier

paper of Fano (1908) for the non-rationality.

But Fano's analysis is incomplete.

Castelnuovo (1894): a unirational surface is rational.

Enriques (1912): proposed counter-example : $V_{2,3} \subset \mathbb{P}^5$.

Actually Enriques proves unirationality, and relies on an earlier paper of Fano (1908) for the non-rationality.

But Fano's analysis is incomplete.

Fano made further attempts (1915, 1947), but not acceptable by modern standards.

Castelnuovo (1894): a unirational surface is rational.

Enriques (1912): proposed counter-example : $V_{2,3} \subset \mathbb{P}^5$.

Actually Enriques proves unirationality, and relies on an earlier paper of Fano (1908) for the non-rationality.

But Fano's analysis is incomplete.

Fano made further attempts (1915, 1947), but not acceptable by modern standards.

Around 1971 three "modern" counter-examples appeared:

Authors Example Method	Authors	Example	Method
------------------------	---------	---------	--------

Authors	Example	Method
Clemens-Griffiths	$V_3\subset \mathbb{P}^4$	J(V)

Authors	Example	Method
Clemens-Griffiths	$V_3 \subset \mathbb{P}^4$	J(V)
Iskovskikh-Manin	some $V_4\subset \mathbb{P}^4$	Bir(V)

Authors	Example	Method
Clemens-Griffiths	$V_3 \subset \mathbb{P}^4$	J(V)
Iskovskikh-Manin	some $V_4\subset \mathbb{P}^4$	Bir(V)
Artin-Mumford	specific	Tors $H^3(V,\mathbb{Z})$

• The 3 papers have been very influential: many other examples worked out.

• The 3 papers have been very influential: many other examples worked out.

They are still (essentially) the only methods known to prove non-rationality.

- The 3 papers have been very influential: many other examples worked out.
 - They are still (essentially) the only methods known to prove non-rationality.
- Each method has its advantages and its drawbacks.

- The 3 papers have been very influential: many other examples worked out.
 - They are still (essentially) the only methods known to prove non-rationality.
- Each method has its advantages and its drawbacks.
- The 3 methods use in an essential way Hironaka's results (elimination of indeterminacies).

- The 3 papers have been very influential: many other examples worked out.
 - They are still (essentially) the only methods known to prove non-rationality.
- Each method has its advantages and its drawbacks.
- The 3 methods use in an essential way Hironaka's results (elimination of indeterminacies).

Let us test them on the threefolds studied by Fano:

- The 3 papers have been very influential: many other examples worked out.
 - They are still (essentially) the only methods known to prove non-rationality.
- Each method has its advantages and its drawbacks.
- The 3 methods use in an essential way Hironaka's results (elimination of indeterminacies).

Let us test them on the threefolds studied by Fano:

Threefolds V with $-K_V$ very ample, $\operatorname{Pic}(V) = \mathbb{Z}[K_V]$.

- The 3 papers have been very influential: many other examples worked out.
 - They are still (essentially) the only methods known to prove non-rationality.
- Each method has its advantages and its drawbacks.
- The 3 methods use in an essential way Hironaka's results (elimination of indeterminacies).

Let us test them on the threefolds studied by Fano:

Threefolds V with $-K_V$ very ample, $\operatorname{Pic}(V) = \mathbb{Z}[K_V]$.

(Fano threefolds of the first species : modern classification due to Iskovskikh).

variety	unirational	rational	method

variety	unirational	rational	method
$V_4\subset \mathbb{P}^4$	some	no	Bir(V)

variety	unirational	rational	method
$V_4\subset \mathbb{P}^4$	some	no	Bir(V)
$V_{2,3}\subset \mathbb{P}^5$	yes	gen. no	J(V) , Bir(V)

variety	unirational	rational	method
$V_4\subset \mathbb{P}^4$	some	no	Bir(V)
$V_{2,3}\subset \mathbb{P}^5$	yes	gen. no	J(V) , Bir(V)
$V_{2,2,2}\subset \mathbb{P}^6$	"	no	J(V)

variety	unirational	rational	method
$V_4\subset \mathbb{P}^4$	some	no	Bir(V)
$V_{2,3}\subset \mathbb{P}^5$	yes	gen. no	J(V) , Bir(V)
$V_{2,2,2}\subset \mathbb{P}^6$,,	no	J(V)
$V_{10}\subset \mathbb{P}^7$	"	gen. no	J(V)

variety	unirational	rational	method
$V_4\subset \mathbb{P}^4$	some	no	Bir(V)
$V_{2,3}\subset \mathbb{P}^5$	yes	gen. no	J(V) , Bir(V)
$V_{2,2,2}\subset \mathbb{P}^6$,,	no	J(V)
$V_{10}\subset \mathbb{P}^7$	"	gen. no	J(V)
$V_{12}, V_{16}, V_{18}, V_{22}$	"	yes	

variety	unirational	rational	method
$V_4\subset \mathbb{P}^4$	some	no	Bir(V)
$V_{2,3}\subset \mathbb{P}^5$	yes	gen. no	J(V) , $Bir(V)$
$V_{2,2,2}\subset \mathbb{P}^6$	"	no	J(V)
$V_{10}\subset \mathbb{P}^7$,,	gen. no	J(V)
$V_{12}, V_{16}, V_{18}, V_{22}$,,	yes	
$V_{14}\subset \mathbb{P}^9$,,	no	J(V)

So the situation is quite satisfactory, except for $V_{2,3}$ and V_{10} .

So the situation is quite satisfactory, except for $V_{2,3}$ and V_{10} .

Note that in both cases, "generic" means "in an (unspecified) Zariski open subset of the moduli space". So this does not say anything for a particular variety of this type.

So the situation is quite satisfactory, except for $\mathit{V}_{2,3}$ and $\mathit{V}_{10}.$

Note that in both cases, "generic" means "in an (unspecified) Zariski open subset of the moduli space". So this does not say anything for a particular variety of this type.

Theorem

The threefold $\sum X_i = \sum X_i^2 = \sum X_i^3 = 0$ in \mathbb{P}^6 is not rational.

So the situation is quite satisfactory, except for $\mathit{V}_{2,3}$ and $\mathit{V}_{10}.$

Note that in both cases, "generic" means "in an (unspecified) Zariski open subset of the moduli space". So this does not say anything for a particular variety of this type.

Theorem

The threefold $\sum X_i = \sum X_i^2 = \sum X_i^3 = 0$ in \mathbb{P}^6 is not rational.

What is the point of giving one more counter-example?

So the situation is quite satisfactory, except for $V_{2,3}$ and V_{10} .

Note that in both cases, "generic" means "in an (unspecified) Zariski open subset of the moduli space". So this does not say anything for a particular variety of this type.

Theorem

The threefold $\sum X_i = \sum X_i^2 = \sum X_i^3 = 0$ in \mathbb{P}^6 is not rational.

What is the point of giving one more counter-example?

• This gives one specific example of a non-rational $V_{2,3}$.

So the situation is quite satisfactory, except for $\mathit{V}_{2,3}$ and $\mathit{V}_{10}.$

Note that in both cases, "generic" means "in an (unspecified) Zariski open subset of the moduli space". So this does not say anything for a particular variety of this type.

Theorem

The threefold $\sum X_i = \sum X_i^2 = \sum X_i^3 = 0$ in \mathbb{P}^6 is not rational.

What is the point of giving one more counter-example?

- This gives one specific example of a non-rational $V_{2,3}$.
- The proof is very simple maybe the simplest non-rationality proof available.

So the situation is quite satisfactory, except for $\mathit{V}_{2,3}$ and $\mathit{V}_{10}.$

Note that in both cases, "generic" means "in an (unspecified) Zariski open subset of the moduli space". So this does not say anything for a particular variety of this type.

Theorem

The threefold $\sum X_i = \sum X_i^2 = \sum X_i^3 = 0$ in \mathbb{P}^6 is not rational.

What is the point of giving one more counter-example?

- This gives one specific example of a non-rational $V_{2,3}$.
- The proof is very simple maybe the simplest non-rationality proof available.
- ullet Real motivation: it completes the work of Prokhorov on the finite simple subgroups of ${
 m Cr}_3$.

Recall the definition of the Jacobian of a curve C:

Recall the definition of the Jacobian of a curve C:

$$H^1(C,\mathbb{Z})\subset H^1(C,\mathbb{C})=H^{1,0}\oplus H^{0,1}$$

Recall the definition of the Jacobian of a curve C:

$$H^1(C,\mathbb{Z})\subset H^1(C,\mathbb{C})=H^{1,0}\oplus H^{0,1}$$

The image of $H^1(\mathcal{C},\mathbb{Z})$ in $H^{0,1}$ is a lattice, so get complex torus

$$JC:=H^{0,1}/H^1(C,\mathbb{Z})$$
.

Recall the definition of the Jacobian of a curve C:

$$H^1(C,\mathbb{Z})\subset H^1(C,\mathbb{C})=H^{1,0}\oplus H^{0,1}$$

The image of $H^1(C,\mathbb{Z})$ in $H^{0,1}$ is a lattice, so get complex torus

$$JC:=H^{0,1}/H^1(C,\mathbb{Z})$$
.

The cup-product defines a unimodular skew-symmetric form

$$E: H^1(C,\mathbb{Z}) \times H^1(C,\mathbb{Z}) \to \mathbb{Z}$$

Recall the definition of the Jacobian of a curve C:

$$H^1(C,\mathbb{Z})\subset H^1(C,\mathbb{C})=H^{1,0}\oplus H^{0,1}$$

The image of $H^1(C,\mathbb{Z})$ in $H^{0,1}$ is a lattice, so get complex torus

$$JC:=H^{0,1}/H^1(C,\mathbb{Z})$$
.

The cup-product defines a unimodular skew-symmetric form

$$E: H^1(C,\mathbb{Z}) \times H^1(C,\mathbb{Z}) \to \mathbb{Z}$$

such that $E_{\mathbb{R}}(ix, iy) = E_{\mathbb{R}}(x, y)$, $E_{\mathbb{R}}(x, ix) > 0$ for $x \neq 0$.

Recall the definition of the Jacobian of a curve C:

$$H^1(C,\mathbb{Z})\subset H^1(C,\mathbb{C})=H^{1,0}\oplus H^{0,1}$$

The image of $H^1(C,\mathbb{Z})$ in $H^{0,1}$ is a lattice, so get complex torus

$$JC:=H^{0,1}/H^1(C,\mathbb{Z})$$
.

The cup-product defines a unimodular skew-symmetric form

$$E: H^1(C,\mathbb{Z}) \times H^1(C,\mathbb{Z}) \to \mathbb{Z}$$

such that $E_{\mathbb{R}}(ix, iy) = E_{\mathbb{R}}(x, y)$, $E_{\mathbb{R}}(x, ix) > 0$ for $x \neq 0$.

This is a principal polarization on JC: we say that JC is a p.p.a.v.

Recall the definition of the Jacobian of a curve C:

$$H^1(C,\mathbb{Z})\subset H^1(C,\mathbb{C})=H^{1,0}\oplus H^{0,1}$$

The image of $H^1(C,\mathbb{Z})$ in $H^{0,1}$ is a lattice, so get complex torus

$$JC:=H^{0,1}/H^1(C,\mathbb{Z})$$
.

The cup-product defines a unimodular skew-symmetric form

$$E: H^1(C,\mathbb{Z}) \times H^1(C,\mathbb{Z}) \to \mathbb{Z}$$

such that $E_{\mathbb{R}}(ix, iy) = E_{\mathbb{R}}(x, y)$, $E_{\mathbb{R}}(x, ix) > 0$ for $x \neq 0$.

This is a principal polarization on JC: we say that JC is a p.p.a.v.

The polarization defines a unique divisor on *JC* (up to translation), the theta divisor.

Recall the definition of the Jacobian of a curve *C*:

$$H^1(C,\mathbb{Z})\subset H^1(C,\mathbb{C})=H^{1,0}\oplus H^{0,1}$$

The image of $H^1(C,\mathbb{Z})$ in $H^{0,1}$ is a lattice, so get complex torus

$$JC:=H^{0,1}/H^1(C,\mathbb{Z})$$
.

The cup-product defines a unimodular skew-symmetric form

$$E: H^1(C,\mathbb{Z}) \times H^1(C,\mathbb{Z}) \to \mathbb{Z}$$

such that $E_{\mathbb{R}}(ix, iy) = E_{\mathbb{R}}(x, y)$, $E_{\mathbb{R}}(x, ix) > 0$ for $x \neq 0$.

This is a principal polarization on JC: we say that JC is a p.p.a.v.

The polarization defines a unique divisor on *JC* (up to translation), the theta divisor.

V Fano threefold, completely analogous Hodge decomposition

$$H^3(V,\mathbb{Z}) \subset H^3(V,\mathbb{C}) = H^{2,1} \oplus H^{1,2}$$

Recall the definition of the Jacobian of a curve *C*:

$$H^1(C,\mathbb{Z})\subset H^1(C,\mathbb{C})=H^{1,0}\oplus H^{0,1}$$

The image of $H^1(C,\mathbb{Z})$ in $H^{0,1}$ is a lattice, so get complex torus

$$JC:=H^{0,1}/H^1(C,\mathbb{Z})$$
.

The cup-product defines a unimodular skew-symmetric form

$$E: H^1(C,\mathbb{Z}) \times H^1(C,\mathbb{Z}) \to \mathbb{Z}$$

such that $E_{\mathbb{R}}(ix, iy) = E_{\mathbb{R}}(x, y)$, $E_{\mathbb{R}}(x, ix) > 0$ for $x \neq 0$.

This is a principal polarization on JC: we say that JC is a p.p.a.v.

The polarization defines a unique divisor on *JC* (up to translation), the theta divisor.

V Fano threefold, completely analogous Hodge decomposition

$$H^3(V,\mathbb{Z})\subset H^3(V,\mathbb{C})=H^{2,1}\oplus H^{1,2}$$

 $JV = H^{1,2}/H^3(V,\mathbb{Z})$ is a p.p.a.v., the intermediate Jacobian of V.

The Clemens-Griffiths criterion

If V is rational, JV is a Jacobian or a product of Jacobians.

The Clemens-Griffiths criterion

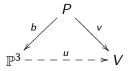
If V is rational, JV is a Jacobian or a product of Jacobians.

Sketch of proof: Assume $\exists u : \mathbb{P}^3 \xrightarrow{\sim} V$. Hironaka gives

The Clemens-Griffiths criterion

If V is rational, JV is a Jacobian or a product of Jacobians.

Sketch of proof: Assume $\exists u : \mathbb{P}^3 \xrightarrow{\sim} V$. Hironaka gives

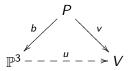


b: composition of blow-ups of points and smooth curves $C_1, \ldots C_p$; v birational morphism. Then:

The Clemens-Griffiths criterion

If V is rational, JV is a Jacobian or a product of Jacobians.

Sketch of proof: Assume $\exists u : \mathbb{P}^3 \xrightarrow{\sim} V$. Hironaka gives



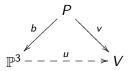
b: composition of blow-ups of points and smooth curves $C_1, \ldots C_p$; v birational morphism. Then:

$$JP = J_1 \times \ldots \times J_p$$
, with $J_i := JC_i$;

The Clemens-Griffiths criterion

If V is rational, JV is a Jacobian or a product of Jacobians.

Sketch of proof: Assume $\exists u : \mathbb{P}^3 \xrightarrow{\sim} V$. Hironaka gives



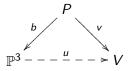
b: composition of blow-ups of points and smooth curves $C_1, \ldots C_p$; v birational morphism. Then:

$$JP = J_1 \times ... \times J_p$$
, with $J_i := JC_i$;
and $JP \cong JV \times A$ for some p.p.a.v. A

The Clemens-Griffiths criterion

If V is rational, JV is a Jacobian or a product of Jacobians.

Sketch of proof: Assume $\exists u : \mathbb{P}^3 \xrightarrow{\sim} V$. Hironaka gives



b: composition of blow-ups of points and smooth curves $C_1, \ldots C_p$; v birational morphism. Then:

$$JP = J_1 \times \ldots \times J_p$$
, with $J_i := JC_i$;

and $JP \cong JV \times A$ for some p.p.a.v. A

(because on H^3 , we have v^* and v_* with $v_*v^* = \mathrm{Id}$).

Miracle

The decomposition $JP = J_1 \times ... \times J_p$ is unique (up to permutation).

Miracle

The decomposition $JP = J_1 \times ... \times J_p$ is unique (up to permutation).

This is because

$$\Theta_{JP} = \Theta_{J_1} \times J_2 \times \ldots \times J_p + \ldots + J_1 \times \ldots \times J_{p-1} \times \Theta_{J_p}$$

Miracle

The decomposition $JP = J_1 \times ... \times J_p$ is unique (up to permutation).

This is because

$$\Theta_{JP} = \Theta_{J_1} \times J_2 \times \ldots \times J_p + \ldots + J_1 \times \ldots \times J_{p-1} \times \Theta_{J_p}$$

and the theta divisor of a Jacobian is irreducible.

Miracle

The decomposition $JP = J_1 \times ... \times J_p$ is unique (up to permutation).

This is because

$$\Theta_{JP} = \Theta_{J_1} \times J_2 \times \ldots \times J_p + \ldots + J_1 \times \ldots \times J_{p-1} \times \Theta_{J_p}$$

and the theta divisor of a Jacobian is irreducible.

Hence
$$JP \cong J_1 \times \ldots \times J_p \cong JV \times A \implies JP \cong J_{k_1} \times \ldots \times J_{k_m}$$
.

Miracle

The decomposition $JP = J_1 \times ... \times J_p$ is unique (up to permutation).

This is because

$$\Theta_{JP} = \Theta_{J_1} \times J_2 \times \ldots \times J_p + \ldots + J_1 \times \ldots \times J_{p-1} \times \Theta_{J_p}$$

and the theta divisor of a Jacobian is irreducible.

Hence
$$JP \cong J_1 \times \ldots \times J_p \cong JV \times A \implies JP \cong J_{k_1} \times \ldots \times J_{k_m}$$
.

How can one prove that $JV \not\cong J_1 \times \ldots \times J_p$?

Miracle

The decomposition $JP = J_1 \times ... \times J_p$ is unique (up to permutation).

This is because

$$\Theta_{JP} = \Theta_{J_1} \times J_2 \times \ldots \times J_p + \ldots + J_1 \times \ldots \times J_{p-1} \times \Theta_{J_p}$$

and the theta divisor of a Jacobian is irreducible.

Hence
$$JP \cong J_1 \times \ldots \times J_p \cong JV \times A \implies JP \cong J_{k_1} \times \ldots \times J_{k_m}$$
.

How can one prove that $JV \not\cong J_1 \times \ldots \times J_p$?

Usually by studying the geometry of the theta divisor (singular locus, Gauss map, ...).

$$V$$
 defined by $\sum X_i = \sum X_i^2 = \sum X_i^3 = 0$ in \mathbb{P}^6 :

$$V$$
 defined by $\sum X_i = \sum X_i^2 = \sum X_i^3 = 0$ in \mathbb{P}^6 :

action of \mathfrak{S}_7 , hence of \mathfrak{A}_7 .

$$V$$
 defined by $\sum X_i = \sum X_i^2 = \sum X_i^3 = 0$ in \mathbb{P}^6 :

action of \mathfrak{S}_7 , hence of \mathfrak{A}_7 .

Thus \mathfrak{A}_7 acts on JV. Non-trivially?

$$V$$
 defined by $\sum X_i = \sum X_i^2 = \sum X_i^3 = 0$ in \mathbb{P}^6 :

action of \mathfrak{S}_7 , hence of \mathfrak{A}_7 .

Thus \mathfrak{A}_7 acts on JV. Non-trivially?

Lemma

JV contains no abelian subvariety fixed by \mathfrak{A}_7 .

$$V$$
 defined by $\sum X_i = \sum X_i^2 = \sum X_i^3 = 0$ in \mathbb{P}^6 :

action of \mathfrak{S}_7 , hence of \mathfrak{A}_7 .

Thus \mathfrak{A}_7 acts on JV. Non-trivially?

Lemma

JV contains no abelian subvariety fixed by \mathfrak{A}_7 .

Proof: analyze the action of \mathfrak{A}_7 on $T_0(JV) = H^{1,2} \cong H^2(V, \Omega^1_V)$.

$$V$$
 defined by $\sum X_i = \sum X_i^2 = \sum X_i^3 = 0$ in \mathbb{P}^6 :

action of \mathfrak{S}_7 , hence of \mathfrak{A}_7 .

Thus \mathfrak{A}_7 acts on JV. Non-trivially?

Lemma

JV contains no abelian subvariety fixed by \mathfrak{A}_7 .

Proof: analyze the action of \mathfrak{A}_7 on $T_0(JV)=H^{1,2}\cong H^2(V,\Omega^1_V)$.

Find: $T_0(JV) = V_6 \oplus V_{14}$, both faithful.

$$V$$
 defined by $\sum X_i = \sum X_i^2 = \sum X_i^3 = 0$ in \mathbb{P}^6 :

action of \mathfrak{S}_7 , hence of \mathfrak{A}_7 .

Thus \mathfrak{A}_7 acts on JV. Non-trivially?

Lemma

JV contains no abelian subvariety fixed by \mathfrak{A}_7 .

Proof: analyze the action of \mathfrak{A}_7 on $T_0(JV)=H^{1,2}\cong H^2(V,\Omega^1_V)$.

Find: $T_0(JV) = V_6 \oplus V_{14}$, both faithful.

In particular, $\mathfrak{A}_7 \subset \operatorname{Aut}(JV)$. Note: dim JV = 20.

Step 1: If $\mathfrak{A}_7 \subset \operatorname{Aut}(JC)$, $g(C) \geq 31$

Step 1: If $\mathfrak{A}_7 \subset \operatorname{Aut}(JC)$, $g(C) \geq 31$ (hence $JV \neq JC$).

Step 1: If
$$\mathfrak{A}_7 \subset \operatorname{Aut}(JC)$$
, $g(C) \geq 31$ (hence $JV \neq JC$).

Torelli: $\operatorname{Aut}(JC) = \begin{cases} \operatorname{Aut}(C) & \text{if } C \text{ hyperelliptic} \\ \operatorname{Aut}(C) \times \mathbb{Z}/2 & \text{otherwise.} \end{cases}$

Step 1: If
$$\mathfrak{A}_7 \subset \operatorname{Aut}(JC)$$
, $g(C) \geq 31$ (hence $JV \neq JC$).

Thus
$$\mathfrak{A}_7 \hookrightarrow \operatorname{Aut}(C) \implies \frac{1}{2} 7! \leq 84(g-1)$$
,

Step 1: If
$$\mathfrak{A}_7 \subset \operatorname{Aut}(JC)$$
, $g(C) \geq 31$ (hence $JV \neq JC$).

Thus
$$\mathfrak{A}_7 \hookrightarrow \operatorname{Aut}(C) \implies \frac{1}{2} 7! \le 84(g-1)$$
, gives $g \ge 31$.

Step 1: If
$$\mathfrak{A}_7 \subset \operatorname{Aut}(JC)$$
, $g(C) \geq 31$ (hence $JV \neq JC$).

Thus
$$\mathfrak{A}_7 \hookrightarrow \operatorname{Aut}(C) \implies \frac{1}{2} 7! \le 84(g-1)$$
, gives $g \ge 31$.

Step 2: Assume
$$JV = J_1 \times ... \times J_p$$
.

Step 1: If
$$\mathfrak{A}_7 \subset \operatorname{Aut}(JC)$$
, $g(C) \geq 31$ (hence $JV \neq JC$).

$$\text{Torelli:} \quad \operatorname{Aut}(JC) = \left\{ \begin{array}{l} \operatorname{Aut}(C) \ \ \text{if} \ C \ \text{hyperelliptic} \\ \operatorname{Aut}(C) \times \mathbb{Z}/2 \ \ \text{otherwise.} \end{array} \right.$$

Thus
$$\mathfrak{A}_7 \hookrightarrow \operatorname{Aut}(C) \implies \frac{1}{2} 7! \le 84(g-1)$$
, gives $g \ge 31$.

Step 2: Assume
$$JV = J_1 \times \ldots \times J_p$$
.

(more subtle: e.g. $\operatorname{Aut}(E^{20})\supset\mathfrak{S}_{20}$).

Unicity of the decomposition $\Rightarrow \mathfrak{A}_7$ permutes the J_i 's:

Unicity of the decomposition $\Rightarrow \mathfrak{A}_7$ permutes the J_i 's:

 \rightsquigarrow action of \mathfrak{A}_7 on [1, n].

Unicity of the decomposition $\Rightarrow \mathfrak{A}_7$ permutes the J_i 's:

 \rightsquigarrow action of \mathfrak{A}_7 on [1, n].

$$JV \cong \underbrace{J_1 \times \ldots \times J_p}_{\text{orbit } O_1} \times \underbrace{J_{p+1} \times \ldots \times J_q}_{\text{orbit } O_2} \times \ldots$$

Unicity of the decomposition $\Rightarrow \mathfrak{A}_7$ permutes the J_i 's:

 \rightsquigarrow action of \mathfrak{A}_7 on [1, n].

$$JV \cong \underbrace{J_1 \times \ldots \times J_p}_{ ext{orbit } O_1} \times \underbrace{J_{p+1} \times \ldots \times J_q}_{ ext{orbit } O_2} \times \ldots$$

that is, $JV\cong J_1^{\#O_1}\times J_{p+1}^{\#O_2}\times\ldots$ Hence

Unicity of the decomposition $\Rightarrow \mathfrak{A}_7$ permutes the J_i 's: \rightsquigarrow action of \mathfrak{A}_7 on [1, n].

$$JV \cong \underbrace{J_1 \times \ldots \times J_p}_{\text{orbit } O_1} \times \underbrace{J_{p+1} \times \ldots \times J_q}_{\text{orbit } O_2} \times \ldots$$

that is,
$$JV\cong J_1^{\#O_1} imes J_{p+1}^{\#O_2} imes \ldots$$
 Hence

$$20 = \dim JV = \#O_1 \cdot \dim J_1 + \#O_2 \cdot \dim J_2 + \cdots$$

Unicity of the decomposition $\Rightarrow \mathfrak{A}_7$ permutes the J_i 's:

 \rightsquigarrow action of \mathfrak{A}_7 on [1, n].

$$JV \cong \underbrace{J_1 \times \ldots \times J_p}_{ ext{orbit } O_1} \times \underbrace{J_{p+1} \times \ldots \times J_q}_{ ext{orbit } O_2} \times \ldots$$

that is, $JV\cong J_1^{\#O_1} imes J_{p+1}^{\#O_2} imes \ldots$ Hence

$$20 = \dim JV = \#O_1 \cdot \dim J_1 + \#O_2 \cdot \dim J_2 + \cdots$$

Lemma (classical)

If \mathfrak{A}_7 acts transitively on a set O, then #O=1,7,15 or ≥ 21 .

Unicity of the decomposition $\Rightarrow \mathfrak{A}_7$ permutes the J_i 's:

 \rightsquigarrow action of \mathfrak{A}_7 on [1, n].

$$JV \cong \underbrace{J_1 \times \ldots \times J_p}_{ ext{orbit } O_1} \times \underbrace{J_{p+1} \times \ldots \times J_q}_{ ext{orbit } O_2} \times \ldots$$

that is, $JV\cong J_1^{\#O_1}\times J_{p+1}^{\#O_2}\times\ldots$ Hence

$$20 = \dim JV = \#O_1 \cdot \dim J_1 + \#O_2 \cdot \dim J_2 + \cdots$$

Lemma (classical)

If \mathfrak{A}_7 acts transitively on a set O, then #O=1,7,15 or ≥ 21 .

But $\#O_1 = 1 \implies \mathfrak{A}_7$ acts on J_1 : either trivially,

Unicity of the decomposition $\Rightarrow \mathfrak{A}_7$ permutes the J_i 's:

 \rightsquigarrow action of \mathfrak{A}_7 on [1, n].

$$JV \cong \underbrace{J_1 \times \ldots \times J_p}_{\text{orbit } O_1} \times \underbrace{J_{p+1} \times \ldots \times J_q}_{\text{orbit } O_2} \times \ldots$$

that is, $JV\cong J_1^{\#O_1}\times J_{p+1}^{\#O_2}\times\ldots$ Hence

$$20 = \dim JV = \#O_1 \cdot \dim J_1 + \#O_2 \cdot \dim J_2 + \cdots$$

Lemma (classical)

If \mathfrak{A}_7 acts transitively on a set O, then #O=1,7,15 or ≥ 21 .

But $\#O_1 = 1 \implies \mathfrak{A}_7$ acts on J_1 : either trivially, (no by lemma)

Unicity of the decomposition $\Rightarrow \mathfrak{A}_7$ permutes the J_i 's:

 \rightsquigarrow action of \mathfrak{A}_7 on [1, n].

$$JV \cong \underbrace{J_1 \times \ldots \times J_p}_{ ext{orbit } O_1} \times \underbrace{J_{p+1} \times \ldots \times J_q}_{ ext{orbit } O_2} \times \ldots$$

that is, $JV \cong J_1^{\#O_1} \times J_{p+1}^{\#O_2} \times \dots$ Hence

$$20 = \dim JV = \#O_1 \cdot \dim J_1 + \#O_2 \cdot \dim J_2 + \cdots$$

Lemma (classical)

If \mathfrak{A}_7 acts transitively on a set O, then #O=1,7,15 or ≥ 21 .

But $\#O_1=1 \implies \mathfrak{A}_7$ acts on J_1 : either trivially, (no by lemma) or $\mathfrak{A}_7\subset \operatorname{Aut}(J_1)$

Unicity of the decomposition $\Rightarrow \mathfrak{A}_7$ permutes the J_i 's:

 \rightsquigarrow action of \mathfrak{A}_7 on [1, n].

$$JV \cong \underbrace{J_1 \times \ldots \times J_p}_{ ext{orbit } O_1} \times \underbrace{J_{p+1} \times \ldots \times J_q}_{ ext{orbit } O_2} \times \ldots$$

that is, $JV\cong J_1^{\#O_1}\times J_{p+1}^{\#O_2}\times\ldots$ Hence

$$20 = \dim JV = \#O_1 \cdot \dim J_1 + \#O_2 \cdot \dim J_2 + \cdots$$

Lemma (classical)

If \mathfrak{A}_7 acts transitively on a set O, then #O=1,7,15 or ≥ 21 .

But $\#O_1=1 \implies \mathfrak{A}_7$ acts on J_1 : either trivially, (no by lemma) or $\mathfrak{A}_7\subset \operatorname{Aut}(J_1) \implies \dim J_1\geq 31$: impossible.

Unicity of the decomposition $\Rightarrow \mathfrak{A}_7$ permutes the J_i 's:

 \rightsquigarrow action of \mathfrak{A}_7 on [1, n].

$$JV \cong \underbrace{J_1 \times \ldots \times J_p}_{ ext{orbit } O_1} \times \underbrace{J_{p+1} \times \ldots \times J_q}_{ ext{orbit } O_2} \times \ldots$$

that is, $JV\cong J_1^{\#O_1}\times J_{p+1}^{\#O_2}\times\ldots$ Hence

$$20 = \dim JV = \#O_1 \cdot \dim J_1 + \#O_2 \cdot \dim J_2 + \cdots$$

Lemma (classical)

If \mathfrak{A}_7 acts transitively on a set O, then #O=1,7,15 or ≥ 21 .

But $\#O_1 = 1 \implies \mathfrak{A}_7$ acts on J_1 : either trivially, (no by lemma)

or $\mathfrak{A}_7 \subset \operatorname{Aut}(J_1) \implies \dim J_1 \geq 31$: impossible.

Thus #O = 7 or 15; contradiction!

• The method applies also to the $V_{2,3}$: $\sum X_i^2 = \sum X_i^3 = 0$ in \mathbb{P}^5 , with group \mathfrak{S}_6 ; slightly more difficult.

- The method applies also to the $V_{2,3}$: $\sum X_i^2 = \sum X_i^3 = 0$ in \mathbb{P}^5 , with group \mathfrak{S}_6 ; slightly more difficult.
- Same with the cubic threefold $\sum_{i\in\mathbb{Z}/5}X_i^2X_{i+1}=0$ in \mathbb{P}^4 ,

- The method applies also to the $V_{2,3}$: $\sum X_i^2 = \sum X_i^3 = 0$ in \mathbb{P}^5 , with group \mathfrak{S}_6 ; slightly more difficult.
- Same with the cubic threefold $\sum_{i\in\mathbb{Z}/5}X_i^2X_{i+1}=0$ in \mathbb{P}^4 , with group $PSL(2,\mathbb{F}_{11})$.

 $Cr_n := \{ \text{birational automorphisms of } \mathbb{P}^n \}.$

```
Cr_n := \{ \text{birational automorphisms of } \mathbb{P}^n \}.
```

The finite subgroups of Cr_2 are known (Kantor, Wiman,

Dolgachev-Iskovskikh); very long list.

 $Cr_n := \{ \text{birational automorphisms of } \mathbb{P}^n \}.$

The finite subgroups of Cr_2 are known (Kantor, Wiman,

Dolgachev-Iskovskikh); very long list.

The simple finite subgroups of Cr_2 are much easier to classify:

 $Cr_n := \{ \text{birational automorphisms of } \mathbb{P}^n \}.$

The finite subgroups of Cr₂ are known (Kantor, Wiman,

Dolgachev-Iskovskikh); very long list.

The simple finite subgroups of Cr_2 are much easier to classify:

they are \mathfrak{A}_5 , \mathfrak{A}_6 and $PSL(2,\mathbb{F}_7)$.

 $Cr_n := \{ \text{birational automorphisms of } \mathbb{P}^n \}.$

The finite subgroups of Cr₂ are known (Kantor, Wiman,

Dolgachev-Iskovskikh); very long list.

The simple finite subgroups of Cr_2 are much easier to classify: they are \mathfrak{A}_5 , \mathfrak{A}_6 and $PSL(2, \mathbb{F}_7)$.

Theorem (Prokhorov)

The simple finite subgroups of Cr_3 not contained in Cr_2 are \mathfrak{A}_7 , $SL(2,\mathbb{F}_8)$ and $PSp(4,\mathbb{F}_3)$.

 $Cr_n := \{ \text{birational automorphisms of } \mathbb{P}^n \}.$

The finite subgroups of Cr2 are known (Kantor, Wiman,

Dolgachev-Iskovskikh); very long list.

The simple finite subgroups of Cr_2 are much easier to classify: they are \mathfrak{A}_5 , \mathfrak{A}_6 and $PSL(2, \mathbb{F}_7)$.

Theorem (Prokhorov)

The simple finite subgroups of Cr_3 not contained in Cr_2 are \mathfrak{A}_7 , $SL(2,\mathbb{F}_8)$ and $PSp(4,\mathbb{F}_3)$.

Up to conjugacy, $SL(2, \mathbb{F}_8)$ admits only one embedding in Cr_3 , and $PSp(4, \mathbb{F}_3)$ two.

A complement

Proposition

Up to conjugacy, \mathfrak{A}_7 admits only one embedding in Cr_3 .

A complement

Proposition

Up to conjugacy, \mathfrak{A}_7 admits only one embedding in Cr_3 .

It is given by $\mathfrak{A}_7 \hookrightarrow SO(6,\mathbb{C})$ (standard representation), plus double covering $SO(6,\mathbb{C}) \to PGL(4,\mathbb{C})$.

A complement

Proposition

Up to conjugacy, \mathfrak{A}_7 admits only one embedding in Cr_3 .

It is given by $\mathfrak{A}_7 \hookrightarrow SO(6,\mathbb{C})$ (standard representation), plus double covering $SO(6,\mathbb{C}) \to PGL(4,\mathbb{C})$.

Proof: Prokhorov classifies (up to birational equivalence) all

 $G \subset \operatorname{Aut}(V)$, G finite simple, V rationally connected 3-fold.

A complement

Proposition

Up to conjugacy, \mathfrak{A}_7 admits only one embedding in Cr_3 .

It is given by $\mathfrak{A}_7 \hookrightarrow SO(6,\mathbb{C})$ (standard representation), plus double covering $SO(6,\mathbb{C}) \to PGL(4,\mathbb{C})$.

Proof: Prokhorov classifies (up to birational equivalence) all

 $G \subset \operatorname{Aut}(V)$, G finite simple, V rationally connected 3-fold.

Embeddings $G \hookrightarrow Cr_3$ are obtained when V is rational.

A complement

Proposition

Up to conjugacy, \mathfrak{A}_7 admits only one embedding in Cr_3 .

It is given by $\mathfrak{A}_7 \hookrightarrow SO(6,\mathbb{C})$ (standard representation), plus double covering $SO(6,\mathbb{C}) \to PGL(4,\mathbb{C})$.

Proof: Prokhorov classifies (up to birational equivalence) all

 $G \subset \operatorname{Aut}(V)$, G finite simple, V rationally connected 3-fold.

Embeddings $G \hookrightarrow Cr_3$ are obtained when V is rational.

 \mathfrak{A}_7 appears twice: action on \mathbb{P}^3 above, and action on V:

$$\sum X_i = \sum X_i^2 = \sum X_i^3 = 0 \ \ \text{in} \ \ \mathbb{P}^6 \ .$$

A complement

Proposition

Up to conjugacy, \mathfrak{A}_7 admits only one embedding in Cr_3 .

It is given by $\mathfrak{A}_7 \hookrightarrow SO(6,\mathbb{C})$ (standard representation), plus double covering $SO(6,\mathbb{C}) \to PGL(4,\mathbb{C})$.

Proof: Prokhorov classifies (up to birational equivalence) all

 $G \subset \operatorname{Aut}(V)$, G finite simple, V rationally connected 3-fold.

Embeddings $G \hookrightarrow Cr_3$ are obtained when V is rational.

 \mathfrak{A}_7 appears twice: action on \mathbb{P}^3 above, and action on V:

$$\sum X_i = \sum X_i^2 = \sum X_i^3 = 0 \ \text{in} \ \mathbb{P}^6 \ .$$

Since V is not rational, only one embedding $\mathfrak{A}_7 \subset \mathit{Cr}_3$.

Proposition

The group \mathfrak{S}_7 does not embed in Cr_3 .

Proposition

The group \mathfrak{S}_7 does not embed in Cr_3 .

Idea of the proof : extend Prokhorov's method to $\mathfrak{S}_7 \rightsquigarrow$

Proposition

The group \mathfrak{S}_7 does not embed in Cr_3 .

Idea of the proof: extend Prokhorov's method to $\mathfrak{S}_7 \leadsto$ any rationally connected 3-fold with an action of \mathfrak{S}_7 is birational to V, hence not rational.

Proposition

The group \mathfrak{S}_7 does not embed in Cr_3 .

Idea of the proof: extend Prokhorov's method to $\mathfrak{S}_7 \rightsquigarrow$ any rationally connected 3-fold with an action of \mathfrak{S}_7 is birational to V, hence not rational.

Definition: $\operatorname{crdim}(G) := \min\{n \mid \exists G \hookrightarrow Cr_n\}.$

Proposition

The group \mathfrak{S}_7 does not embed in Cr_3 .

Idea of the proof: extend Prokhorov's method to $\mathfrak{S}_7 \leadsto$ any rationally connected 3-fold with an action of \mathfrak{S}_7 is birational to V. hence not rational.

Definition: $\operatorname{crdim}(G) := \min\{n \mid \exists G \hookrightarrow Cr_n\}.$

Proposition

For $n \ge 4$, $\operatorname{crdim}(\mathfrak{S}_n) \le n - 3$, with equality for $4 \le n \le 7$.

Proposition

The group \mathfrak{S}_7 does not embed in Cr_3 .

Idea of the proof: extend Prokhorov's method to $\mathfrak{S}_7 \rightsquigarrow$ any rationally connected 3-fold with an action of \mathfrak{S}_7 is birational to V, hence not rational.

 $\mathsf{Definition}: \operatorname{crdim}(G) := \min\{n \mid \exists \ G \hookrightarrow Cr_n\}.$

Proposition

For $n \ge 4$, $\operatorname{crdim}(\mathfrak{S}_n) \le n - 3$, with equality for $4 \le n \le 7$.

Proof: \mathfrak{S}_n acts on the quadric Q^{n-3} : $\sum X_i = \sum X_i^2 = 0$ in \mathbb{P}^{n-1} .

Proposition

The group \mathfrak{S}_7 does not embed in Cr_3 .

Idea of the proof: extend Prokhorov's method to $\mathfrak{S}_7 \leadsto$ any rationally connected 3-fold with an action of \mathfrak{S}_7 is birational to V, hence not rational.

Definition: $\operatorname{crdim}(G) := \min\{n \mid \exists G \hookrightarrow Cr_n\}.$

Proposition

For $n \ge 4$, $\operatorname{crdim}(\mathfrak{S}_n) \le n - 3$, with equality for $4 \le n \le 7$.

Proof: \mathfrak{S}_n acts on the quadric Q^{n-3} : $\sum X_i = \sum X_i^2 = 0$ in \mathbb{P}^{n-1} .

 $\mathfrak{S}_5 \not\subset \mathit{Cr}_1, \, \mathfrak{S}_6 \not\subset \mathit{Cr}_2, \, \mathfrak{S}_7 \not\subset \mathit{Cr}_3.$

Proposition

The group \mathfrak{S}_7 does not embed in Cr_3 .

Idea of the proof: extend Prokhorov's method to $\mathfrak{S}_7 \leadsto$ any rationally connected 3-fold with an action of \mathfrak{S}_7 is birational to V, hence not rational.

Definition: $\operatorname{crdim}(G) := \min\{n \mid \exists G \hookrightarrow Cr_n\}.$

Proposition

For $n \ge 4$, $\operatorname{crdim}(\mathfrak{S}_n) \le n - 3$, with equality for $4 \le n \le 7$.

Proof: \mathfrak{S}_n acts on the quadric Q^{n-3} : $\sum X_i = \sum X_i^2 = 0$ in \mathbb{P}^{n-1} .

 $\mathfrak{S}_5 \not\subset \mathit{Cr}_1, \, \mathfrak{S}_6 \not\subset \mathit{Cr}_2, \, \mathfrak{S}_7 \not\subset \mathit{Cr}_3.$

Question: Is it true that $\operatorname{crdim}(\mathfrak{S}_n) = n - 3$?

The end

THE END

THE END

Happy birthday, Alberto!