On Osserman condition in pseudo-Riemannian geometry

Zoran Rakić

Faculty of Mathematics, University of Belgrade, Serbia

INTERNATIONAL WORKSHOP
Geometric Structures in Integrable Systems

Moscow, October 30 - November 2, 2012

- $M=(M,g\equiv\langle\cdot\,,\,\cdot\rangle)$ be a pseudo-Riemannian manifold
- ∇ its Levi-Civita connection,
- ullet $R(X,Y) = [
 abla_X,
 abla_Y]
 abla_{[X,Y]}$ its Riemannian curvature operator, which satisfy the standard symmetries,

$$R(X, Y) + R(Y, X) = 0,$$

$$R(X, Y)Z + R(Y, Z)X + R(Z, X)Y = 0,$$

$$R(X, Y, Z, W) = \langle R(X, Y)Z, W \rangle = \langle R(Z, W)X, Y \rangle$$

- The Jacobi operator, $R_X: Y \mapsto R(Y,X)X$, is a self-adjoint (symmetric) endomorphism of the tangent bundle TM.
- In Riemannian case, if M is flat or a rank one symmetric space, then local isometries of M act transitively on the unit sphere bundle, and thus the eigenvalues of Jacobi operator are constant on SM.

- $M = (M, g \equiv \langle \cdot, \cdot \rangle)$ be a pseudo-Riemannian manifold
- ∇ its Levi-Civita connection,
- $R(X,Y) = [\nabla_X,\nabla_Y] \nabla_{[X,Y]}$ its Riemannian curvature operator, which satisfy the standard symmetries,

$$R(X, Y) + R(Y, X) = 0,$$

$$R(X, Y)Z + R(Y, Z)X + R(Z, X)Y = 0,$$

$$R(X, Y, Z, W) = \langle R(X, Y)Z, W \rangle = \langle R(Z, W)X, Y \rangle$$

- The Jacobi operator, $R_X: Y \mapsto R(Y,X)X$, is a self-adjoint (symmetric) endomorphism of the tangent bundle TM.
- In Riemannian case, if *M* is flat or a rank one symmetric space, then loca isometries of *M* act transitively on the unit sphere bundle, and thus the eigenvalues of Jacobi operator are constant on *SM*.

- $M = (M, g \equiv \langle \cdot, \cdot \rangle)$ be a pseudo-Riemannian manifold
- ▼ its Levi-Civita connection,
- $R(X,Y) = [\nabla_X,\nabla_Y] \nabla_{[X,Y]}$ its Riemannian curvature operator, which satisfy the standard symmetries,

$$R(X,Y) + R(Y,X) = 0,$$

$$R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0,$$

$$R(X,Y,Z,W) = \langle R(X,Y)Z,W \rangle = \langle R(Z,W)X,Y \rangle.$$

- The Jacobi operator, $R_X: Y \mapsto R(Y,X)X$, is a self-adjoint (symmetric) endomorphism of the tangent bundle TM.
- In Riemannian case, if M is flat or a rank one symmetric space, then local isometries of M act transitively on the unit sphere bundle, and thus the eigenvalues of Jacobi operator are constant on SM.

- $M = (M, g \equiv \langle \cdot, \cdot \rangle)$ be a pseudo-Riemannian manifold
- ▼ its Levi-Civita connection,
- $R(X, Y) = [\nabla_X, \nabla_Y] \nabla_{[X, Y]}$ its Riemannian curvature operator, which satisfy the standard symmetries,

$$\begin{split} R(X,Y) + R(Y,X) &= 0, \\ R(X,Y)Z + R(Y,Z)X + R(Z,X)Y &= 0, \\ R(X,Y,Z,W) &= \langle R(X,Y)Z,W \rangle = \langle R(Z,W)X,Y \rangle. \end{split}$$

- The Jacobi operator, $R_X: Y \mapsto R(Y,X)X$, is a self-adjoint (symmetric) endomorphism of the tangent bundle TM.
- In Riemannian case, if M is flat or a rank one symmetric space, then local isometries of M act transitively on the unit sphere bundle, and thus the eigenvalues of Jacobi operator are constant on SM.

- $M = (M, g \equiv \langle \cdot, \cdot \rangle)$ be a pseudo-Riemannian manifold
- ▼ its Levi-Civita connection,
- $R(X, Y) = [\nabla_X, \nabla_Y] \nabla_{[X, Y]}$ its Riemannian curvature operator, which satisfy the standard symmetries,

$$R(X,Y) + R(Y,X) = 0,$$

$$R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0,$$

$$R(X,Y,Z,W) = \langle R(X,Y)Z,W \rangle = \langle R(Z,W)X,Y \rangle.$$

- The Jacobi operator, $R_X: Y \mapsto R(Y,X)X$, is a self-adjoint (symmetric endomorphism of the tangent bundle TM.
- In Riemannian case, if M is flat or a rank one symmetric space, then local isometries of M act transitively on the unit sphere bundle, and thus the eigenvalues of Jacobi operator are constant on SM.

- $M = (M, g \equiv \langle \cdot, \cdot \rangle)$ be a pseudo-Riemannian manifold
- ▼ its Levi-Civita connection,
- $R(X, Y) = [\nabla_X, \nabla_Y] \nabla_{[X, Y]}$ its Riemannian curvature operator, which satisfy the standard symmetries,

$$R(X,Y) + R(Y,X) = 0,$$

$$R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0,$$

$$R(X,Y,Z,W) = \langle R(X,Y)Z,W \rangle = \langle R(Z,W)X,Y \rangle.$$

- The Jacobi operator, $R_X: Y \mapsto R(Y,X)X$, is a self-adjoint (symmetric) endomorphism of the tangent bundle TM.
- In Riemannian case, if M is flat or a rank one symmetric space, then local isometries of M act transitively on the unit sphere bundle, and thus the eigenvalues of Jacobi operator are constant on SM.

- $M = (M, g \equiv \langle \cdot, \cdot \rangle)$ be a pseudo-Riemannian manifold
- ▼ its Levi-Civita connection,
- $R(X, Y) = [\nabla_X, \nabla_Y] \nabla_{[X, Y]}$ its Riemannian curvature operator, which satisfy the standard symmetries,

$$R(X,Y) + R(Y,X) = 0,$$

$$R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0,$$

$$R(X,Y,Z,W) = \langle R(X,Y)Z,W \rangle = \langle R(Z,W)X,Y \rangle.$$

- The Jacobi operator, $R_X: Y \mapsto R(Y,X)X$, is a self-adjoint (symmetric) endomorphism of the tangent bundle TM.
- In Riemannian case, if M is flat or a rank one symmetric space, then local isometries of M act transitively on the unit sphere bundle, and thus the eigenvalues of Jacobi operator are constant on SM.

- $M = (M, g \equiv \langle \cdot, \cdot \rangle)$ be a pseudo-Riemannian manifold
- ▼ its Levi-Civita connection,
- $R(X, Y) = [\nabla_X, \nabla_Y] \nabla_{[X, Y]}$ its Riemannian curvature operator, which satisfy the standard symmetries,

$$R(X, Y) + R(Y, X) = 0,$$

$$R(X, Y)Z + R(Y, Z)X + R(Z, X)Y = 0,$$

$$R(X, Y, Z, W) = \langle R(X, Y)Z, W \rangle = \langle R(Z, W)X, Y \rangle.$$

- The Jacobi operator, $R_X: Y \mapsto R(Y, X)X$, is a self-adjoint (symmetric) endomorphism of the tangent bundle TM.
- In Riemannian case, if M is flat or a rank one symmetric space, then local isometries of M act transitively on the unit sphere bundle, and thus the eigenvalues of Jacobi operator are constant on SM.

Introduction 1

- $M = (M, g \equiv \langle \cdot , \cdot \rangle)$ be a pseudo-Riemannian manifold
- ▼ its Levi-Civita connection,
- $R(X, Y) = [\nabla_X, \nabla_Y] \nabla_{[X, Y]}$ its Riemannian curvature operator, which satisfy the standard symmetries,

$$\begin{split} R(X,Y) + R(Y,X) &= 0, \\ R(X,Y)Z + R(Y,Z)X + R(Z,X)Y &= 0, \\ R(X,Y,Z,W) &= \langle R(X,Y)Z,W \rangle = \langle R(Z,W)X,Y \rangle. \end{split}$$

- The Jacobi operator, $R_X: Y \mapsto R(Y, X)X$, is a self-adjoint (symmetric) endomorphism of the tangent bundle TM.
- In Riemannian case, if M is flat or a rank one symmetric space, then local isometries of M act transitively on the unit sphere bundle, and thus the eigenvalues of Jacobi operator are constant on SM.

- Osserman conjecture. Osserman wondered if the converse is also true: are globally (i.e. the eigenvalues do not depend on the point p) Osserman manifolds necessarily flat or locally isometric to a rank one symmetric spaces.
- Osserman conjecture have been starting point for investigations of manifolds based on properties of the spectra of natural operators defined by the Riemannian curvature tensor.
- A Riemannian manifold (M,g) is **pointwise Osserman** if the eigenvalues of the Jacobi operator $R_X(\cdot) = R(\cdot,X)X$ do not depend on the unit vector $X \in T_pM$, for every point $p \in M$ (the eigenvalues may vary from point to point).
- The natural approach to the Osserman conjecture:
 - 1. using the pointwise Osserman condition find the algebraic curvature tensor at a point $\rho \in M$ and so possible existence of an additional algebraic structure (Clifford structure, in Riemannian case)
 - find only those algebraic curvature tensors which may be realised as curvature tensors of a Riemannian manifold.

- Osserman conjecture. Osserman wondered if the converse is also true: are globally (i.e. the eigenvalues do not depend on the point *p*) Osserman manifolds necessarily flat or locally isometric to a rank one symmetric spaces.
- Osserman conjecture have been starting point for investigations of manifolds based on properties of the spectra of natural operators defined by the Riemannian curvature tensor.
- A Riemannian manifold (M,g) is **pointwise Osserman** if the eigenvalues of the Jacobi operator $R_X(\cdot) = R(\cdot,X)X$ do not depend on the unit vector $X \in T_pM$, for every point $p \in M$ (the eigenvalues may vary from point to point).
- The natural approach to the Osserman conjecture:
 - 1. using the pointwise Osserman condition find the algebraic curvature tensor at a point $\rho \in M$ and so possible existence of an additional algebraic structure (Clifford structure, in Riemannian case)
 - find only those algebraic curvature tensors which may be realised as curvature tensors of a Riemannian manifold

- ullet Osserman conjecture. Osserman wondered if the converse is also true: are globally (i.e. the eigenvalues do not depend on the point p) Osserman manifolds necessarily flat or locally isometric to a rank one symmetric spaces.
- Osserman conjecture have been starting point for investigations of manifolds based on properties of the spectra of natural operators defined by the Riemannian curvature tensor.
- A Riemannian manifold (M,g) is **pointwise Osserman** if the eigenvalues of the Jacobi operator $R_X(\cdot) = R(\cdot,X)X$ do not depend on the unit vector $X \in T_pM$, for every point $p \in M$ (the eigenvalues may vary from point to point).
- The natural approach to the Osserman conjecture:
- 1. using the pointwise Osserman condition find the algebraic curvature tensor at a point $p \in M$ and so possible existence of an additional algebraic structure (Clifford structure, in Riemannian case)
- find only those algebraic curvature tensors which may be realised as curvature tensors of a Riemannian manifold.

- ullet Osserman conjecture. Osserman wondered if the converse is also true: are globally (i.e. the eigenvalues do not depend on the point p) Osserman manifolds necessarily flat or locally isometric to a rank one symmetric spaces.
- Osserman conjecture have been starting point for investigations of manifolds based on properties of the spectra of natural operators defined by the Riemannian curvature tensor.
- A Riemannian manifold (M,g) is **pointwise Osserman** if the eigenvalues of the Jacobi operator $R_X(\cdot) = R(\cdot,X)X$ do not depend on the unit vector $X \in T_pM$, for every point $p \in M$ (the eigenvalues may vary from point to point).
- The natural approach to the Osserman conjecture:
 - 1. using the pointwise Osserman condition find the algebraic curvature tensor at a point $p \in M$ and so possible existence of an additional algebraic structure (Clifford structure, in Riemannian case)
- find only those algebraic curvature tensors which may be realised as curvature tensors of a Riemannian manifold.

- ullet Osserman conjecture. Osserman wondered if the converse is also true: are globally (i.e. the eigenvalues do not depend on the point p) Osserman manifolds necessarily flat or locally isometric to a rank one symmetric spaces.
- Osserman conjecture have been starting point for investigations of manifolds based on properties of the spectra of natural operators defined by the Riemannian curvature tensor.
- A Riemannian manifold (M,g) is **pointwise Osserman** if the eigenvalues of the Jacobi operator $R_X(\cdot) = R(\cdot,X)X$ do not depend on the unit vector $X \in T_pM$, for every point $p \in M$ (the eigenvalues may vary from point to point).
- The natural approach to the Osserman conjecture:
 - tensor at a point *p* ∈ *M* and so possible existence of an additional algebraic structure (Clifford structure, in Riemannian case)

 find only those algebraic curvature tensors which may be realised as curvature tensors of a Riemannian manifold

- ullet Osserman conjecture. Osserman wondered if the converse is also true: are globally (i.e. the eigenvalues do not depend on the point p) Osserman manifolds necessarily flat or locally isometric to a rank one symmetric spaces.
- Osserman conjecture have been starting point for investigations of manifolds based on properties of the spectra of natural operators defined by the Riemannian curvature tensor.
- A Riemannian manifold (M,g) is **pointwise Osserman** if the eigenvalues of the Jacobi operator $R_X(\cdot) = R(\cdot,X)X$ do not depend on the unit vector $X \in T_pM$, for every point $p \in M$ (the eigenvalues may vary from point to point).
- The natural approach to the Osserman conjecture:
 - 1. using the pointwise Osserman condition find the algebraic curvature tensor at a point $p \in M$ and so possible existence of an additional algebraic structure (Clifford structure, in Riemannian case)
 - 2. find only those algebraic curvature tensors which may be realised as curvature tensors of a Riemannian manifold.

- ullet Osserman conjecture. Osserman wondered if the converse is also true: are globally (i.e. the eigenvalues do not depend on the point p) Osserman manifolds necessarily flat or locally isometric to a rank one symmetric spaces.
- Osserman conjecture have been starting point for investigations of manifolds based on properties of the spectra of natural operators defined by the Riemannian curvature tensor.
- A Riemannian manifold (M,g) is **pointwise Osserman** if the eigenvalues of the Jacobi operator $R_X(\cdot) = R(\cdot,X)X$ do not depend on the unit vector $X \in T_pM$, for every point $p \in M$ (the eigenvalues may vary from point to point).
- The natural approach to the Osserman conjecture:
 - 1. using the pointwise Osserman condition find the algebraic curvature tensor at a point $p \in M$ and so possible existence of an additional algebraic structure (Clifford structure, in Riemannian case)
 - find only those algebraic curvature tensors which may be realised as curvature tensors of a Riemannian manifold.

- Osserman conjecture. Osserman wondered if the converse is also true: are globally (i.e. the eigenvalues do not depend on the point *p*) Osserman manifolds necessarily flat or locally isometric to a rank one symmetric spaces.
- Osserman conjecture have been starting point for investigations of manifolds based on properties of the spectra of natural operators defined by the Riemannian curvature tensor.
- A Riemannian manifold (M,g) is **pointwise Osserman** if the eigenvalues of the Jacobi operator $R_X(\cdot) = R(\cdot,X)X$ do not depend on the unit vector $X \in T_pM$, for every point $p \in M$ (the eigenvalues may vary from point to point).
- The natural approach to the Osserman conjecture:
 - 1. using the pointwise Osserman condition find the algebraic curvature tensor at a point $p \in M$ and so possible existence of an additional algebraic structure (Clifford structure, in Riemannian case)
 - find only those algebraic curvature tensors which may be realised as curvature tensors of a Riemannian manifold.

- Notions of pointwise and globally Osserman conditions are not equivalent, for example in dimension 4: K3-surface (compact), quaternionic Kahler orbifolds (local, non-zero scalar curvature), hyperKaehler examples.
- Let S^+M and S^-M be the unit pseudo-sphere bundles of spacelike and timelike vectors, $SM = S^+M \cup S^-M$.
- M is (globally) spacelike, timelike or null Osserman if the characteristic polynomial of R_X is constant for $X \in S^+M$, $X \in S^-M$, or $X \in \mathcal{N}M$, respectively.
- M is spacelike, timelike, or null Jordan-Osserman if the Jordan normal form of R_X is constant when X belongs to S^+M , S^-M , or NM respectively.
- The notions of globally spacelike Osserman or globally timelike Osserman are the same, but
- The notions of globally spacelike Jordan-Osserman and globally timelike Jordan-Osserman are inequivalent.

- Notions of pointwise and globally Osserman conditions are not equivalent, for example in dimension 4: K3-surface (compact), quaternionic Kahler orbifolds (local, non-zero scalar curvature), hyperKaehler examples.
- Let S^+M and S^-M be the unit pseudo-sphere bundles of spacelike and timelike vectors, $SM = S^+M \cup S^-M$.
- M is (globally) spacelike, timelike or null Osserman if the characteristic polynomial of R_X is constant for $X \in S^+M$, $X \in S^-M$, or $X \in \mathcal{N}M$, respectively.
- M is spacelike, timelike, or null Jordan-Osserman if the Jordan normal form of R_X is constant when X belongs to S^+M , S^-M , or NM respectively.
- The notions of globally spacelike Osserman or globally timelike Osserman are the same, but
- The notions of globally spacelike Jordan-Osserman and globally timelike Jordan-Osserman are inequivalent.

- Notions of pointwise and globally Osserman conditions are not equivalent, for example in dimension 4: K3-surface (compact), quaternionic Kahler orbifolds (local, non-zero scalar curvature), hyperKaehler examples.
- Let S^+M and S^-M be the unit pseudo-sphere bundles of spacelike and timelike vectors, $SM = S^+M \cup S^-M$.
- M is (globally) spacelike, timelike or null Osserman if the characteristic polynomial of R_X is constant for $X \in S^+M$, $X \in S^-M$, or $X \in \mathcal{N}M$, respectively.
- M is spacelike, timelike, or null Jordan-Osserman if the Jordan normal form of R_X is constant when X belongs to S^+M , S^-M , or NM respectively.
- The notions of globally spacelike Osserman or globally timelike Osserman are the same, but
- The notions of globally spacelike Jordan-Osserman and globally timelike Jordan-Osserman are inequivalent.

- Notions of pointwise and globally Osserman conditions are not equivalent, for example in dimension 4: K3-surface (compact), quaternionic Kahler orbifolds (local, non-zero scalar curvature), hyperKaehler examples.
- Let S^+M and S^-M be the unit pseudo-sphere bundles of spacelike and timelike vectors, $SM = S^+M \cup S^-M$.
- M is (globally) spacelike, timelike or null Osserman if the characteristic polynomial of R_X is constant for $X \in S^+M$, $X \in S^-M$, or $X \in \mathcal{N}M$, respectively.
- M is spacelike, timelike, or null Jordan-Osserman if the Jordan normal form of R_X is constant when X belongs to S^+M , S^-M , or NM respectively.
- The notions of globally spacelike Osserman or globally timelike Osserman are the same, but
- The notions of globally spacelike Jordan-Osserman and globally timelike Jordan-Osserman are inequivalent.

- Notions of pointwise and globally Osserman conditions are not equivalent, for example in dimension 4: K3-surface (compact), quaternionic Kahler orbifolds (local, non-zero scalar curvature), hyperKaehler examples.
- Let S^+M and S^-M be the unit pseudo-sphere bundles of spacelike and timelike vectors, $SM = S^+M \cup S^-M$.
- M is (globally) spacelike, timelike or null Osserman if the characteristic polynomial of R_X is constant for $X \in S^+M$, $X \in S^-M$, or $X \in \mathcal{N}M$, respectively.
- M is spacelike, timelike, or null Jordan-Osserman if the Jordan normal form of R_X is constant when X belongs to S^+M , S^-M , or NM respectively.
- The notions of globally spacelike Osserman or globally timelike Osserman are the same, but
- The notions of globally spacelike Jordan-Osserman and globally timelike Jordan-Osserman are inequivalent.

- Notions of pointwise and globally Osserman conditions are not equivalent, for example in dimension 4: K3-surface (compact), quaternionic Kahler orbifolds (local, non-zero scalar curvature), hyperKaehler examples.
- Let S^+M and S^-M be the unit pseudo-sphere bundles of spacelike and timelike vectors, $SM = S^+M \cup S^-M$.
- M is (globally) spacelike, timelike or null Osserman if the characteristic polynomial of R_X is constant for $X \in S^+M$, $X \in S^-M$, or $X \in \mathcal{N}M$, respectively.
- M is spacelike, timelike, or null Jordan-Osserman if the Jordan normal form of R_X is constant when X belongs to S^+M , S^-M , or NM respectively.
- The notions of globally spacelike Osserman or globally timelike Osserman are the same, but
- The notions of globally spacelike Jordan-Osserman and globally timelike Jordan-Osserman are inequivalent.

- Notions of pointwise and globally Osserman conditions are not equivalent, for example in dimension 4: K3-surface (compact), quaternionic Kahler orbifolds (local, non-zero scalar curvature), hyperKaehler examples.
- Let S^+M and S^-M be the unit pseudo-sphere bundles of spacelike and timelike vectors, $SM = S^+M \cup S^-M$.
- M is (globally) spacelike, timelike or null Osserman if the characteristic polynomial of R_X is constant for $X \in S^+M$, $X \in S^-M$, or $X \in \mathcal{N}M$, respectively.
- M is spacelike, timelike, or null Jordan-Osserman if the Jordan normal form of R_X is constant when X belongs to S^+M , S^-M , or NM respectively.
- The notions of globally spacelike Osserman or globally timelike Osserman are the same, but
- The notions of globally spacelike Jordan-Osserman and globally timelike Jordan-Osserman are inequivalent.

- Notions of pointwise and globally Osserman conditions are not equivalent, for example in dimension 4: K3-surface (compact), quaternionic Kahler orbifolds (local, non-zero scalar curvature), hyperKaehler examples.
- Let S^+M and S^-M be the unit pseudo-sphere bundles of spacelike and timelike vectors, $SM = S^+M \cup S^-M$.
- M is (globally) spacelike, timelike or null Osserman if the characteristic polynomial of R_X is constant for $X \in S^+M$, $X \in S^-M$, or $X \in \mathcal{N}M$, respectively.
- M is spacelike, timelike, or null Jordan-Osserman if the Jordan normal form of R_X is constant when X belongs to S^+M , S^-M , or NM respectively.
- The notions of globally spacelike Osserman or globally timelike Osserman are the same, but
- The notions of globally spacelike Jordan-Osserman and globally timelike Jordan-Osserman are inequivalent.

- Notions of pointwise and globally Osserman conditions are not equivalent, for example in dimension 4: K3-surface (compact), quaternionic Kahler orbifolds (local, non-zero scalar curvature), hyperKaehler examples.
- Let S^+M and S^-M be the unit pseudo-sphere bundles of spacelike and timelike vectors, $SM = S^+M \cup S^-M$.
- M is (globally) spacelike, timelike or null Osserman if the characteristic polynomial of R_X is constant for $X \in S^+M$, $X \in S^-M$, or $X \in \mathcal{N}M$, respectively.
- M is spacelike, timelike, or null Jordan-Osserman if the Jordan normal form of R_X is constant when X belongs to S^+M , S^-M , or NM respectively.
- The notions of globally spacelike Osserman or globally timelike Osserman are the same, but
- The notions of globally spacelike Jordan-Osserman and globally timelike Jordan-Osserman are inequivalent.

- Notions of pointwise and globally Osserman conditions are not equivalent, for example in dimension 4: K3-surface (compact), quaternionic Kahler orbifolds (local, non-zero scalar curvature), hyperKaehler examples.
- Let S^+M and S^-M be the unit pseudo-sphere bundles of spacelike and timelike vectors, $SM = S^+M \cup S^-M$.
- M is (globally) spacelike, timelike or null Osserman if the characteristic polynomial of R_X is constant for $X \in S^+M$, $X \in S^-M$, or $X \in \mathcal{N}M$, respectively.
- M is spacelike, timelike, or null Jordan-Osserman if the Jordan normal form of R_X is constant when X belongs to S^+M , S^-M , or NM respectively.
- The notions of globally spacelike Osserman or globally timelike Osserman are the same, but
- The notions of globally spacelike Jordan-Osserman and globally timelike Jordan-Osserman are inequivalent.

• Let V be a finite dimensional real vector space which is equipped with a non-degenerate symmetric bilinear form $\langle \cdot, \cdot \rangle$ of signature $(p,q), \ p+q=n$. If a tensor $\mathcal{R} \in (V^*)^{\otimes 4}$ satisfies well-known symmetries

$$\mathcal{R}(X,Y) + \mathcal{R}(Y,X) = 0,$$

$$\mathcal{R}(X,Y)Z + \mathcal{R}(Y,Z)X + \mathcal{R}(Z,X)Y = 0,$$

$$\langle \mathcal{R}(X,Y)Z, W \rangle = \langle \mathcal{R}(Z,W)X, Y \rangle.$$
(1)

then we say that it is an algebraic curvature tensor on $\it V$.

• One says $\mathcal R$ is an Osserman (Jordan-Osserman) algebraic curvature tensor if the associated Jacobi operator has characteristic polynomial (Jordan-form) constant on the unit pseudospheres $S^-(V)$ and $S^+(V)$

• Let V be a finite dimensional real vector space which is equipped with a non-degenerate symmetric bilinear form $\langle \cdot, \cdot \rangle$ of signature (p, q), p + q = n. If a tensor $\mathcal{R} \in (V^*)^{\otimes 4}$ satisfies well-known symmetries

$$\mathcal{R}(X,Y) + \mathcal{R}(Y,X) = 0,$$

$$\mathcal{R}(X,Y)Z + \mathcal{R}(Y,Z)X + \mathcal{R}(Z,X)Y = 0,$$

$$\langle \mathcal{R}(X,Y)Z, W \rangle = \langle \mathcal{R}(Z,W)X, Y \rangle.$$
(1)

then we say that it is an algebraic curvature tensor on V.

• One says $\mathcal R$ is an Osserman (Jordan-Osserman) algebraic curvature tensor if the associated Jacobi operator has characteristic polynomial (Jordan-form) constant on the unit pseudospheres $S^-(V)$ and $S^+(V)$

• Let V be a finite dimensional real vector space which is equipped with a non-degenerate symmetric bilinear form $\langle \cdot, \cdot \rangle$ of signature (p, q), p + q = n. If a tensor $\mathcal{R} \in (V^*)^{\otimes 4}$ satisfies well-known symmetries

$$\mathcal{R}(X,Y) + \mathcal{R}(Y,X) = 0,$$

$$\mathcal{R}(X,Y)Z + \mathcal{R}(Y,Z)X + \mathcal{R}(Z,X)Y = 0,$$

$$\langle \mathcal{R}(X,Y)Z, W \rangle = \langle \mathcal{R}(Z,W)X, Y \rangle.$$
(1)

then we say that it is an algebraic curvature tensor on V.

• One says \mathcal{R} is an *Osserman (Jordan-Osserman) algebraic curvature tensor* if the associated Jacobi operator has characteristic polynomial (Jordan-form) constant on the unit pseudospheres $S^-(V)$ and $S^+(V)$

• Let V be a finite dimensional real vector space which is equipped with a non-degenerate symmetric bilinear form $\langle \cdot, \cdot \rangle$ of signature (p, q), p + q = n. If a tensor $\mathcal{R} \in (V^*)^{\otimes 4}$ satisfies well-known symmetries

$$\mathcal{R}(X,Y) + \mathcal{R}(Y,X) = 0,$$

$$\mathcal{R}(X,Y)Z + \mathcal{R}(Y,Z)X + \mathcal{R}(Z,X)Y = 0,$$

$$\langle \mathcal{R}(X,Y)Z, W \rangle = \langle \mathcal{R}(Z,W)X, Y \rangle.$$
(1)

then we say that it is an algebraic curvature tensor on V.

ullet One says $\mathcal R$ is an Osserman (Jordan-Osserman) algebraic curvature tensor if the associated Jacobi operator has characteristic polynomial (Jordan-form) constant on the unit pseudospheres $S^-(V)$ and $S^+(V)$

$$\langle \Psi X, \Psi Y \rangle = \langle X, Y \rangle,$$

 $\mathcal{R}(\Psi X, \Psi Y, \Psi Z, \Psi W) = \tilde{\mathcal{R}}_{P}(X, Y, Z, W)$

where $\tilde{\mathcal{R}}_P$ is the curvature tensor of M restricted to $P \in M$.

Theorem 1 (Gilkey)

Every algebraic curvature tensor on a vector space V of signature (p,q) is geometrically realizable.

$$\langle \Psi X, \Psi Y \rangle = \langle X, Y \rangle,$$

$$\mathcal{R}(\Psi X, \Psi Y, \Psi Z, \Psi W) = \tilde{\mathcal{R}}_{P}(X, Y, Z, W),$$

where $\tilde{\mathcal{R}}_P$ is the curvature tensor of M restricted to $P \in M$.

Theorem 1 (Gilkey)

Every algebraic curvature tensor on a vector space V of signature (p,q) is geometrically realizable.

$$\langle \Psi X, \Psi Y \rangle = \langle X, Y \rangle,$$

 $\mathcal{R}(\Psi X, \Psi Y, \Psi Z, \Psi W) = \tilde{\mathcal{R}}_{P}(X, Y, Z, W),$

where $\tilde{\mathcal{R}}_P$ is the curvature tensor of M restricted to $P \in M$.

Theorem 1 (Gilkey)

Every algebraic curvature tensor on a vector space V of signature (p,q) is geometrically realizable.

$$\langle \Psi X, \Psi Y \rangle = \langle X, Y \rangle,$$

$$\mathcal{R}(\Psi X, \Psi Y, \Psi Z, \Psi W) = \tilde{\mathcal{R}}_{P}(X, Y, Z, W),$$

where $\tilde{\mathcal{R}}_P$ is the curvature tensor of M restricted to $P \in M$.

Theorem 1 (Gilkey)

Every algebraic curvature tensor on a vector space V of signature (p, q) is geometrically realizable.

• A pseudo-Riemannian manifold M is said to be a *geometric realization* of \mathcal{R} at a point $P \in M$ if there exists an isometry $\Psi : T_PM \longrightarrow V$ such that for all tangent vectors X, Y, Z, and W in T_PM , hold:

$$\langle \Psi X, \Psi Y \rangle = \langle X, Y \rangle,$$

$$\mathcal{R}(\Psi X, \Psi Y, \Psi Z, \Psi W) = \tilde{\mathcal{R}}_{P}(X, Y, Z, W),$$

where $\tilde{\mathcal{R}}_P$ is the curvature tensor of M restricted to $P \in M$.

Theorem 1 (Gilkey)

Every algebraic curvature tensor on a vector space V of signature (p, q) is geometrically realizable.

ullet This P. Gilkey's result enable us to work in algebraic settings, i.e., define a model $\mathfrak{M}=(V,\langle\cdot,\cdot\rangle,\mathcal{R})$ and work in this model, and later pass to the geometrical context.

The spanning sets of $\mathcal{C}(V)$ are sets $\mathcal{S}(V) = \{\mathcal{R}^{\phi} : \phi = \phi^*\}$ and $\mathcal{A}(V) = \{\mathcal{R}^{\theta} : \theta = -\theta^*\}$, where $\mathcal{R}^{\phi}(X,Y)Z = \langle \phi Y, Z \rangle \phi X - \langle \phi X, Z \rangle \phi Y$ $\mathcal{R}^{\theta}(X,Y)Z = \langle \theta Y, Z \rangle \theta X - \langle \theta X, Z \rangle \theta Z - 2 \langle \theta X, Y \rangle \theta Z$

for ϕ and θ are a symmetric and a skew-symmetric endomorphism of V_i respectively.

• More precisely, for an arbitrary algebraic curvature tensor $\mathcal R$ there exist sets $\Phi = \{\phi_1, \phi_2, \dots, \phi_s\}$ and $\Theta = \{\theta_1, \theta_2, \dots, \theta_t\}$ of symmetric and skew-symmetric endomorphisms of V, respectively, such that $\mathcal R$ has representations

$$\mathcal{R} = \sum_{i=1}^{s} \varepsilon_{\phi_i} \mathcal{R}^{\phi_i} = \sum_{i=1}^{t} \varepsilon_{\theta_j} \mathcal{R}^{\theta_j}$$
 where $\varepsilon_{\phi_i}, \, \varepsilon_{\theta_j} \in \{1, -1\},$

The spanning sets of $\mathcal{C}(V)$ are sets $\mathcal{S}(V) = \{\mathcal{R}^{\phi} : \phi = \phi^*\}$ and $\mathcal{A}(V) = \{\mathcal{R}^{\theta} : \theta = -\theta^*\}$, where $\mathcal{R}^{\phi}(X,Y)Z = \langle \phi Y, Z \rangle \phi X - \langle \phi X, Z \rangle \phi Y$ $\mathcal{R}^{\theta}(X,Y)Z = \langle \theta Y, Z \rangle \theta X - \langle \theta X, Z \rangle \theta Z - 2\langle \theta X, Y \rangle \theta Z - 2\langle \theta X,$

for ϕ and θ are a symmetric and a skew-symmetric endomorphism of V, respectively.

• More precisely, for an arbitrary algebraic curvature tensor $\mathcal R$ there exist sets $\Phi = \{\phi_1, \phi_2, \dots, \phi_s\}$ and $\Theta = \{\theta_1, \theta_2, \dots, \theta_t\}$ of symmetric and skew-symmetric endomorphisms of V, respectively, such that $\mathcal R$ has representations

$$\mathcal{R} = \sum_{i=1}^s arepsilon_{\phi_i} \mathcal{R}^{\phi_i} = \sum_{i=1}^t arepsilon_{ heta_j} \mathcal{R}^{ heta_j} \qquad ext{where } arepsilon_{\phi_i}, \, arepsilon_{ heta_j} \in \{1, -1\},$$

The spanning sets of
$$\mathcal{C}(V)$$
 are sets $\mathcal{S}(V) = \{\mathcal{R}^{\phi} : \phi = \phi^*\}$ and $\mathcal{A}(V) = \{\mathcal{R}^{\theta} : \theta = -\theta^*\}$, where
$$\mathcal{R}^{\phi}(X,Y)Z = \langle \phi Y, Z \rangle \phi X - \langle \phi X, Z \rangle \phi Y$$

$$\mathcal{R}^{\theta}(X,Y)Z = \langle \theta Y, Z \rangle \theta X - \langle \theta X, Z \rangle \theta Z - 2 \langle \theta X, Y \rangle \theta Z$$

for ϕ and θ are a symmetric and a skew-symmetric endomorphism of V, respectively.

• More precisely, for an arbitrary algebraic curvature tensor $\mathcal R$ there exist sets $\Phi = \{\phi_1, \phi_2, \dots, \phi_s\}$ and $\Theta = \{\theta_1, \theta_2, \dots, \theta_t\}$ of symmetric and skew-symmetric endomorphisms of V, respectively, such that $\mathcal R$ has representations

$$\mathcal{R} = \sum_{i=1}^{s} arepsilon_{\phi_i} \mathcal{R}^{\phi_i} = \sum_{i=1}^{t} arepsilon_{\theta_j} \mathcal{R}^{\theta_j}$$
 where $arepsilon_{\phi_i}, \, arepsilon_{\theta_j} \in \{1, -1\},$

The spanning sets of $\mathcal{C}(V)$ are sets $\mathcal{S}(V) = \{\mathcal{R}^{\phi} : \phi = \phi^*\}$ and $\mathcal{A}(V) = \{\mathcal{R}^{\theta} : \theta = -\theta^*\}$, where $\mathcal{R}^{\phi}(X,Y)Z = \langle \phi Y, Z \rangle \phi X - \langle \phi X, Z \rangle \phi Y$ $\mathcal{R}^{\theta}(X,Y)Z = \langle \theta Y, Z \rangle \theta X - \langle \theta X, Z \rangle \theta Z - 2\langle \theta X, Y \rangle \theta Z$

for ϕ and θ are a symmetric and a skew-symmetric endomorphism of V, respectively.

• More precisely, for an arbitrary algebraic curvature tensor $\mathcal R$ there exist sets $\Phi = \{\phi_1, \phi_2, \dots, \phi_s\}$ and $\Theta = \{\theta_1, \theta_2, \dots, \theta_t\}$ of symmetric and skew-symmetric endomorphisms of V, respectively, such that $\mathcal R$ has representations

$$\mathcal{R} = \sum_{i=1}^{s} arepsilon_{\phi_i} \mathcal{R}^{\phi_i} = \sum_{j=1}^{t} arepsilon_{ heta_j} \mathcal{R}^{ heta_j} \qquad ext{where } arepsilon_{\phi_i}, \, arepsilon_{ heta_j} \in \{1, -1\},$$

- One of the most important tool in the reconstruction of the algebraic curvature tensor of a pointwise Osserman manifold, is duality principle.
- The duality principle, in Riemannian case, is the following property of the eigenvalue λ of the Jacobi operators: let X and Y be unit vectors, then

$$R_X(Y) = \lambda Y$$
 if and only if $R_Y(X) = \lambda X$.

$$R_X(Y) = \varepsilon_X \lambda Y \implies R_Y(X) = \varepsilon_Y \lambda X$$

- One of the most important tool in the reconstruction of the algebraic curvature tensor of a pointwise Osserman manifold, is duality principle.
- The duality principle, in Riemannian case, is the following property of the eigenvalue λ of the Jacobi operators: let X and Y be unit vectors, then

$$R_X(Y) = \lambda Y$$
 if and only if $R_Y(X) = \lambda X$.

$$R_X(Y) = \varepsilon_X \lambda Y \implies R_Y(X) = \varepsilon_Y \lambda X$$

- One of the most important tool in the reconstruction of the algebraic curvature tensor of a pointwise Osserman manifold, is *duality principle*.
- ullet The duality principle, in Riemannian case, is the following property of the eigenvalue λ of the Jacobi operators: let X and Y be unit vectors, then

$$R_X(Y) = \lambda Y$$
 if and only if $R_Y(X) = \lambda X$.

$$R_X(Y) = \varepsilon_X \lambda Y \implies R_Y(X) = \varepsilon_Y \lambda X.$$

- One of the most important tool in the reconstruction of the algebraic curvature tensor of a pointwise Osserman manifold, is *duality principle*.
- ullet The duality principle, in Riemannian case, is the following property of the eigenvalue λ of the Jacobi operators: let X and Y be unit vectors, then

$$R_X(Y) = \lambda Y$$
 if and only if $R_Y(X) = \lambda X$.

$$R_X(Y) = \varepsilon_X \lambda Y \implies R_Y(X) = \varepsilon_Y \lambda X.$$

- One of the most important tool in the reconstruction of the algebraic curvature tensor of a pointwise Osserman manifold, is *duality principle*.
- ullet The duality principle, in Riemannian case, is the following property of the eigenvalue λ of the Jacobi operators: let X and Y be unit vectors, then

$$R_X(Y) = \lambda Y$$
 if and only if $R_Y(X) = \lambda X$.

$$R_X(Y) = \varepsilon_X \lambda Y \implies R_Y(X) = \varepsilon_Y \lambda X.$$

- Let M be a diagonalizable Osserman pseudo-Riemannian manifold.
- (11) If there is no null eigenvector of H_X for all definite X then M satisfies the duality principle.
- (i2) M satisfies the duality principle in the case when R_X has all different eigenvalues.
- (i3) If M is a four-dimensional, then duality principle holds:
- Total duality. Let \mathcal{R} be an algebraic curvature tensor. We say that non-zero vectors $X, Y \in V$ are totaly dual if the following equivalence holds
 - $Y \in \text{eigenspace of } \mathcal{R}_X \iff X \in \text{eigenspace of } \mathcal{R}_Y.$
- An algebraic curvature tensor $\mathcal R$ is totaly dual if all vectors $X,Y\in V$ are totaly dual.

Let M be a diagonalizable Osserman pseudo-Riemannian manifold.

- (II) If there is no null eigenvector of R_X for all definite X then M satisfies the duality principle.
- (12) M satisfies the duality principle in the case when R_X has all different eigenvalues.
- (i3) If M is a four-dimensional, then duality principle holds.

• Total duality. Let \mathcal{R} be an algebraic curvature tensor. We say that non-zero vectors $X, Y \in V$ are totaly dual if the following equivalence holds

$$Y \in \text{eigenspace of } \mathcal{R}_X \iff X \in \text{eigenspace of } \mathcal{R}_Y.$$

Let M be a diagonalizable Osserman pseudo-Riemannian manifold.

```
M satisfies the duality principle in the case when R_X has all different
```

(i3) If M is a four-dimensional, then duality principle holds.

• Total duality. Let \mathcal{R} be an algebraic curvature tensor. We say that non-zero vectors $X, Y \in V$ are totaly dual if the following equivalence holds

```
Y \in \text{eigenspace of } \mathcal{R}_X \iff X \in \text{eigenspace of } \mathcal{R}_Y.
```

Let M be a diagonalizable Osserman pseudo-Riemannian manifold.

- (i1) If there is no null eigenvector of R_X for all definite X then M satisfies the duality principle.
- (i2) M satisfies the duality principle in the case when R_X has all different eigenvalues.
- (i3) If M is a four-dimensional, then duality principle holds.
- Total duality. Let \mathcal{R} be an algebraic curvature tensor. We say that non-zero vectors $X,Y\in V$ are totaly dual if the following equivalence holds

 $Y \in \text{eigenspace of } \mathcal{R}_X \iff X \in \text{eigenspace of } \mathcal{R}_Y.$

Let M be a diagonalizable Osserman pseudo-Riemannian manifold.

- (i1) If there is no null eigenvector of R_X for all definite X then M satisfies the duality principle.
- (i2) M satisfies the duality principle in the case when R_X has all different eigenvalues.
- (i3) If M is a four-dimensional, then duality principle holds.
- Total duality. Let \mathcal{R} be an algebraic curvature tensor. We say that non-zero vectors $X,Y\in V$ are totaly dual if the following equivalence holds

 $Y \in \text{eigenspace of } \mathcal{R}_X \iff X \in \text{eigenspace of } \mathcal{R}_Y.$

Let M be a diagonalizable Osserman pseudo-Riemannian manifold.

- (i1) If there is no null eigenvector of R_X for all definite X then M satisfies the duality principle.
- (i2) M satisfies the duality principle in the case when R_X has all different eigenvalues.
- (i3) If M is a four-dimensional, then duality principle holds
- Total duality. Let \mathcal{R} be an algebraic curvature tensor. We say that non-zero vectors $X,Y\in V$ are totaly dual if the following equivalence holds

 $Y \in \text{eigenspace of } \mathcal{R}_X \iff X \in \text{eigenspace of } \mathcal{R}_Y.$

Let M be a diagonalizable Osserman pseudo-Riemannian manifold.

- (i1) If there is no null eigenvector of R_X for all definite X then M satisfies the duality principle.
- (i2) M satisfies the duality principle in the case when R_X has all different eigenvalues.
- (i3) If M is a four-dimensional, then duality principle holds.
- Total duality. Let $\mathcal R$ be an algebraic curvature tensor. We say that non-zero vectors $X,Y\in V$ are totaly dual if the following equivalence holds

 $Y \in \text{eigenspace of } \mathcal{R}_X \iff X \in \text{eigenspace of } \mathcal{R}_Y.$

Let M be a diagonalizable Osserman pseudo-Riemannian manifold.

- (i1) If there is no null eigenvector of R_X for all definite X then M satisfies the duality principle.
- (i2) M satisfies the duality principle in the case when R_X has all different eigenvalues.
- (i3) If M is a four-dimensional, then duality principle holds.
- Total duality. Let \mathcal{R} be an algebraic curvature tensor. We say that non-zero vectors $X, Y \in V$ are totaly dual if the following equivalence holds

 $Y \in \text{eigenspace of } \mathcal{R}_X \iff X \in \text{eigenspace of } \mathcal{R}_Y.$

Let M be a diagonalizable Osserman pseudo-Riemannian manifold.

- (i1) If there is no null eigenvector of R_X for all definite X then M satisfies the duality principle.
- (i2) M satisfies the duality principle in the case when R_X has all different eigenvalues.
- (i3) If M is a four-dimensional, then duality principle holds.
- Total duality. Let \mathcal{R} be an algebraic curvature tensor. We say that non-zero vectors $X, Y \in V$ are totaly dual if the following equivalence holds

 $Y \in \text{eigenspace of } \mathcal{R}_X \iff X \in \text{eigenspace of } \mathcal{R}_Y.$

Let \mathcal{R} be an algebraic curvature tensor on a vector space V of signature (p,q). The following conditions are equivalent:

- (1) If p > 1, then $Tr(R_X)$ is constant on $S^-(V)$.
- (2) If q > 1, then $Tr(R_X)$ is constant on $S^+(V)$
- (3) There exists a constant c such that $\rho(x, y) = c \langle x, y \rangle$.

Let \mathcal{R} be an algebraic curvature tensor on a vector space V of signature (p,q). The following conditions are equivalent:

(1) If p > 1, then $Tr(R_X)$ is constant on $S^-(V)$.

(2) If q > 1, then $Tr(R_X)$ is constant on $S^+(V)$

(3) There exists a constant c such that $\rho(x,y) = c(x,y) \beta$

Let \mathcal{R} be an algebraic curvature tensor on a vector space V of signature (p,q). The following conditions are equivalent:

Let \mathcal{R} be an algebraic curvature tensor on a vector space V of signature (p,q). The following conditions are equivalent:

- (1) If p > 1, then $Tr(R_X)$ is constant on $S^-(V)$.
- (2) If q > 1, then $Tr(R_X)$ is constant on $S^+(V)$
- (3) There exists a constant c such that $\rho(x, y) = c \langle x, y \rangle$

Let \mathcal{R} be an algebraic curvature tensor on a vector space V of signature (p,q). The following conditions are equivalent:

- (1) If p > 1, then $Tr(R_X)$ is constant on $S^-(V)$.
- (2) If q > 1, then $Tr(R_X)$ is constant on $S^+(V)$
- (3) There exists a constant c such that $\rho(x,y) = c \langle x,y \rangle$.

Let \mathcal{R} be an algebraic curvature tensor on a vector space V of signature (p,q). The following conditions are equivalent:

- (1) If p > 1, then $Tr(R_X)$ is constant on $S^-(V)$.
- (2) If q > 1, then $Tr(R_X)$ is constant on $S^+(V)$.
- (3) There exists a constant c such that $\rho(x,y) = c \langle x,y \rangle$.

Let \mathcal{R} be an algebraic curvature tensor on a vector space V of signature (p,q). The following conditions are equivalent:

- (1) If p > 1, then $Tr(R_X)$ is constant on $S^-(V)$.
- (2) If q > 1, then $Tr(R_X)$ is constant on $S^+(V)$.
- (3) There exists a constant c such that $\rho(x, y) = c \langle x, y \rangle$.

Let \mathcal{R} be an algebraic curvature tensor on a vector space V of signature (p,q). The following conditions are equivalent:

- (1) If p > 1, then $Tr(R_X)$ is constant on $S^-(V)$.
- (2) If q > 1, then $Tr(R_X)$ is constant on $S^+(V)$.
- (3) There exists a constant c such that $\rho(x, y) = c \langle x, y \rangle$.

• We say that \mathcal{R} is k-stein if there exist constants c_j for $1 \le i \le k$ so that $\mathrm{Tr} R_X^i = c_i \langle X, X \rangle^i$, for all $X \in V$.

Proposition 5

- (1) If p > 1, then $\operatorname{Tr}(R_X^i)$ is constant on $S^-(V)$ for $1 \le i \le k$.
- (2) If q > I, then $Tr(R_X^i)$ is constant on $S^+(V)$ for $1 \le i \le k$
- (3) There exists constants c_i such that $\operatorname{Tr}(R_X^i) = c_i \langle X, X \rangle^i$, for all $X \in V$ and $1 \leq i \leq k$.
- Proposition 5 shows (for $k = n = \dim M$) that notions of timelike Osserman algebraic curvature tensor, spacelike Osserman algebraic curvature tensor and n-stein algebraic curvature tensor are equivalent.

• We say that \mathcal{R} is k-stein if there exist constants c_i for $1 \le i \le k$ so that $\mathrm{Tr} R_X^i = c_i \langle X, X \rangle^i$, for all $X \in V$.

Proposition 5

- (1) If p > 1, then $\operatorname{Tr}(R_X^i)$ is constant on $S^-(V)$ for $1 \le i \le k$.
- (2) If q > 1, then $Tr(R_x^i)$ is constant on $S^+(V)$ for 1 < i < k
- (3) There exists constants c_i such that $\operatorname{Tr}(R_X^i) = c_i \langle X, X \rangle^i$, for all $X \in V$ and 1 < i < k.
- Proposition 5 shows (for $k = n = \dim M$) that notions of timelike Osserman algebraic curvature tensor, spacelike Osserman algebraic curvature tensor and n-stein algebraic curvature tensor are equivalent.

• We say that \mathcal{R} is k-stein if there exist constants c_j for $1 \le i \le k$ so that $\mathrm{Tr} R_X^i = c_i \langle X, X \rangle^i$, for all $X \in V$.

Proposition 5

Let \mathcal{R} be an algebraic curvature tensor on a vector space V of signature (p,q). The following conditions are equivalent and all define the notion of a k-stein algebraic curvature tensor:

```
(1) If p > 1, then Tr(R'<sub>X</sub>) is constant on S<sup>+</sup>(V) for 1 ≤ i ≤ k.
(2) If q > I, then Tr(R'<sub>X</sub>) is constant on S<sup>+</sup>(V) for 1 ≤ i ≤ k.
(3) There exists constants c<sub>i</sub> such that Tr(R'<sub>X</sub>) = c<sub>i</sub>(X, X)<sup>i</sup>, for all X ∈ V and 1 ≤ i ≤ k.
```

• Proposition 5 shows (for $k = n = \dim M$) that notions of timelike Osserman algebraic curvature tensor, spacelike Osserman algebraic curvature tensor and n-stein algebraic curvature tensor are equivalent.

• We say that \mathcal{R} is k-stein if there exist constants c_i for $1 \le i \le k$ so that $\mathrm{Tr} R_i^i = c_i \langle X, X \rangle^i$, for all $X \in V$.

Proposition 5

Let $\mathcal R$ be an algebraic curvature tensor on a vector space V of signature (p,q). The following conditions are equivalent and all define the notion of a k-stein algebraic curvature tensor:

• Proposition 5 shows (for $k = n = \dim M$) that notions of timelike Osserman algebraic curvature tensor, spacelike Osserman algebraic curvature tensor and n-stein algebraic curvature tensor are equivalent.

• We say that \mathcal{R} is k-stein if there exist constants c_i for $1 \le i \le k$ so that $\mathrm{Tr} B_k^i = c_i \langle X, X \rangle^i$, for all $X \in V$.

Proposition 5

- (1) If p > 1, then $\operatorname{Tr}(R_X^i)$ is constant on $S^-(V)$ for $1 \le i \le k$.
- (2) If q > l, then $\operatorname{Tr}(R_X^i)$ is constant on $S^+(V)$ for $1 \le i \le k$.
- (3) There exists constants c_i such that $\operatorname{Tr}(R_X^i) = c_i \langle X, X \rangle^i$, for all $X \in V$ and $1 \leq i \leq k$.
- Proposition 5 shows (for $k = n = \dim M$) that notions of timelike Osserman algebraic curvature tensor, spacelike Osserman algebraic curvature tensor and n-stein algebraic curvature tensor are equivalent.

• We say that \mathcal{R} is k-stein if there exist constants c_j for $1 \le i \le k$ so that $\operatorname{Tr} A_k^i = c_i \langle X, X \rangle^i$, for all $X \in V$.

Proposition 5

- (1) If p > 1, then $Tr(R_X^i)$ is constant on $S^-(V)$ for $1 \le i \le k$.
- (2) If q > 1, then $\operatorname{Tr}(R_x^i)$ is constant on $S^+(V)$ for 1 < i < k.
- (3) There exists constants c_i such that $\operatorname{Tr}(R_X^i) = c_i \langle X, X \rangle^i$, for all $X \in V$ and $1 \leq i \leq k$.
- Proposition 5 shows (for $k = n = \dim M$) that notions of timelike Osserman algebraic curvature tensor, spacelike Osserman algebraic curvature tensor and n-stein algebraic curvature tensor are equivalent.

• We say that \mathcal{R} is k-stein if there exist constants c_i for $1 \le i \le k$ so that $\mathrm{Tr} B_k^i = c_i \langle X, X \rangle^i$, for all $X \in V$.

Proposition 5

- (1) If p > 1, then $Tr(R_X^i)$ is constant on $S^-(V)$ for $1 \le i \le k$.
- (2) If q > l, then $Tr(R_X^i)$ is constant on $S^+(V)$ for $1 \le i \le k$.
- (3) There exists constants c_i such that $\operatorname{Tr}(R_X^i) = c_i \langle X, X \rangle^i$, for all $X \in V$ and $1 \leq i \leq k$.
- Proposition 5 shows (for $k = n = \dim M$) that notions of timelike Osserman algebraic curvature tensor, spacelike Osserman algebraic curvature tensor and n-stein algebraic curvature tensor are equivalent.

• We say that \mathcal{R} is k-stein if there exist constants c_i for $1 \le i \le k$ so that $\mathrm{Tr} R_{X}^i = c_i \langle X, X \rangle^i$, for all $X \in V$.

Proposition 5

- (1) If p > 1, then $\operatorname{Tr}(R_X^i)$ is constant on $S^-(V)$ for $1 \le i \le k$.
- (2) If q > l, then $Tr(R_x^i)$ is constant on $S^+(V)$ for $1 \le i \le k$.
- (3) There exists constants c_i such that $\operatorname{Tr}(R_X^i) = c_i \langle X, X \rangle^i$, for all $X \in V$ and $1 \le i \le k$.
- Proposition 5 shows (for $k = n = \dim M$) that notions of timelike Osserman algebraic curvature tensor, spacelike Osserman algebraic curvature tensor and n-stein algebraic curvature tensor are equivalent.

• We say that \mathcal{R} is k-stein if there exist constants c_i for $1 \le i \le k$ so that $\mathrm{Tr} R_{X}^i = c_i \langle X, X \rangle^i$, for all $X \in V$.

Proposition 5

- (1) If p > 1, then $\operatorname{Tr}(R_X^i)$ is constant on $S^-(V)$ for $1 \le i \le k$.
- (2) If q > l, then $Tr(R_X^i)$ is constant on $S^+(V)$ for $1 \le i \le k$.
- (3) There exists constants c_i such that $\operatorname{Tr}(R_X^i) = c_i \langle X, X \rangle^i$, for all $X \in V$ and $1 \le i \le k$.
- Proposition 5 shows (for $k = n = \dim M$) that notions of timelike Osserman algebraic curvature tensor, spacelike Osserman algebraic curvature tensor and n-stein algebraic curvature tensor are equivalent.

Let $\mathcal R$ be an algebraic curvature tensor on a vector space V of signature (p,q), where $q\geq 2$. Let $0\neq X$ be a null vector of V. If $\mathcal R$ is n-stein, then $\mathcal R_X$ is nilpotent.

Theorem 7 (GiSwVa, AlBoBIRa).

- (1) M is pointwise Osserman.
- (2) There is a choice of orientation for M such that it is Einstein self-dual (or Einstein anti-self-dual).

Let $\mathcal R$ be an algebraic curvature tensor on a vector space V of signature (p,q), where $q\geq 2$. Let $0\neq X$ be a null vector of V. If $\mathcal R$ is n-stein, then $\mathcal R_X$ is nilpotent.

Theorem 7 (GiSwVa, AlBoBlRa).

- (1) M is pointwise Osserman.
- (2) There is a choice of orientation for M such that it is Einstein self-dual (or Einstein anti-self-dual).

Let $\mathcal R$ be an algebraic curvature tensor on a vector space V of signature (p,q), where $q\geq 2$. Let $0\neq X$ be a null vector of V. If $\mathcal R$ is n-stein, then $\mathcal R_X$ is nilpotent.

Theorem 7 (GiSwVa, AlBoBIRa).

Let M be a four dimensional pseudo-Riemannian manifold. Then, the following conditions are equivalent:

```
    M is pointwise Osserman.
```

There is a choice of orientation for M such that it is Einstein self-dual (o Einstein anti-self-dual).

Let $\mathcal R$ be an algebraic curvature tensor on a vector space V of signature (p,q), where $q\geq 2$. Let $0\neq X$ be a null vector of V. If $\mathcal R$ is n-stein, then $\mathcal R_X$ is nilpotent.

Theorem 7 (GiSwVa, AlBoBIRa).

Let $\mathcal R$ be an algebraic curvature tensor on a vector space V of signature (p,q), where $q\geq 2$. Let $0\neq X$ be a null vector of V. If $\mathcal R$ is n-stein, then $\mathcal R_X$ is nilpotent.

Theorem 7 (GiSwVa, AlBoBIRa).

- (1) M is pointwise Osserman.
- (2) There is a choice of orientation for M such that it is Einstein self-dual (or Einstein anti-self-dual).

Let $\mathcal R$ be an algebraic curvature tensor on a vector space V of signature (p,q), where $q\geq 2$. Let $0\neq X$ be a null vector of V. If $\mathcal R$ is n-stein, then $\mathcal R_X$ is nilpotent.

Theorem 7 (GiSwVa, AlBoBIRa).

- (1) M is pointwise Osserman.
- (2) There is a choice of orientation for M such that it is Einstein self-dual (or Einstein anti-self-dual).

Let $\mathcal R$ be an algebraic curvature tensor on a vector space V of signature (p,q), where $q\geq 2$. Let $0\neq X$ be a null vector of V. If $\mathcal R$ is n-stein, then $\mathcal R_X$ is nilpotent.

Theorem 7 (GiSwVa, AlBoBIRa).

- (1) M is pointwise Osserman.
- (2) There is a choice of orientation for M such that it is Einstein self-dual (or Einstein anti-self-dual).

- The Adams numbers $\mu(n)$ are defined as follows:
 - \bullet $\mu(1) = 0$, $\mu(2) = 1$, $\mu(4) = 3$, $\mu(8) = 7$,
 - $\mu(16 m) = \mu(m) + 8$ and
 - $\mu(2^{j}b) = \mu(2^{j})$ for *b* odd,

Theorem 8 (Adams)

Suppose that we have a nontrivial decomposition of the tangent bundle $T(S^{n-1}) = F_0 \oplus F_1 \cdots \oplus F_k$, as an orthogonal direct sum of vector bundles of dimension $\nu_i = \text{dim} F_i$, where $\nu_0 \ge \nu_1 \cdots \ge \nu_k$.

Then $\nu_1 + \cdots + \nu_k \leq \mu(k)$, holds.

- (1) If $m = 1 \mod 2$, then \tilde{R}_X has only one eigenvalue
- (2) If $m = 2 \mod 4$, then R_X has at most two eigenvalues; if R_X has two distinct eigenvalues, then one eigenvalue has multiplicity 1.

• The Adams numbers $\mu(n)$ are defined as follows:

$$\bullet$$
 $\mu(1) = 0$, $\mu(2) = 1$, $\mu(4) = 3$, $\mu(8) = 7$,

- $\mu(16 m) = \mu(m) + 8$ and
- $\mu(2^{j} b) = \mu(2^{j})$ for *b* odd,

and they are related with non-trivial decomposition of the tangent bundle $T(S^{n-1})$.

Theorem 8 (Adams)

Suppose that we have a nontrivial decomposition of the tangent bundle $T(S^{n-1}) = F_0 \oplus F_1 \cdots \oplus F_k$, as an orthogonal direct sum of vector bundles of dimension $\nu_i = \dim F_i$, where $\nu_0 \ge \nu_1 \cdots \ge \nu_k$.

Then $\nu_1 + \cdots + \nu_k \leq \mu(k)$, holds.

- (1) If $m = 1 \mod 2$, then \tilde{R}_X has only one eigenvalue.
- (2) If $m = 2 \mod 4$, then \tilde{R}_X has at most two eigenvalues; if \tilde{R}_X has two distinct eigenvalues, then one eigenvalue has multiplicity 1.

- The Adams numbers $\mu(n)$ are defined as follows:
 - $\mu(1) = 0$, $\mu(2) = 1$, $\mu(4) = 3$, $\mu(8) = 7$,
 - $\mu(16 m) = \mu(m) + 8$ and
 - $\mu(2^j b) = \mu(2^j)$ for *b* odd,

Theorem 8 (Adams)

Suppose that we have a nontrivial decomposition of the tangent bundle $T(S^{n-1}) = F_0 \oplus F_1 \cdots \oplus F_k$, as an orthogonal direct sum of vector bundles of dimension $\nu_i = \text{dim} F_i$, where $\nu_0 \ge \nu_1 \cdots \ge \nu_k$.

Then $\nu_1 + \cdots + \nu_k \leq \mu(k)$, holds.

- (1) If $m = 1 \mod 2$, then \tilde{R}_X has only one eigenvalue.
- (2) If $m = 2 \mod 4$, then \tilde{R}_X has at most two eigenvalues; if \tilde{R}_X has two distinct eigenvalues, then one eigenvalue has multiplicity 1.

- The Adams numbers $\mu(n)$ are defined as follows:
 - \bullet $\mu(1) = 0$, $\mu(2) = 1$, $\mu(4) = 3$, $\mu(8) = 7$,
 - $\mu(16 m) = \mu(m) + 8$ and
 - $\mu(2^j b) = \mu(2^j)$ for *b* odd,

Theorem 8 (Adams)

Suppose that we have a nontrivial decomposition of the tangent bundle $T(S^{n-1}) = F_0 \oplus F_1 \cdots \oplus F_k$, as an orthogonal direct sum of vector bundles of dimension $\nu_i = \dim F_i$, where $\nu_0 \ge \nu_1 \cdots \ge \nu_k$.

Then $\nu_1 + \cdots + \nu_k \leq \mu(k)$, holds.

- (1) If $m = 1 \mod 2$, then \tilde{R}_X has only one eigenvalue
- (2) If $m = 2 \mod 4$, then \tilde{R}_X has at most two eigenvalues; if \tilde{R}_X has two distinct eigenvalues, then one eigenvalue has multiplicity 1.

- The Adams numbers $\mu(n)$ are defined as follows:
 - \bullet $\mu(1) = 0$, $\mu(2) = 1$, $\mu(4) = 3$, $\mu(8) = 7$,
 - $\mu(16 m) = \mu(m) + 8$ and
 - $\mu(2^j b) = \mu(2^j)$ for *b* odd,

Theorem 8 (Adams)

Suppose that we have a nontrivial decomposition of the tangent bundle $T(S^{n-1}) = F_0 \oplus F_1 \cdots \oplus F_k$, as an orthogonal direct sum of vector bundles of dimension $\nu_i = \text{dim} F_i$, where $\nu_0 \ge \nu_1 \cdots \ge \nu_k$.

Then $\nu_1 + \cdots + \nu_k \leq \mu(k)$, holds.

- (1) If $m = 1 \mod 2$, then \tilde{R}_X has only one eigenvalue
- (2) If $m = 2 \mod 4$, then \tilde{R}_X has at most two eigenvalues; if \tilde{R}_X has two distinct eigenvalues, then one eigenvalue has multiplicity 1.

- The Adams numbers $\mu(n)$ are defined as follows:
 - \bullet $\mu(1) = 0$, $\mu(2) = 1$, $\mu(4) = 3$, $\mu(8) = 7$,
 - $\mu(16 m) = \mu(m) + 8$ and
 - $\mu(2^{j}b) = \mu(2^{j})$ for *b* odd,

Theorem 8 (Adams)

Suppose that we have a nontrivial decomposition of the tangent bundle $T(S^{n-1}) = F_0 \oplus F_1 \cdots \oplus F_k$, as an orthogonal direct sum of vector bundles of dimension $\nu_i = \text{dim} F_i$, where $\nu_0 \ge \nu_1 \cdots \ge \nu_k$.

Then $\nu_1 + \cdots + \nu_k \leq \mu(k)$, holds.

- (1) If $m = 1 \mod 2$, then \tilde{R}_X has only one eigenvalue.
- (2) If $m = 2 \mod 4$, then \tilde{R}_X has at most two eigenvalues; if \tilde{R}_X has two distinct eigenvalues, then one eigenvalue has multiplicity 1.

- The Adams numbers $\mu(n)$ are defined as follows:
 - \bullet $\mu(1) = 0$, $\mu(2) = 1$, $\mu(4) = 3$, $\mu(8) = 7$,
 - $\mu(16 m) = \mu(m) + 8$ and
 - $\mu(2^{j}b) = \mu(2^{j})$ for *b* odd,

Theorem 8 (Adams)

Suppose that we have a nontrivial decomposition of the tangent bundle $T(S^{n-1}) = F_0 \oplus F_1 \cdots \oplus F_k$, as an orthogonal direct sum of vector bundles of dimension $\nu_i = \text{dim} F_i$, where $\nu_0 \ge \nu_1 \cdots \ge \nu_k$.

Then $\nu_1 + \cdots + \nu_k \leq \mu(k)$, holds.

- (1) If $m = 1 \mod 2$, then \tilde{R}_X has only one eigenvalue.
- (2) If $m = 2 \mod 4$, then \tilde{R}_X has at most two eigenvalues; if \tilde{R}_X has two distinct eigenvalues, then one eigenvalue has multiplicity 1.

- The Adams numbers $\mu(n)$ are defined as follows:
 - \bullet $\mu(1) = 0$, $\mu(2) = 1$, $\mu(4) = 3$, $\mu(8) = 7$,
 - $\mu(16 m) = \mu(m) + 8$ and
 - $\mu(2^{j}b) = \mu(2^{j})$ for *b* odd,

Theorem 8 (Adams)

Suppose that we have a nontrivial decomposition of the tangent bundle $T(S^{n-1}) = F_0 \oplus F_1 \cdots \oplus F_k$, as an orthogonal direct sum of vector bundles of dimension $\nu_i = \text{dim} F_i$, where $\nu_0 \ge \nu_1 \cdots \ge \nu_k$.

Then $\nu_1 + \cdots + \nu_k \leq \mu(k)$, holds.

Specially, it implies

(1) If $m=1 \mod 2$, then R_χ has only one eigenvalue.

(2) If $m = 2 \mod 4$, then \tilde{R}_X has at most two eigenvalues; if \tilde{R}_X has two distinct eigenvalues, then one eigenvalue has multiplicity 1.

- The Adams numbers $\mu(n)$ are defined as follows:
 - \bullet $\mu(1) = 0$, $\mu(2) = 1$, $\mu(4) = 3$, $\mu(8) = 7$,
 - $\mu(16 m) = \mu(m) + 8$ and
 - $\mu(2^{j}b) = \mu(2^{j})$ for *b* odd,

Theorem 8 (Adams)

Suppose that we have a nontrivial decomposition of the tangent bundle $T(S^{n-1}) = F_0 \oplus F_1 \cdots \oplus F_k$, as an orthogonal direct sum of vector bundles of dimension $\nu_i = \dim F_i$, where $\nu_0 \ge \nu_1 \cdots \ge \nu_k$.

Then $\nu_1 + \cdots + \nu_k \leq \mu(k)$, holds.

- The Adams numbers $\mu(n)$ are defined as follows:
 - \bullet $\mu(1) = 0$, $\mu(2) = 1$, $\mu(4) = 3$, $\mu(8) = 7$,
 - $\mu(16 m) = \mu(m) + 8$ and
 - $\mu(2^{j}b) = \mu(2^{j})$ for *b* odd,

Theorem 8 (Adams)

Suppose that we have a nontrivial decomposition of the tangent bundle $T(S^{n-1}) = F_0 \oplus F_1 \cdots \oplus F_k$, as an orthogonal direct sum of vector bundles of dimension $\nu_i = \text{dim} F_i$, where $\nu_0 \ge \nu_1 \cdots \ge \nu_k$.

Then $\nu_1 + \cdots + \nu_k \leq \mu(k)$, holds.

- The Adams numbers $\mu(n)$ are defined as follows:
 - \bullet $\mu(1) = 0$, $\mu(2) = 1$, $\mu(4) = 3$, $\mu(8) = 7$,
 - $\mu(16 m) = \mu(m) + 8$ and
 - $\mu(2^{j}b) = \mu(2^{j})$ for *b* odd,

Theorem 8 (Adams)

Suppose that we have a nontrivial decomposition of the tangent bundle $T(S^{n-1}) = F_0 \oplus F_1 \cdots \oplus F_k$, as an orthogonal direct sum of vector bundles of dimension $\nu_i = \dim F_i$, where $\nu_0 \ge \nu_1 \cdots \ge \nu_k$.

Then $\nu_1 + \cdots + \nu_k \leq \mu(k)$, holds.

- (1) If $m = 1 \mod 2$, then \tilde{R}_X has only one eigenvalue.
- (2) If $m = 2 \mod 4$, then \tilde{R}_X has at most two eigenvalues; if \tilde{R}_X has two distinct eigenvalues, then one eigenvalue has multiplicity 1.

- The Adams numbers $\mu(n)$ are defined as follows:
 - \bullet $\mu(1) = 0$, $\mu(2) = 1$, $\mu(4) = 3$, $\mu(8) = 7$,
 - $\mu(16 m) = \mu(m) + 8$ and
 - $\mu(2^{j}b) = \mu(2^{j})$ for *b* odd,

Theorem 8 (Adams)

Suppose that we have a nontrivial decomposition of the tangent bundle $T(S^{n-1}) = F_0 \oplus F_1 \cdots \oplus F_k$, as an orthogonal direct sum of vector bundles of dimension $\nu_i = \text{dim} F_i$, where $\nu_0 \ge \nu_1 \cdots \ge \nu_k$.

Then $\nu_1 + \cdots + \nu_k \leq \mu(k)$, holds.

- (1) If $m = 1 \mod 2$, then \tilde{R}_X has only one eigenvalue.
- (2) If $m = 2 \mod 4$, then \tilde{R}_X has at most two eigenvalues; if \tilde{R}_X has two distinct eigenvalues, then one eigenvalue has multiplicity 1.

- The Adams numbers $\mu(n)$ are defined as follows:
 - \bullet $\mu(1) = 0$, $\mu(2) = 1$, $\mu(4) = 3$, $\mu(8) = 7$,
 - $\mu(16 m) = \mu(m) + 8$ and
 - $\mu(2^j b) = \mu(2^j)$ for *b* odd,

Theorem 8 (Adams)

Suppose that we have a nontrivial decomposition of the tangent bundle $T(S^{n-1}) = F_0 \oplus F_1 \cdots \oplus F_k$, as an orthogonal direct sum of vector bundles of dimension $\nu_i = \text{dim} F_i$, where $\nu_0 \ge \nu_1 \cdots \ge \nu_k$.

Then $\nu_1 + \cdots + \nu_k \leq \mu(k)$, holds.

- (1) If $m = 1 \mod 2$, then \tilde{R}_X has only one eigenvalue.
- (2) If $m = 2 \mod 4$, then \tilde{R}_X has at most two eigenvalues; if \tilde{R}_X has two distinct eigenvalues, then one eigenvalue has multiplicity 1.

$$J_i J_j + J_j J_i = -2 \delta_{ij}$$
 for $i, j = 1, 2 \dots, \nu$.

Theorem 9 (Gilkey, Swan, Vanhecke

Suppose there is a $Cliff(\nu)$ - module structure on \mathbb{R}^n and consider a set of generators $\{J_1,J_2,\ldots,J_{\nu}\}$ such that $J_i\,J_j+J_j\,J_i=-2\,\delta_{ij}$. If $\lambda_0,\,\lambda_1,\ldots,\lambda_{\nu}$ are arbitrary real numbers, then the trilinear map $R:V\times V\times V\longrightarrow V$, defined by

 $R = \lambda_0 R^0 + \frac{1}{3} \sum_{i=1}^{\infty} (\lambda_i - \lambda_0) R^{J_i}$ where $R^0(x, y) z = \langle y, z \rangle x - \langle x, z \rangle y$,

$$R^{J}(x,y)z = \langle Jx,z\rangle Jy - \langle Jy,z\rangle Jx + 2\langle Jx,y\rangle Jz.$$

is an Osserman algebraic curvature tensor with

$$R_x(J_i x) = \lambda_i J_i x$$
 $R_x y = \lambda_0 y$

where x, y are nonnull unit vectors on \mathbb{R}^n with y orthogonal to $\{x, J_1x, J_2x, \dots, J_{\nu}x\}$.

$$J_i J_j + J_j J_i = -2 \delta_{ij}$$
 for $i, j = 1, 2 \dots, \nu$.

Theorem 9 (Gilkey, Swan, Vanhecke)

Suppose there is a $Cliff(\nu)$ - module structure on \mathbb{R}^n and consider a set of generators $\{J_1,J_2,\ldots,J_{\nu}\}$ such that $J_i\,J_j+J_j\,J_i=-2\,\delta_{ij}$. If $\lambda_0,\,\lambda_1,\ldots,\lambda_{\nu}$ are arbitrary real numbers, then the trilinear map $R:V\times V\times V\longrightarrow V$, defined by

 $R = \lambda_0 R^0 + \frac{1}{3} \sum_{i=1}^{\infty} (\lambda_i - \lambda_0) R^{J_i}$ where $R^0(x, y) z = \langle y, z \rangle x - \langle x, z \rangle y$,

$$R^{J}(x,y)z = \langle Jx,z\rangle Jy - \langle Jy,z\rangle Jx + 2\langle Jx,y\rangle Jz.$$

is an Osserman algebraic curvature tensor with

$$R_X(J_i X) = \lambda_i J_i X$$
 $R_X y = \lambda_0 y$

where x, y are nonnull unit vectors on \mathbb{R}^n with y orthogonal to $\{x, J_1 x, J_2 x, \dots, J_n x\}$.

$$J_i J_j + J_j J_i = -2 \delta_{ij}$$
 for $i, j = 1, 2 \dots, \nu$.

Theorem 9 (Gilkey, Swan, Vanhecke)

Suppose there is a $Cliff(\nu)$ - module structure on \mathbb{R}^n and consider a set of generators $\{J_1,J_2,\ldots,J_\nu\}$ such that $J_iJ_j+J_jJ_i=-2\delta_{ij}$. If $\lambda_0,\lambda_1,\ldots,\lambda_\nu$ are arbitrary real numbers, then the trilinear map $R:V\times V\times V\longrightarrow V$, defined by

 $R = \lambda_0 R^0 + \frac{1}{3} \sum_{i=1}^{5} (\lambda_i - \lambda_0) R^{J_i}$ where $R^0(x, y) z = \langle y, z \rangle x - \langle x, z \rangle y$,

$$R^{J}(x,y)z = \langle Jx,z\rangle Jy - \langle Jy,z\rangle Jx + 2\langle Jx,y\rangle Jz.$$

is an Osserman algebraic curvature tensor with

$$R_X(J_iX) = \lambda_i J_iX$$
 $R_X y = \lambda_0 y$

where x, y are nonnull unit vectors on \mathbb{R}^n with y orthogonal to $\{x, J_1x, J_2x, \dots, J_nx\}$.

$$J_i J_j + J_j J_i = -2 \delta_{ij}$$
 for $i, j = 1, 2 \dots, \nu$.

Theorem 9 (Gilkey, Swan, Vanhecke)

Suppose there is a $Cliff(\nu)$ - module structure on \mathbb{R}^n and consider a set of generators $\{J_1,J_2,\ldots,J_\nu\}$ such that $J_i\,J_j+J_j\,J_i=-2\,\delta_{ij}$. If $\lambda_0,\,\lambda_1,\ldots,\lambda_\nu$ are arbitrary real numbers, then the trilinear map $R:V\times V\times V\longrightarrow V$, defined

 $R = \lambda_0 \, R^0 + rac{1}{3} \, \sum_{i=1}^{
u} (\lambda_i - \lambda_0) R^{J_i} \quad ext{where} \quad R^0(x,y) z = \langle y,z
angle \, x - \langle x,z
angle \, y,
angle \,$

$$R^{J}(x,y)z = \langle Jx,z\rangle Jy - \langle Jy,z\rangle Jx + 2\langle Jx,y\rangle Jz.$$

is an Osserman algebraic curvature tensor with

$$R_x(J_i x) = \lambda_i J_i x$$
 $R_x y = \lambda_0 y$

where x, y are nonnull unit vectors on \mathbb{R}^n with y orthogonal to $\{x, J_1x, J_2x, \dots, J_nx\}$.

$$J_i J_j + J_j J_i = -2 \delta_{ij}$$
 for $i, j = 1, 2 \dots, \nu$.

Theorem 9 (Gilkey, Swan, Vanhecke)

Suppose there is a $Cliff(\nu)$ - module structure on \mathbb{R}^n and consider a set of generators $\{J_1,J_2,\ldots,J_\nu\}$ such that $J_i\,J_j+J_j\,J_i=-2\,\delta_{ij}$. If $\lambda_0,\,\lambda_1,\ldots,\lambda_\nu$ are arbitrary real numbers, then the trilinear map $R:V\times V\times V\longrightarrow V$, defined by

 $R = \lambda_0 R^0 + \frac{1}{3} \sum_{i=1}^{\nu} (\lambda_i - \lambda_0) R^{J_i}$ where $R^0(x, y) z = \langle y, z \rangle x - \langle x, z \rangle y$,

$$R^{J}(x,y)z = \langle Jx,z\rangle Jy - \langle Jy,z\rangle Jx + 2\langle Jx,y\rangle Jz.$$

is an Osserman algebraic curvature tensor with

$$R_x(J_i x) = \lambda_i J_i x$$
 $R_x y = \lambda_0 y$.

where x, y are nonnull unit vectors on \mathbb{R}^n with y orthogonal to $\{x, J_1x, J_2x, \dots, J_nx\}$.

Theorem 9 (Chi, Nikolayevsky)

Let M be an Osserman Riemannian manifold, then Osserman conjecture holds, except in some cases (depending on the structure of eigenvalues of Jacobi operator) in dimension m = 16.

Remark. Chi proved Theorem for $m \neq 4k$, k > 1, and Nikolayevsky in all other cases.

Lorentzian case.

Theorem 10 (Blažić, Bokan, Gilkey)

Let \mathcal{R} be a 2-stein algebraic curvature tensor on a vector space V of signature (1,q). Then \mathcal{R} has constant sectional curvature.

Theorem 9 (Chi, Nikolayevsky)

Let M be an Osserman Riemannian manifold, then Osserman conjecture holds, except in some cases (depending on the structure of eigenvalues of Jacobi operator) in dimension m = 16.

Remark. Chi proved Theorem for $m \neq 4k$, k > 1, and Nikolayevsky in all other cases.

Lorentzian case.

Theorem 10 (Blažić, Bokan, Gilkey)

Let \mathcal{R} be a 2-stein algebraic curvature tensor on a vector space V of signature (1,q). Then \mathcal{R} has constant sectional curvature.

Theorem 9 (Chi, Nikolayevsky)

Let M be an Osserman Riemannian manifold, then Osserman conjecture holds, except in some cases (depending on the structure of eigenvalues of Jacobi operator) in dimension m = 16.

Remark. Chi proved Theorem for $m \neq 4k$, k > 1, and Nikolayevsky in all other cases.

• Lorentzian case.

Theorem 10 (Blažić, Bokan, Gilkey)

Let \mathcal{R} be a 2-stein algebraic curvature tensor on a vector space V of signature (1,q). Then \mathcal{R} has constant sectional curvature.

Theorem 9 (Chi, Nikolayevsky)

Let M be an Osserman Riemannian manifold, then Osserman conjecture holds, except in some cases (depending on the structure of eigenvalues of Jacobi operator) in dimension m = 16.

Remark. Chi proved Theorem for $m \neq 4k$, k > 1, and Nikolayevsky in all other cases.

Lorentzian case.

Theorem 10 (Blažić, Bokan, Gilkey)

Let \mathcal{R} be a 2-stein algebraic curvature tensor on a vector space V of signature (1, q). Then \mathcal{R} has constant sectional curvature.

Theorem 9 (Chi, Nikolayevsky)

Let M be an Osserman Riemannian manifold, then Osserman conjecture holds, except in some cases (depending on the structure of eigenvalues of Jacobi operator) in dimension m = 16.

Remark. Chi proved Theorem for $m \neq 4k$, k > 1, and Nikolayevsky in all other cases.

· Lorentzian case.

Theorem 10 (Blažić, Bokan, Gilkey

Let $\mathcal R$ be a 2-stein algebraic curvature tensor on a vector space V of signature (1,q). Then $\mathcal R$ has constant sectional curvature.

Theorem 9 (Chi, Nikolayevsky)

Let M be an Osserman Riemannian manifold, then Osserman conjecture holds, except in some cases (depending on the structure of eigenvalues of Jacobi operator) in dimension m = 16.

Remark. Chi proved Theorem for $m \neq 4k$, k > 1, and Nikolayevsky in all other cases.

· Lorentzian case.

Theorem 10 (Blažić, Bokan, Gilkey)

Let $\mathcal R$ be a 2-stein algebraic curvature tensor on a vector space V of signature (1,q). Then $\mathcal R$ has constant sectional curvature.

Theorem 9 (Chi, Nikolayevsky)

Let M be an Osserman Riemannian manifold, then Osserman conjecture holds, except in some cases (depending on the structure of eigenvalues of Jacobi operator) in dimension m = 16.

Remark. Chi proved Theorem for $m \neq 4k$, k > 1, and Nikolayevsky in all other cases.

Lorentzian case.

Theorem 10 (Blažić, Bokan, Gilkey)

Let \mathcal{R} be a 2-stein algebraic curvature tensor on a vector space V of signature (1, q). Then \mathcal{R} has constant sectional curvature.

Theorem 9 (Chi, Nikolayevsky)

Let M be an Osserman Riemannian manifold, then Osserman conjecture holds, except in some cases (depending on the structure of eigenvalues of Jacobi operator) in dimension m = 16.

Remark. Chi proved Theorem for $m \neq 4k$, k > 1, and Nikolayevsky in all other cases.

Lorentzian case.

Theorem 10 (Blažić, Bokan, Gilkey)

Let \mathcal{R} be a 2-stein algebraic curvature tensor on a vector space V of signature (1, q). Then \mathcal{R} has constant sectional curvature.

• Following GSV approach we described symmetric operators on pseudo-Euclidean space Ω of signature (1,2).

Theorem 11

Let K be a symmetric operator of Ω . Then there exists an orthonormal (main) basis in Ω such that the matrix of K is consequently one of the following

$$(I-b) \quad \begin{bmatrix} \alpha & \beta & 0 \\ -\beta & \alpha & 0 \\ 0 & 0 & \gamma \end{bmatrix}, \beta \neq 0 \qquad (III) \quad \begin{bmatrix} \alpha & 0 & \frac{\sqrt{2}}{2} \\ 0 & \alpha & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \alpha \end{bmatrix}$$

for arbitrary $\alpha, \beta, \gamma \in \mathbb{R}$, depending on the minimal polynomial $\mu_k(\lambda)$.

• Following GSV approach we described symmetric operators on pseudo-Euclidean space Ω of signature (1,2).

Theorem 11

Let K be a symmetric operator of Ω . Then there exists an orthonormal (main) basis in Ω such that the matrix of K is consequently one of the following

$$(l-b) \quad \begin{bmatrix} \alpha & \beta & 0 \\ -\beta & \alpha & 0 \\ 0 & 0 & \gamma \end{bmatrix}, \beta \neq 0 \qquad (III) \quad \begin{bmatrix} \alpha & 0 & \frac{\sqrt{2}}{2} \\ 0 & \alpha & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \alpha \end{bmatrix}$$

for arbitrary $\alpha, \beta, \gamma \in \mathbb{R}$, depending on the minimal polynomial $\mu_k(\lambda)$.

• Following GSV approach we described symmetric operators on pseudo-Euclidean space Ω of signature (1,2).

Theorem 11

Let K be a symmetric operator of Ω . Then there exists an orthonormal (main) basis in Ω such that the matrix of K is consequently one of the following

for arbitrary $\alpha, \beta, \gamma \in \mathbb{R}$, depending on the minimal polynomial $\mu_k(\lambda)$.

• Following GSV approach we described symmetric operators on pseudo-Euclidean space Ω of signature (1,2).

Theorem 11

Let $\mathcal K$ be a symmetric operator of Ω . Then there exists an orthonormal (main) basis in Ω such that the matrix of $\mathcal K$ is consequently one of the following

for arbitrary $\alpha, \beta, \gamma \in \mathbb{R}$, depending on the minimal polynomial $\mu_k(\lambda)$.

- (1) M is timelike Osserman.
- (2) M is spacelike Osserman.
- (3) The universal covering space \tilde{M} of M is one of the following manifolds
 - (a) \tilde{M} is a manifold of constant sectional curvature.
 - (b) \tilde{M} is a Kähler manifold of constant holomorphic sectional curvature.
 - (c) M is a para-complex manifold of constant para-holomorphic sectional curvature.
 - (d) Jacobi operator of \tilde{M} is nondiagonalizable, its characteristic polynomial either has a triple zero α or a double root α with $\beta=4$ α or $\beta=\alpha$, and its curvature is given in the Lema 13.

- (1) M is timelike Osserman.
- (2) M is spacelike Osserman.
- (3) The universal covering space M of M is one of the following manifolds

- (1) M is timelike Osserman.
- (2) M is spacelike Osserman.
- (3) The universal covering space \tilde{M} of M is one of the following manifolds

- (1) M is timelike Osserman.
- (2) M is spacelike Osserman.
- (3) The universal covering space $ilde{\mathsf{M}}$ of M is one of the following manifolds

- (1) M is timelike Osserman.
- (2) M is spacelike Osserman.
- (3) The universal covering space \tilde{M} of M is one of the following manifolds

- (1) M is timelike Osserman.
- (2) M is spacelike Osserman.
- (3) The universal covering space \tilde{M} of M is one of the following manifolds
 - (a) \tilde{M} is a manifold of constant sectional curvature.
 - (b) $ilde{M}$ is a Kähler manifold of constant holomorphic sectional curvature.
 - (c) M is a para-complex manifold of constant para-holomorphic sectional curvature.
 - (d) Jacobi operator of \tilde{M} is nondiagonalizable, its characteristic polynomial either has a triple zero α or a double root α with $\beta=4$ α or $\beta=\alpha$, and its curvature is given in the Lema 13.

- (1) M is timelike Osserman.
- (2) M is spacelike Osserman.
- (3) The universal covering space \tilde{M} of M is one of the following manifolds
 - (a) \tilde{M} is a manifold of constant sectional curvature.
 - (b) \tilde{M} is a Kähler manifold of constant holomorphic sectional curvature.
 - (c) M is a para-complex manifold of constant para-holomorphic sectional curvature.
 - (d) Jacobi operator of \tilde{M} is nondiagonalizable, its characteristic polynomial either has a triple zero α or a double root α with $\beta=4$ α or $\beta=\alpha$, and its curvature is given in the Lema 13.

- (1) M is timelike Osserman.
- (2) M is spacelike Osserman.
- (3) The universal covering space \tilde{M} of M is one of the following manifolds
 - (a) \tilde{M} is a manifold of constant sectional curvature.
 - (b) \tilde{M} is a Kähler manifold of constant holomorphic sectional curvature.
 - (c) M is a para-complex manifold of constant para-holomorphic sectional curvature.
 - (d) Jacobi operator of \tilde{M} is nondiagonalizable, its characteristic polynomial either has a triple zero α or a double root α with $\beta=4$ α or $\beta=\alpha$, and its curvature is given in the Lema 13.

- (1) M is timelike Osserman.
- (2) M is spacelike Osserman.
- (3) The universal covering space \tilde{M} of M is one of the following manifolds
 - (a) \tilde{M} is a manifold of constant sectional curvature.
 - (b) \tilde{M} is a Kähler manifold of constant holomorphic sectional curvature.
 - (c) \tilde{M} is a para-complex manifold of constant para-holomorphic sectional curvature.
 - (d) Jacobi operator of \tilde{M} is nondiagonalizable, its characteristic polynomial either has a triple zero α or a double root α with $\beta=4$ α or $\beta=\alpha$, and its curvature is given in the Lema 13.

```
Let M be Jordan-Osserman manifold of signature (2,2).
```

Example (Rakić)

Let $M = \mathbb{R}^4$, (u_1, u_2, u_3, u_4) the Cartesian coordinates and

$$6g = u_2^2 du_1 \otimes du_1 + u_1^2 du_2 \otimes du_2 - u_1 u_2 [du_1 \otimes du_2 + du_2 \otimes du_1]$$

 $-3[du_1\otimes du_4+du_4\otimes du_1+du_2\otimes du_3+du_3\otimes du_2]$

Then (\mathbb{R}^{a},g) is the timelike Osserman rank two homogeneous symmetric space.

Let M be Jordan-Osserman manifold of signature (2, 2).

- (II) If the minimal polynomial of H_X has a double root α, then there exists null frame such that all non-vanishing components of R are: R₁₄₄₁ = R₂₂₂₂ = R₁₂₄₂ = R₁₄₄₃ = α and R₂₂₄₄ = 2.
- (III) If the minimal polynomial of R_X has a triple root, then there exists null frame such that all non-vanishing components of R are:

Example (Rakić)

Let $M = \mathbb{R}^4$, (u_1, u_2, u_3, u_4) the Cartesian coordinates and

$$6g = u_2^2 du_1 \otimes du_1 + u_1^2 du_2 \otimes du_2 - u_1 u_2 [du_1 \otimes du_2 + du_2 \otimes du_1]$$

 $-3[du_1\otimes du_4+du_4\otimes du_1+du_2\otimes du_3+du_3\otimes du_2]$

Then (\mathbb{R}^4,g) is the timelike Osserman rank two homogeneous symmetric space.

Let M be Jordan-Osserman manifold of signature (2,2).

Example (Rakić

Let $M=\mathbb{R}^4$, (u_1,u_2,u_3,u_4) the Cartesian coordinates and

 $6g = u_2^2 du_1 \otimes du_1 + u_1^2 dv_2 \otimes du_2 - u_1 u_2 [du_1 \otimes dv_2 + du_2 \otimes dv_1]$

 $-3[du_1\otimes du_4+du_4\otimes du_1+du_2\otimes du_3+du_3\otimes du_2].$

Then (\mathbb{R}^6,g) is the timelike Osserman rank two homogeneous symmetric space.

Let M be Jordan-Osserman manifold of signature (2,2).

- (II) If the minimal polynomial of R_X has a double root α , then there exists null frame such that all non-vanishing components of R are:
 - $R_{1441} = R_{2332} = R_{1243} = R_{1342} = \alpha \text{ and } R_{4334} = 2.$
- (III) If the minimal polynomial of R_X has a triple root, then there exists null frame such that all non-vanishing components of R are:

$$R_{1441}=R_{2332}=R_{1243}=R_{1342}=-lpha$$
, and $R_{1332}=R_{1314}=\sqrt{2}$

Example (Rakić)

- Let $M=\mathbb{R}^4$, (u_1,u_2,u_3,u_4) the Cartesian coordinates and
- $6g = u_2^2 du_1 \otimes du_1 + u_1^2 du_2 \otimes du_2 u_1 u_2 [du_1 \otimes du_2 + du_2 \otimes du_1]$
- $-3[du_1\otimes du_4+du_4\otimes du_1+du_2\otimes du_3+du_3\otimes du_2].$
- Then (\mathbb{R}^4,g) is the timelike Osserman rank two homogeneous symmetric space.

Let M be Jordan-Osserman manifold of signature (2,2).

- (II) If the minimal polynomial of R_X has a double root α , then there exists null frame such that all non-vanishing components of R are: $R_{1441} = R_{2332} = R_{1243} = R_{1342} = \alpha \text{ and } R_{4334} = 2.$
- (III) If the minimal polynomial of R_X has a triple root, then there exists null frame such that all non-vanishing components of R are: $R_{1441} = R_{2332} = R_{1243} = R_{1342} = -\alpha, \text{ and } R_{1332} = R_{1314} = \sqrt{2}.$

Example (Rakić

NUTNUTTED E

Let M be Jordan-Osserman manifold of signature (2, 2).

- (II) If the minimal polynomial of R_X has a double root α , then there exists null frame such that all non-vanishing components of R are: $R_{1441} = R_{2332} = R_{1243} = R_{1342} = \alpha \text{ and } R_{4334} = 2.$
- (III) If the minimal polynomial of R_X has a triple root, then there exists null frame such that all non-vanishing components of R are: $R_{1441} = R_{2332} = R_{1243} = R_{1342} = -\alpha$, and $R_{1332} = R_{1314} = \sqrt{2}$.

Example (Rakić)

Let $M = \mathbb{R}^4$, (u_1, u_2, u_3, u_4) the Cartesian coordinates and

$$6g = u_2^2 du_1 \otimes du_1 + u_1^2 du_2 \otimes du_2 - u_1 u_2 [du_1 \otimes du_2 + du_2 \otimes du_1]$$

$$-3[du_1\otimes du_4+du_4\otimes du_1+du_2\otimes du_3+du_3\otimes du_2].$$

Then (\mathbb{R}^4, g) is the timelike Osserman rank two homogeneous symmetric space.

Let M be Jordan-Osserman manifold of signature (2, 2).

- (II) If the minimal polynomial of R_X has a double root α , then there exists null frame such that all non-vanishing components of R are: $R_{1441} = R_{2332} = R_{1243} = R_{1342} = \alpha \text{ and } R_{4334} = 2.$
- (III) If the minimal polynomial of R_X has a triple root, then there exists null frame such that all non-vanishing components of R are: $R_{1441} = R_{2332} = R_{1243} = R_{1342} = -\alpha, \text{ and } R_{1332} = R_{1314} = \sqrt{2}.$

Example (Rakić)

Let $M = \mathbb{R}^4$, (u_1, u_2, u_3, u_4) the Cartesian coordinates and

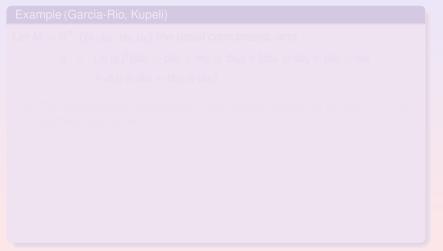
$$6g = u_2^2 du_1 \otimes du_1 + u_1^2 du_2 \otimes du_2 - u_1 u_2 [du_1 \otimes du_2 + du_2 \otimes du_1]$$
$$- 3[du_1 \otimes du_4 + du_4 \otimes du_1 + du_2 \otimes du_3 + du_3 \otimes du_2].$$

Then (\mathbb{R}^4, g) is the timelike Osserman rank two homogeneous symmetric space.

Osserman (2,2) manifolds

• Manifolds satisfying Osserman condition have very interesting and reach geometry, as the following examples show.

```
Let M = \mathbb{R}^4, (u_1, u_2, u_3, u_4) the usual coordinates, and g = (u_1 u_2)^2 [du_1 \otimes dv_1 + du_2 \otimes dv_2] + [du_1 \otimes dv_3 + du_3 \otimes dv_4 + du_2 \otimes dv_4 + du_4 \otimes dv_2].
```



Example (Garcia-Rio, Kupeli)

Let
$$M = \mathbb{R}^4$$
, (u_1, u_2, u_3, u_4) the usual coordinates, and
$$g = (u_1 u_2)^2 [du_1 \otimes du_1 + du_2 \otimes du_2] + [du_1 \otimes du_3 + du_3 \otimes du_4 + du_2 \otimes du_4 + du_4 \otimes du_2].$$

 The characteristic polynomial of the Jacobi operator is p_λ(R_X) = λ⁴, for arbitrary nonnull vector X.

Let
$$M = \mathbb{R}^4$$
, (u_1, u_2, u_3, u_4) the usual coordinates, and
$$g = (u_1 u_2)^2 [du_1 \otimes du_1 + du_2 \otimes du_2] + [du_1 \otimes du_3 + du_3 \otimes du_1 + du_2 \otimes du_4 + du_4 \otimes du_2].$$

Let
$$M = \mathbb{R}^4$$
, (u_1, u_2, u_3, u_4) the usual coordinates, and
$$g = (u_1 u_2)^2 [du_1 \otimes du_1 + du_2 \otimes du_2] + [du_1 \otimes du_3 + du_3 \otimes du_1 + du_2 \otimes du_4 + du_4 \otimes du_2].$$

- The characteristic polynomial of the Jacobi operator is $p_{\lambda}(R_X) = \lambda^4$, for arbitrary nonnull vector X.
- Moreover, (M, g) satisfies timelike and spacelike Osserman condition the open subset to u ≠ 0 (type (II))
- When $u_1u_2=0$, the minimal polynomial $m_{\lambda}(R_{\lambda})=\lambda$, i.e., the Jacobi operator is diagonalizable
- The manifold (M, g) is not locally symmetric.
- \bullet (\mathbb{R}^4 , g) is not locally homogeneous.

Let
$$M = \mathbb{R}^4$$
, (u_1, u_2, u_3, u_4) the usual coordinates, and
$$g = (u_1 u_2)^2 [du_1 \otimes du_1 + du_2 \otimes du_2] + [du_1 \otimes du_3 + du_3 \otimes du_1 + du_2 \otimes du_4 + du_4 \otimes du_2].$$

- The characteristic polynomial of the Jacobi operator is $p_{\lambda}(R_X) = \lambda^4$, for arbitrary nonnull vector X.
- Moreover, (M, g) satisfies timelike and spacelike Osserman condition on the open subset $u_1u_2 \neq 0$ (type (II)).
- When $u_1u_2=0$, the minimal polynomial $m_{\lambda}(R_{\chi})=\lambda$, i.e., the Jacobi operator is diagonalizable.
- The manifold (M, g) is not locally symmetric.
- (\mathbb{R}^4, g) is not locally homogeneous.

Let
$$M = \mathbb{R}^4$$
, (u_1, u_2, u_3, u_4) the usual coordinates, and
$$g = (u_1 u_2)^2 [du_1 \otimes du_1 + du_2 \otimes du_2] + [du_1 \otimes du_3 + du_3 \otimes du_1 + du_2 \otimes du_4 + du_4 \otimes du_2].$$

- The characteristic polynomial of the Jacobi operator is $p_{\lambda}(R_X) = \lambda^4$, for arbitrary nonnull vector X.
- Moreover, (M, g) satisfies timelike and spacelike Osserman condition on the open subset $u_1u_2 \neq 0$ (type (II)).
- When $u_1u_2=0$, the minimal polynomial $m_{\lambda}(R_{\chi})=\lambda$, i.e., the Jacobi operator is diagonalizable.
- The manifold (M, g) is not locally symmetric.
- (\mathbb{R}^4, g) is not locally homogeneous.

Let
$$M = \mathbb{R}^4$$
, (u_1, u_2, u_3, u_4) the usual coordinates, and
$$g = (u_1 u_2)^2 [du_1 \otimes du_1 + du_2 \otimes du_2] + [du_1 \otimes du_3 + du_3 \otimes du_1 + du_2 \otimes du_4 + du_4 \otimes du_2].$$

- The characteristic polynomial of the Jacobi operator is $p_{\lambda}(R_X) = \lambda^4$, for arbitrary nonnull vector X.
- Moreover, (M, g) satisfies timelike and spacelike Osserman condition on the open subset $u_1u_2 \neq 0$ (type (II)).
- When $u_1u_2=0$, the minimal polynomial $m_{\lambda}(R_{\chi})=\lambda$, i.e., the Jacobi operator is diagonalizable.
- The manifold (M, g) is not locally symmetric.
- (\mathbb{R}^4, g) is not locally homogeneous.

Let
$$M = \mathbb{R}^4$$
, (u_1, u_2, u_3, u_4) the usual coordinates, and
$$g = (u_1 u_2)^2 [du_1 \otimes du_1 + du_2 \otimes du_2] + [du_1 \otimes du_3 + du_3 \otimes du_1 + du_2 \otimes du_4 + du_4 \otimes du_2].$$

- The characteristic polynomial of the Jacobi operator is $p_{\lambda}(R_X) = \lambda^4$, for arbitrary nonnull vector X.
- Moreover, (M, g) satisfies timelike and spacelike Osserman condition on the open subset $u_1u_2 \neq 0$ (type (II)).
- When $u_1u_2=0$, the minimal polynomial $m_{\lambda}(R_{\chi})=\lambda$, i.e., the Jacobi operator is diagonalizable.
- The manifold (M, g) is not locally symmetric.
- (\mathbb{R}^4, g) is not locally homogeneous.

Let M be a 4-dimensional spacelike (timelike) Jordan-Osserman manifold then the length of ∇R vanishes, i.e. $\|\nabla R\|=0$.

Theorem 15 (Isotropic 2-dimensional distributions)

Let M be an Osserman manifold of type (II) or (III). Then, there exists an integrable, autoparallel, isotropic 2-dimensional distribution on M.

An Osserman manifold M of type (II) is locally foliated by totally geodesic, flat isotropic 2-dimensional submanifolds.

Theorem 16 (Curvature homogenity)

Let M be a Jordan-Osserman manifold with metric tensor of signature (2, 2). Then it is curvature homogenous up to order zero.

Let M be a 4-dimensional spacelike (timelike) Jordan-Osserman manifold then the length of ∇R vanishes, i.e. $\|\nabla R\| = 0$.

Theorem 15 (Isotropic 2-dimensional distributions)

Let M be an Osserman manifold of type (II) or (III). Then, there exists an integrable, autoparallel, isotropic 2-dimensional distribution on M.

An Osserman manifold M of type (II) is locally foliated by totally geodesic, flat isotropic 2-dimensional submanifolds.

Theorem 16 (Curvature homogenity)

Let M be a Jordan-Osserman manifold with metric tensor of signature (2,2). Then it is curvature homogenous up to order zero.

Let M be a 4-dimensional spacelike (timelike) Jordan-Osserman manifold then the length of ∇R vanishes, i.e. $\|\nabla R\| = 0$.

Theorem 15 (Isotropic 2-dimensional distributions)

Let M be an Osserman manifold of type (II) or (III). Then, there exists an integrable, autoparallel, isotropic 2-dimensional distribution on M.

An Osserman manifold M of type (II) is locally foliated by totally geodesic, flat isotropic 2-dimensional submanifolds.

Theorem 16 (Curvature homogenity)

Let M be a Jordan-Osserman manifold with metric tensor of signature (2, 2). Then it is curvature homogenous up to order zero.

Let M be a 4-dimensional spacelike (timelike) Jordan-Osserman manifold then the length of ∇R vanishes, i.e. $\|\nabla R\| = 0$.

Theorem 15 (Isotropic 2-dimensional distributions)

Let M be an Osserman manifold of type (II) or (III). Then, there exists an integrable, autoparallel, isotropic 2-dimensional distribution on M.

An Osserman manifold M of type (II) is locally foliated by totally geodesic, flat, isotropic 2-dimensional submanifolds.

Theorem 16 (Curvature homogenity)

Let M be a Jordan-Osserman manifold with metric tensor of signature (2, 2). Then it is curvature homogenous up to order zero.

Let M be a 4-dimensional spacelike (timelike) Jordan-Osserman manifold then the length of ∇R vanishes, i.e. $\|\nabla R\| = 0$.

Theorem 15 (Isotropic 2-dimensional distributions)

Let M be an Osserman manifold of type (II) or (III). Then, there exists an integrable, autoparallel, isotropic 2-dimensional distribution on M.

An Osserman manifold M of type (II) is locally foliated by totally geodesic, flat, isotropic 2-dimensional submanifolds.

Theorem 16 (Curvature homogenity

Then it is curvature homogenous up to order zero.

Let M be a 4-dimensional spacelike (timelike) Jordan-Osserman manifold then the length of ∇R vanishes, i.e. $\|\nabla R\| = 0$.

Theorem 15 (Isotropic 2-dimensional distributions)

Let M be an Osserman manifold of type (II) or (III). Then, there exists an integrable, autoparallel, isotropic 2-dimensional distribution on M.

An Osserman manifold M of type (II) is locally foliated by totally geodesic, flat, isotropic 2-dimensional submanifolds.

Theorem 16 (Curvature homogenity)

Let M be a Jordan-Osserman manifold with metric tensor of signature (2, 2). Then it is curvature homogenous up to order zero.

Let M be a 4-dimensional spacelike (timelike) Jordan-Osserman manifold then the length of ∇R vanishes, i.e. $\|\nabla R\| = 0$.

Theorem 15 (Isotropic 2-dimensional distributions)

Let M be an Osserman manifold of type (II) or (III). Then, there exists an integrable, autoparallel, isotropic 2-dimensional distribution on M.

An Osserman manifold M of type (II) is locally foliated by totally geodesic, flat, isotropic 2-dimensional submanifolds.

Theorem 16 (Curvature homogenity)

Let M be a Jordan-Osserman manifold with metric tensor of signature (2,2). Then it is curvature homogenous up to order zero.

Theorem 17 (Coordinate systems

Let (M,g) be a 4-dimensional Jordan-Osserman pseudo-Hiemannian manifold of signature (2,2) of type (II) or (III). Then there exists a coordinate system $u=(u^1,u^2,u^3,u^4):U\subseteq\mathbb{R}^4\longrightarrow M$ and an null basis F_1,F_2,F_3,F_4 such that

(i)

$$g = egin{bmatrix} 0 & 0 & g_{13} & g_{14} \ 0 & 0 & g_{23} & g_{24} \ g_{13} & g_{23} & 0 & g_{34} \ g_{14} & g_{24} & g_{34} & 0 \end{pmatrix}, \quad \textit{with} \quad \det \begin{bmatrix} g_{13} & g_{14} \ g_{23} & g_{24} \end{bmatrix} = \mathbf{1}$$

and

(II)

$$F_1 = \frac{\partial}{\partial u^1}, \quad F_2 = \frac{1}{C} \frac{\partial}{\partial u^2}, \quad F_3 = CP_1 \frac{\partial}{\partial u^i}, \quad F_4 = Q_1 \frac{\partial}{\partial u^i},$$

where $P_i, Q_i, C \in C^{\infty}(U)$ and C are non-vanishing on U

Theorem 17 (Coordinate systems)

Let (M,g) be a 4-dimensional Jordan-Osserman pseudo-Riemannian manifold of signature (2,2) of type (II) or (III). Then there exists a coordinate system $u=(u^1,u^2,u^3,u^4):U\subseteq\mathbb{R}^4\longrightarrow M$ and an null basis F_1,F_2,F_3,F_4 such that

(i)

$$g=\left[egin{array}{cccc} 0 & 0 & g_{13} & g_{14} \ 0 & 0 & g_{23} & g_{24} \ g_{13} & g_{23} & 0 & g_{34} \ g_{14} & g_{24} & g_{34} & 0 \end{array}
ight], \quad extit{with} \quad \det\left[egin{array}{cccc} g_{13} & g_{14} \ g_{23} & g_{24} \end{array}
ight]=1$$

and

(ii)

$$F_1 = \frac{\partial}{\partial u^1}, \quad F_2 = \frac{1}{C} \frac{\partial}{\partial u^2}, \quad F_3 = CP_i \frac{\partial}{\partial u^i}, \quad F_4 = Q_i \frac{\partial}{\partial u^i},$$

where $P_i, Q_i, C \in C^{\infty}(U)$ and C are non-vanishing on U

Theorem 17 (Coordinate systems)

Let (M,g) be a 4-dimensional Jordan-Osserman pseudo-Riemannian manifold of signature (2,2) of type (II) or (III). Then there exists a coordinate system $u=(u^1,u^2,u^3,u^4):U\subseteq\mathbb{R}^4\longrightarrow M$ and an null basis F_1,F_2,F_3,F_4 such that

(i)

$$g = \left[\begin{array}{cccc} 0 & 0 & g_{13} & g_{14} \\ 0 & 0 & g_{23} & g_{24} \\ g_{13} & g_{23} & 0 & g_{34} \\ g_{14} & g_{24} & g_{34} & 0 \end{array} \right], \quad \textit{with} \quad \det \left[\begin{array}{ccc} g_{13} & g_{14} \\ g_{23} & g_{24} \end{array} \right] = 1$$

and

(ii)

$$F_1 = \frac{\partial}{\partial u^1}, \quad F_2 = \frac{1}{C} \frac{\partial}{\partial u^2}, \quad F_3 = C P_i \frac{\partial}{\partial u^i}, \quad F_4 = Q_i \frac{\partial}{\partial u^i},$$

where $P_i, Q_i, C \in C^{\infty}(U)$ and C are non-vanishing on U.

Theorem 18 (Recurrent spaces

Let (M,g) be a recurrent spacelike Osserman space of signature (2,2). Then M can be endowed locally with a coordinate system (u^1,\cdots,u^A) so that the metric of M takes one of the following forms

 $(1) \ g = \psi(u^1, u^2) du^1 \otimes du^1 + (du^1 \otimes du^2 + du^3 \otimes du^1) + (du^2 \otimes du^3 + du^3 \otimes du^2)$

(2)
$$g = \psi du^1 \otimes du^1 + k_{22} du^2 \otimes du^2 + k_{23} (du^2 \otimes du^3 + du^3 \otimes du^2)$$

$$+ (du^1 \otimes du^4 + du^4 \otimes du^1),$$

$$\psi = \theta(a_{22}(u^1)^2 + 2a_{23}u^2u^3 + a_{33}(u^3)^2),$$

where θ is a function of u', k_{22}, k_{23} are constants such that $k_{23} \neq 0$, and $a_{\alpha\beta}$ are constants such that $\det(a_{\alpha\beta}) \neq 0$.

Corollary 19 (Recurrent spaces)

If (M, g) is a recurrent spacelike Osserman manifold of signature (2,2) then M is type (II) Ricci flat one.

Theorem 18 (Recurrent spaces)

Let (M,g) be a recurrent spacelike Osserman space of signature (2,2). Then M can be endowed locally with a coordinate system (u^1, \dots, u^4) so that the metric of M takes one of the following forms

(1)
$$g = \psi(u^1, u^2)du^1 \otimes du^1 + (du^1 \otimes du^4 + du^4 \otimes du^1) + (du^2 \otimes du^3 + du^3 \otimes du^2)$$

(2)
$$g = \psi du^1 \otimes du^1 + k_{22} du^2 \otimes du^2 + k_{23} (du^2 \otimes du^3 + du^3 \otimes du^2) + (du^1 \otimes du^4 + du^4 \otimes du^1),$$

 $\psi = \theta (a_{22} (u^1)^2 + 2a_{23} u^2 u^3 + a_{33} (u^3)^2),$

where θ is a function of u^1 , k_{22} , k_{23} are constants such that $k_{23} \neq 0$, and $a_{\alpha\beta}$ are constants such that $\det(a_{\alpha\beta}) \neq 0$.

Corollary 19 (Recurrent spaces)

If (M, g) is a recurrent spacelike Osserman manifold of signature (2,2) then M is type (II) Ricci flat one.

Theorem 18 (Recurrent spaces)

Let (M,g) be a recurrent spacelike Osserman space of signature (2,2). Then M can be endowed locally with a coordinate system (u^1, \cdots, u^4) so that the metric of M takes one of the following forms

$$(1) \ \ g = \psi(u^1,u^2)du^1 \otimes du^1 + (du^1 \otimes du^4 + du^4 \otimes du^1) + (du^2 \otimes du^3 + du^3 \otimes du^2)$$

(2)
$$g = \psi du^1 \otimes du^1 + k_{22} du^2 \otimes du^2 + k_{23} (du^2 \otimes du^3 + du^3 \otimes du^2) + (du^1 \otimes du^4 + du^4 \otimes du^1),$$

 $\psi = \theta (a_{22} (u^1)^2 + 2a_{23} u^2 u^3 + a_{33} (u^3)^2),$

where θ is a function of u^1 , k_{22} , k_{23} are constants such that $k_{23} \neq 0$, and $a_{\alpha\beta}$ are constants such that $\det(a_{\alpha\beta}) \neq 0$.

Corollary 19 (Recurrent spaces)

If (M, g) is a recurrent spacelike Osserman manifold of signature (2,2) then M is type (II) Ricci flat one.

Let (M,g) be a nonflat 4-dimensional locally symmetric pseudo-Riemannian Osserman manifold. Then one of the following holds.

- \bullet (M,g) is locally isometric to a rank-one symmetric space, or
- (M,g) is locally isometric to the rank-two symmetric space G/H, where $\{\omega^0,\omega^1,\omega^2,\omega^3,\omega^4,\}$ with

$$d\omega^0 = d\omega^1 = 0, \ d\omega^2 = -\omega^0 \wedge \omega^1, \ d\omega^3 = \pm \omega^1 \wedge \omega^2, \ d\omega^4 = \mp \omega^0 \wedge \omega^2.$$

form a basis for g^* , where g=Lie(G) and h=Lie(H) is given by $h^*=\operatorname{span}\{\omega^2\}$.

Let (M, g) be a nonflat 4-dimensional locally symmetric pseudo-Riemannian Osserman manifold. Then one of the following holds.

```
    (M, g) is locally isometric to a rank-one symmetric space, or
```

```
ullet (M, g) is locally isometric to the rank-two symmetric space G/H, where
```

```
\{\omega^*,\omega^*,\omega^*,\omega^*,\omega^*,\} with
```

$$d\omega^0 = d\omega^1 = 0 \quad d\omega^2 = -1$$

$$d\omega^{\circ} = d\omega^{\circ} = 0, \ d\omega^{\circ} = -1$$

$$h^* = \operatorname{span}\{\omega^2\}.$$

Let (M,g) be a nonflat 4-dimensional locally symmetric pseudo-Riemannian Osserman manifold. Then one of the following holds.

Let (M, g) be a nonflat 4-dimensional locally symmetric pseudo-Riemannian Osserman manifold. Then one of the following holds.

- ullet (M,g) is locally isometric to a rank-one symmetric space, or
- (M,g) is locally isometric to the rank-two symmetric space G/H, where $\{\omega^0,\omega^1,\omega^2,\omega^3,\omega^4,\}$ with

$$d\omega^0 = d\omega^1 = 0$$
, $d\omega^2 = -\omega^0 \wedge \omega^1$, $d\omega^3 = \pm \omega^1 \wedge \omega^2$, $d\omega^4 = \mp \omega^0 \wedge \omega^2$

form a basis for g^* , where g = Lie(G) and h = Lie(H) is given by $h^* = span\{\omega^2\}$.

Let (M, g) be a nonflat 4-dimensional locally symmetric pseudo-Riemannian Osserman manifold. Then one of the following holds.

- \bullet (M,g) is locally isometric to a rank-one symmetric space, or
- (M,g) is locally isometric to the rank-two symmetric space G/H, where $\{\omega^0,\omega^1,\omega^2,\omega^3,\omega^4,\}$ with

```
d\omega^0 = d\omega^1 = 0, d\omega^2 = -\omega^0 \wedge \omega^1, d\omega^3 = \pm \omega^1 \wedge \omega^2, d\omega^4 = \mp \omega^0 \wedge \omega^2
```

form a basis for g^* , where g = Lie(G) and h = Lie(H) is given by $h^* = span\{\omega^2\}$.

Let (M, g) be a nonflat 4-dimensional locally symmetric pseudo-Riemannian Osserman manifold. Then one of the following holds.

- \bullet (M,g) is locally isometric to a rank-one symmetric space, or
- (M,g) is locally isometric to the rank-two symmetric space G/H, where $\{\omega^0,\omega^1,\omega^2,\omega^3,\omega^4,\}$ with

$$d\omega^0 = d\omega^1 = 0$$
, $d\omega^2 = -\omega^0 \wedge \omega^1$, $d\omega^3 = \pm \omega^1 \wedge \omega^2$, $d\omega^4 = \mp \omega^0 \wedge \omega^2$.

form a basis for g^* , where g = Lie(G) and h = Lie(H) is given by $h^* = \operatorname{span}\{\omega^2\}$.

Let \mathcal{R} be a spacelike Jordan Osserman algebraic curvature tensor on a vector space V of signature (p,q), where p < q. Then R_X is diagonalizable for any $X \in S^+(V)$.

- Osserman conjecture holds in Lorentzian manifolds.
- Osserman conjecture holds in Riemannian manifolds, up to few cases in dimension n = 16 (which should be investigated).
- Manifolds of signature $((p, g), \min(p, q) \ge 2)$
- Osserman conjecture doesn't hold,
- geometry of such manifolds is very reach, specially in neutral signature.
 - now we are very far of the complete description of its geometry

Let \mathcal{R} be a spacelike Jordan Osserman algebraic curvature tensor on a vector space V of signature (p,q), where p < q. Then R_X is diagonalizable for any $X \in S^+(V)$.

- Osserman conjecture holds in Lorentzian manifolds.
- Osserman conjecture holds in Riemannian manifolds, up to few cases in dimension n = 16 (which should be investigated).
- Manifolds of signature $((p, g), min(p, q) \ge 2)$
 - Usserman conjecture doesn't hold,
- so geometry of such manifolds is very reach, specially in neutral signature,
 - now we are very far of the complete description of its geometry

Let \mathcal{R} be a spacelike Jordan Osserman algebraic curvature tensor on a vector space V of signature (p,q), where p < q. Then R_X is diagonalizable for any $X \in S^+(V)$.

- Conclusion.
 - Osserman conjecture holds in Lorentzian manifolds.
 - Osserman conjecture holds in Riemannian manifolds, up to few cases in dimension n = 16 (which should be investigated).
 - Manifolds of signature $((p, g), min(p, q) \ge 2)$

Let \mathcal{R} be a spacelike Jordan Osserman algebraic curvature tensor on a vector space V of signature (p,q), where p < q. Then R_X is diagonalizable for any $X \in S^+(V)$.

- Osserman conjecture holds in Lorentzian manifolds.
- Osserman conjecture holds in Riemannian manifolds, up to few cases in dimension n = 16 (which should be investigated).
- Manifolds of signature ((p, q), min(p, q) > 2)

Let \mathcal{R} be a spacelike Jordan Osserman algebraic curvature tensor on a vector space V of signature (p,q), where p < q. Then R_X is diagonalizable for any $X \in S^+(V)$.

- Osserman conjecture holds in Lorentzian manifolds.
- Osserman conjecture holds in Riemannian manifolds, up to few cases in dimension n = 16 (which should be investigated).
- Manifolds of signature ((p, g), min (p, q) ≥ 2)
 Osserman conjecture doesn't hold,
 - geometry of such manifolds is very reach, specially in neutral signature,
 - now we are very far of the complete description of its geometry

Let \mathcal{R} be a spacelike Jordan Osserman algebraic curvature tensor on a vector space V of signature (p,q), where p < q. Then R_X is diagonalizable for any $X \in S^+(V)$.

- Osserman conjecture holds in Lorentzian manifolds.
- Osserman conjecture holds in Riemannian manifolds, up to few cases in dimension n = 16 (which should be investigated).
- $\bullet \ \ \text{Manifolds of signature } ((p,g), \ \textit{min} \, (p,q) \geq \textbf{2}) \\$
 - geometry of such manifolds is very reach, specially in neutral signature,now we are very far of the complete description of its geometry

Let \mathcal{R} be a spacelike Jordan Osserman algebraic curvature tensor on a vector space V of signature (p,q), where p < q. Then R_X is diagonalizable for any $X \in S^+(V)$.

- Osserman conjecture holds in Lorentzian manifolds.
- Osserman conjecture holds in Riemannian manifolds, up to few cases in dimension n = 16 (which should be investigated).
- Manifolds of signature $((p, g), \min(p, q) \ge 2)$

Let \mathcal{R} be a spacelike Jordan Osserman algebraic curvature tensor on a vector space V of signature (p,q), where p < q. Then R_X is diagonalizable for any $X \in S^+(V)$.

- Osserman conjecture holds in Lorentzian manifolds.
- Osserman conjecture holds in Riemannian manifolds, up to few cases in dimension n = 16 (which should be investigated).
- Manifolds of signature $((p, g), \min(p, q) \ge 2)$

Let \mathcal{R} be a spacelike Jordan Osserman algebraic curvature tensor on a vector space V of signature (p,q), where p < q. Then R_X is diagonalizable for any $X \in S^+(V)$.

- Osserman conjecture holds in Lorentzian manifolds.
- Osserman conjecture holds in Riemannian manifolds, up to few cases in dimension n = 16 (which should be investigated).
- Manifolds of signature $((p, g), \min(p, q) \ge 2)$
 - Osserman conjecture doesn't hold
 - geometry of such manifolds is very reach, specially in neutral signature,
 - now we are very far of the complete description of its geometry

Let \mathcal{R} be a spacelike Jordan Osserman algebraic curvature tensor on a vector space V of signature (p,q), where p < q. Then R_X is diagonalizable for any $X \in S^+(V)$.

- Osserman conjecture holds in Lorentzian manifolds.
- Osserman conjecture holds in Riemannian manifolds, up to few cases in dimension n = 16 (which should be investigated).
- Manifolds of signature $((p, g), \min(p, q) \ge 2)$
 - Osserman conjecture doesn't hold,
 - geometry of such manifolds is very reach, specially in neutral signature,
 - now we are very far of the complete description of its geometry

Let \mathcal{R} be a spacelike Jordan Osserman algebraic curvature tensor on a vector space V of signature (p,q), where p < q. Then R_X is diagonalizable for any $X \in S^+(V)$.

- Osserman conjecture holds in Lorentzian manifolds.
- Osserman conjecture holds in Riemannian manifolds, up to few cases in dimension n = 16 (which should be investigated).
- Manifolds of signature $((p, g), \min(p, q) \ge 2)$
 - Osserman conjecture doesn't hold,
 - geometry of such manifolds is very reach, specially in neutral signature,
 - now we are very far of the complete description of its geometry

Let \mathcal{R} be a spacelike Jordan Osserman algebraic curvature tensor on a vector space V of signature (p,q), where p < q. Then R_X is diagonalizable for any $X \in S^+(V)$.

- Osserman conjecture holds in Lorentzian manifolds.
- Osserman conjecture holds in Riemannian manifolds, up to few cases in dimension n = 16 (which should be investigated).
- Manifolds of signature $((p, q), min(p, q) \ge 2)$
 - Osserman conjecture doesn't hold,
 - geometry of such manifolds is very reach, specially in neutral signature,
 - now we are very far of the complete description of its geometry

$$R_X(Y) = \varepsilon_X \lambda Y \implies R_Y(X) = \varepsilon_Y \lambda X.$$

- Problem. Are notions of pointwise Osserman and duality principle equivalent?
- In 2011, this equivalence is proved in dimension less then five, by M. Brozos-Vazquezand E. Merino.
- Y. Nikolayevski and ZR prove that the Osserman condition is equivalent to the duality principle in Riemannian signature and for diagonalizable algebraic curvature tensors in pseudo-Riemannian signature. More precisely we prove,

$$R_X(Y) = \varepsilon_X \lambda Y \implies R_Y(X) = \varepsilon_Y \lambda X.$$

- **Problem.** Are notions of pointwise Osserman and duality principle equivalent?
- In 2011, this equivalence is proved in dimension less then five, by M. Brozos-Vazquezand E. Merino.
- Y. Nikolayevski and ZR prove that the Osserman condition is equivalent to the duality principle in Riemannian signature and for diagonalizable algebraic curvature tensors in pseudo-Riemannian signature. More precisely we prove,

$$R_X(Y) = \varepsilon_X \lambda Y \implies R_Y(X) = \varepsilon_Y \lambda X.$$

- **Problem.** Are notions of pointwise Osserman and duality principle equivalent?
- In 2011, this equivalence is proved in dimension less then five, by M. Brozos-Vazquezand E. Merino.
- Y. Nikolayevski and ZR prove that the Osserman condition is equivalent to the duality principle in Riemannian signature and for diagonalizable algebraic curvature tensors in pseudo-Riemannian signature. More precisely we prove,

$$R_X(Y) = \varepsilon_X \lambda Y \implies R_Y(X) = \varepsilon_Y \lambda X.$$

- **Problem.** Are notions of pointwise Osserman and duality principle equivalent?
- In 2011, this equivalence is proved in dimension less then five, by M. Brozos-Vazquezand E. Merino.
- Y. Nikolayevski and ZR prove that the Osserman condition is equivalent to the duality principle in Riemannian signature and for diagonalizable algebraic curvature tensors in pseudo-Riemannian signature. More precisely we prove,

$$R_X(Y) = \varepsilon_X \lambda Y \implies R_Y(X) = \varepsilon_Y \lambda X.$$

- **Problem.** Are notions of pointwise Osserman and duality principle equivalent?
- In 2011, this equivalence is proved in dimension less then five, by M. Brozos-Vazquezand E. Merino.
- Y. Nikolayevski and ZR prove that the Osserman condition is equivalent to the duality principle in Riemannian signature and for diagonalizable algebraic curvature tensors in pseudo-Riemannian signature. More precisely we prove,

$$R_X(Y) = \varepsilon_X \lambda Y \implies R_Y(X) = \varepsilon_Y \lambda X.$$

- **Problem.** Are notions of pointwise Osserman and duality principle equivalent?
- In 2011, this equivalence is proved in dimension less then five, by M. Brozos-Vazquezand E. Merino.
- Y. Nikolayevski and ZR prove that the Osserman condition is equivalent to the duality principle in Riemannian signature and for diagonalizable algebraic curvature tensors in pseudo-Riemannian signature. More precisely we prove.

$$R_X(Y) = \varepsilon_X \lambda Y \implies R_Y(X) = \varepsilon_Y \lambda X.$$

- **Problem.** Are notions of pointwise Osserman and duality principle equivalent?
- In 2011, this equivalence is proved in dimension less then five, by M. Brozos-Vazquezand E. Merino.
- Y. Nikolayevski and ZR prove that the Osserman condition is equivalent to the duality principle in Riemannian signature and for diagonalizable algebraic curvature tensors in pseudo-Riemannian signature. More precisely we prove,

```
Theorem 22 (Nikolayevsky, Rakić (2012))

Let R. be an algebraic curvature tensor in R<sup>n</sup> with an inner product (1, 1).
```

```
Let R be an algebraic curvature tensor in R<sup>n</sup> with an inner product ⟨·,·⟩.
If ⟨·,·⟩ is Riemannian, then the Osserman condition for R is equivalent to the duality principle.
If ⟨·,·⟩ is pseudo-Riemannian and R is diagonalizable, then the Osserman condition for R is equivalent to the duality principle for the R.
If ⟨·,·⟩ is pseudo-Riemannian of a non-neutral signature, and if R is Jordan Osserman, then the complexification of R satisfies the duality principle.
```

Theorem 22 (Nikolayevsky,	Rakić	(2012))
---------------------------	-------	---------

- If $\langle \cdot, \cdot \rangle$ is Riemannian, then the Osserman condition for $\mathcal R$ is equivalent to the duality principle.
- If $\langle \cdot \, , \, \cdot \rangle$ is pseudo-Riemannian and $\mathcal R$ is diagonalizable, then the Osserman condition for $\mathcal R$ is equivalent to the duality principle for the $\mathcal R$.
- If \(\lambda\cdot, \cdot\) is pseudo-Riemannian of a non-neutral signature, and if \(\mathcal{R}\) is
 Jordan Osserman, then the complexification of \(\mathcal{R}\) satisfies the duality
 principle.

- If $\langle \cdot \, , \, \cdot \rangle$ is Riemannian, then the Osserman condition for $\mathcal R$ is equivalent to the duality principle.
- If ⟨·,·⟩ is pseudo-Riemannian and R is diagonalizable, then the Osserman condition for R is equivalent to the duality principle for the R.
- If $\langle \cdot, \cdot \rangle$ is pseudo-Riemannian of a non-neutral signature, and if $\mathcal R$ is Jordan Osserman, then the complexification of $\mathcal R$ satisfies the duality principle.

- If $\langle \cdot \, , \, \cdot \rangle$ is Riemannian, then the Osserman condition for $\mathcal R$ is equivalent to the duality principle.
- If $\langle \cdot \, , \, \cdot \rangle$ is pseudo-Riemannian and $\mathcal R$ is diagonalizable, then the Osserman condition for $\mathcal R$ is equivalent to the duality principle for the $\mathcal R$.
- If $\langle \cdot, \cdot \rangle$ is pseudo-Riemannian of a non-neutral signature, and if $\mathcal R$ is Jordan Osserman, then the complexification of $\mathcal R$ satisfies the duality principle.

- If $\langle \cdot \, , \, \cdot \rangle$ is Riemannian, then the Osserman condition for $\mathcal R$ is equivalent to the duality principle.
- If ⟨·,·⟩ is pseudo-Riemannian and R is diagonalizable, then the Osserman condition for R is equivalent to the duality principle for the R.
- If \(\lambda\cdot, \cdot\) is pseudo-Riemannian of a non-neutral signature, and if \(\mathcal{R}\) is
 Jordan Osserman, then the complexification of \(\mathcal{R}\) satisfies the duality
 principle.

THANK YOU FOR

YOUR ATTENTION !!!

