Типичные перестройки неявных обыкновенных дифференциальных уравнений

Typical transitions of implicit ODEs

Ilya Bogaevsky

Moscow State University

International conference "ANALYSIS and SINGULARITIES" dedicated to the 75th anniversary of Vladimir Igorevich Arnold Moscow, Russia, December 17—21, 2012

$$F(y',x,y)=0$$

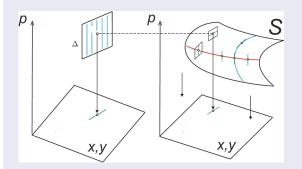
$$F(y',x,y)=0$$

$$S = \{(p, x, y) \in \mathbb{R}^3 \mid F(p, x, y) = 0\}, \quad \Delta = \{p \, dx - dy = 0\}$$

18 декабря 2012 г.

$$F(y',x,y)=0$$

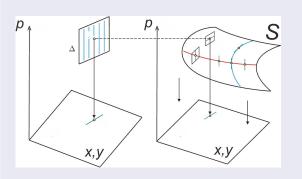
$$S = \{(p, x, y) \in \mathbb{R}^3 \mid F(p, x, y) = 0\}, \quad \Delta = \{p \, dx - dy = 0\}$$

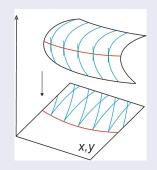


18 декабря 2012 г.

$$F(y',x,y)=0$$

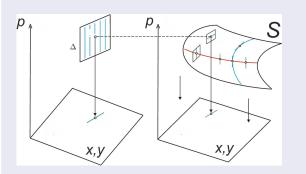
$$S = \{(p, x, y) \in \mathbb{R}^3 \mid F(p, x, y) = 0\}, \quad \Delta = \{p \, dx - dy = 0\}$$

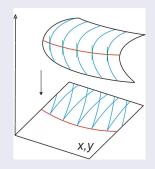




$$F(y',x,y)=0$$

$$S = \{(p, x, y) \in \mathbb{R}^3 \mid F(p, x, y) = 0\}, \quad \Delta = \{p \, dx - dy = 0\}$$



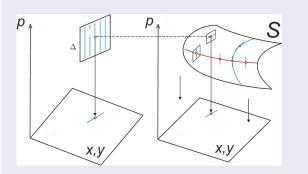


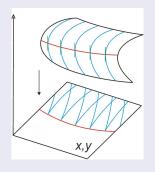
Transformations: $x = X(x, y), y = Y(x, y), X, Y \in C^{\infty}$.

()

$$F(y',x,y)=0$$

$$S = \{(p, x, y) \in \mathbb{R}^3 \mid F(p, x, y) = 0\}, \quad \Delta = \{p \, dx - dy = 0\}$$

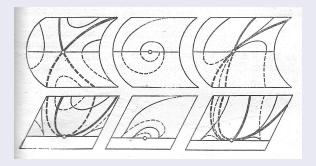




Transformations: x = X(x, y), y = Y(x, y), $X, Y \in C^{\infty}$. Cibrario normal form: $y'^2 = x$.

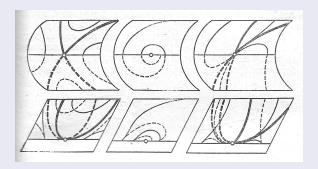
Folded singularities (A. A. Davydov):

Folded saddle, folded focus, and folded node.



Folded singularities (A. A. Davydov):

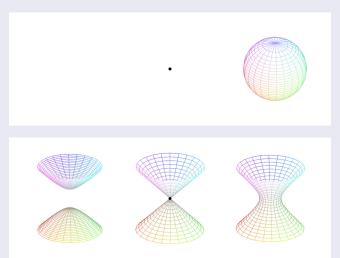
Folded saddle, folded focus, and folded node.



Normal forms: $y'^2 = y - kx^2$ where k is a continuous invariant.

Transitions of S:

The following 2 transitions occur in a typical smooth family of surfaces $S_{\varepsilon} = \{F(p,x,y,\varepsilon) = 0\}$ depending on a parameter $\varepsilon \in \mathbb{R}$ (if F is smooth and generic):



Let

$$F(p, x, y, \varepsilon) = 0, \quad p = \frac{dy}{dx}, \quad F \in \mathbb{R}[[p, x, y, \varepsilon]]$$

be a typical formal family of implicit ODEs depending on a parameter $\varepsilon \in \mathbb{R}$

()

Let

$$F(p, x, y, \varepsilon) = 0, \quad p = \frac{dy}{dx}, \quad F \in \mathbb{R}[[p, x, y, \varepsilon]]$$

be a typical formal family of implicit ODEs depending on a parameter $\varepsilon \in \mathbb{R}$ such that

$$\partial_{p}F(0)=\partial_{x}F(0)=\partial_{y}F(0)=0.$$

-()

Let

$$F(p, x, y, \varepsilon) = 0, \quad p = \frac{dy}{dx}, \quad F \in \mathbb{R}[[p, x, y, \varepsilon]]$$

be a typical formal family of implicit ODEs depending on a parameter $\varepsilon \in \mathbb{R}$ such that

$$\partial_p F(0) = \partial_x F(0) = \partial_y F(0) = 0.$$

Then it is reduced to one of the following 4 normal forms:

$$\pm p^2 \pm x^2 + y^2 = \varepsilon + c(\varepsilon)y^3$$
, $c(0) \geqslant 0$

Let

$$F(p, x, y, \varepsilon) = 0, \quad p = \frac{dy}{dx}, \quad F \in \mathbb{R}[[p, x, y, \varepsilon]]$$

be a typical formal family of implicit ODEs depending on a parameter $\varepsilon \in \mathbb{R}$ such that

$$\partial_{p}F(0) = \partial_{x}F(0) = \partial_{y}F(0) = 0.$$

Then it is reduced to one of the following 4 normal forms:

$$\pm p^2 \pm x^2 + y^2 = \varepsilon + c(\varepsilon)y^3$$
, $c(0) \geqslant 0$

by a formal change of the variables (x, y) and parameter ε :

$$x = X(x, y, \varepsilon), \quad y = Y(x, y, \varepsilon), \quad \varepsilon = E(\varepsilon),$$

$$X(0) = Y(0) = \partial_x Y(0) = E(0) = 0,$$

-()

Let

$$F(p, x, y, \varepsilon) = 0, \quad p = \frac{dy}{dx}, \quad F \in \mathbb{R}[[p, x, y, \varepsilon]]$$

be a typical formal family of implicit ODEs depending on a parameter $\varepsilon \in \mathbb{R}$ such that

$$\partial_{p}F(0) = \partial_{x}F(0) = \partial_{y}F(0) = 0.$$

Then it is reduced to one of the following 4 normal forms:

$$\pm p^2 \pm x^2 + y^2 = \varepsilon + c(\varepsilon)y^3$$
, $c(0) \geqslant 0$

by a formal change of the variables (x, y) and parameter ε :

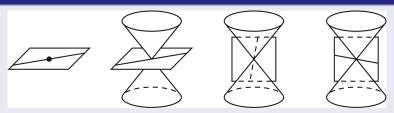
$$x = X(x, y, \varepsilon), \quad y = Y(x, y, \varepsilon), \quad \varepsilon = E(\varepsilon),$$

$$X(0) = Y(0) = \partial_x Y(0) = E(0) = 0,$$

where $c \in \mathbb{R}[[\varepsilon]]$ is a functional invariant.

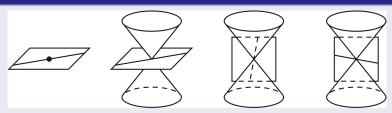
-(.

The 4 cases:



The surface F(p, x, y, 0) = 0, the contact plane, and the kernel of $\pi : (p, x, y) \mapsto (x, y)$.

The 4 cases:

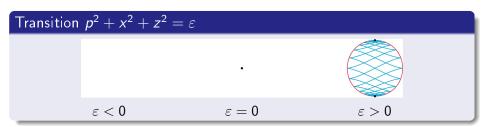


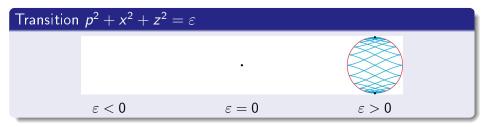
The surface F(p, x, y, 0) = 0, the contact plane, and the kernel of $\pi : (p, x, y) \mapsto (x, y)$.

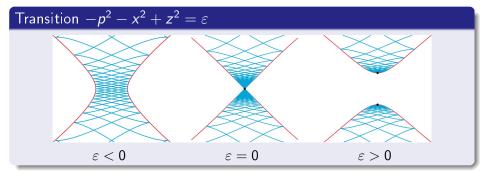
Symmetric normal forms:

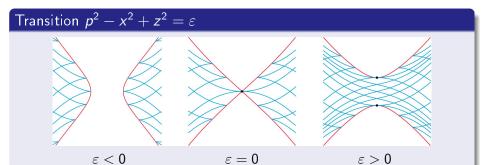
$$\pm p^2 \pm x^2 + z^2 = \varepsilon + c(\varepsilon)z^3, \quad z = y - \frac{1}{2}px,$$
$$p dx - dy = \frac{1}{2}p dx - \frac{1}{2}x dp - dz$$

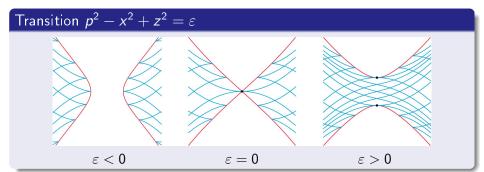
(

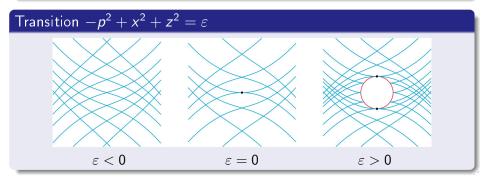












Let

$$F(p, x, z, \varepsilon) = 0, \quad F \in \mathbb{R}[[p, x, y, \varepsilon]]$$

be a typical formal surface depending on a parameter $arepsilon \in \mathbb{R}$

- (

Let

$$F(p, x, z, \varepsilon) = 0, \quad F \in \mathbb{R}[[p, x, y, \varepsilon]]$$

be a typical formal surface depending on a parameter $\varepsilon \in \mathbb{R}$ such that $\partial_p F(0) = \partial_x F(0) = \partial_y F(0) = 0$ and the quadratic part of F(p, x, z, 0) is a non-degenerate indefinite form of the variables p, x, z.

Let

$$F(p, x, z, \varepsilon) = 0, \quad F \in \mathbb{R}[[p, x, y, \varepsilon]]$$

be a typical formal surface depending on a parameter $\varepsilon \in \mathbb{R}$ such that $\partial_p F(0) = \partial_x F(0) = \partial_y F(0) = 0$ and the quadratic part of F(p,x,z,0) is a non-degenerate indefinite form of the variables p,x,z. Then the family of surfaces $F(p,x,z,\varepsilon) = 0$ is reduced to one of the following 2 normal forms:

$$\pm p^2 - x^2 + z^2 = \varepsilon + c(\varepsilon)z^3$$

9 / 16

18 декабря 2012 г.

Let

$$F(p, x, z, \varepsilon) = 0, \quad F \in \mathbb{R}[[p, x, y, \varepsilon]]$$

be a typical formal surface depending on a parameter $\varepsilon \in \mathbb{R}$ such that $\partial_p F(0) = \partial_x F(0) = \partial_y F(0) = 0$ and the quadratic part of F(p,x,z,0) is a non-degenerate indefinite form of the variables p,x,z. Then the family of surfaces $F(p,x,z,\varepsilon) = 0$ is reduced to one of the following 2 normal forms:

$$\pm p^2 - x^2 + z^2 = \varepsilon + c(\varepsilon)z^3$$

by a formal contact change of the variables (p, x, z) and parameter ε :

$$p = P(p, x, z, \varepsilon), \quad x = X(p, x, z, \varepsilon), \quad z = Z(p, x, z, \varepsilon), \quad \varepsilon = E(\varepsilon),$$

$$P(0) = X(0) = Z(0) = E(0) = 0.$$

◆ロト ◆個ト ◆重ト ◆重ト ■ 900

9 / 16

18 декабря 2012 г.

Let

$$F(p, x, z, \varepsilon) = 0, \quad F \in \mathbb{R}[[p, x, y, \varepsilon]]$$

be a typical formal surface depending on a parameter $\varepsilon \in \mathbb{R}$ such that $\partial_p F(0) = \partial_x F(0) = \partial_y F(0) = 0$ and the quadratic part of F(p,x,z,0) is a non-degenerate indefinite form of the variables p,x,z. Then the family of surfaces $F(p,x,z,\varepsilon) = 0$ is reduced to one of the following 2 normal forms:

$$\pm p^2 - x^2 + z^2 = \varepsilon + c(\varepsilon)z^3$$

by a formal contact change of the variables (p, x, z) and parameter ε :

$$p = P(p, x, z, \varepsilon), \quad x = X(p, x, z, \varepsilon), \quad z = Z(p, x, z, \varepsilon), \quad \varepsilon = E(\varepsilon),$$

$$P(0) = X(0) = Z(0) = E(0) = 0.$$

Contact = preserves $\Delta = \left\{ \frac{1}{2}p \, dx - \frac{1}{2}x \, dp - dz \right\}$.

- 4 ロ ト 4 個 ト 4 差 ト - 差 - り Q ()

9 / 16

18 декабря 2012 г.

Example:

The families

$$-p^2 + x^2 + z^2 = \varepsilon + c(\varepsilon)z^3$$
, $p^2 - x^2 + z^2 = \varepsilon + c(\varepsilon)z^3$

are reduced to each other by the change $(p, x, z) \mapsto (x, -p, z)$ preserving the contact form

$$\frac{1}{2}p\,dx - \frac{1}{2}x\,dp - dz.$$

.)

Example:

The families

$$-p^2 + x^2 + z^2 = \varepsilon + c(\varepsilon)z^3$$
, $p^2 - x^2 + z^2 = \varepsilon + c(\varepsilon)z^3$

are reduced to each other by the change $(p, x, z) \mapsto (x, -p, z)$ preserving the contact form

$$\frac{1}{2}p\,dx - \frac{1}{2}x\,dp - dz.$$

The case of sphere:

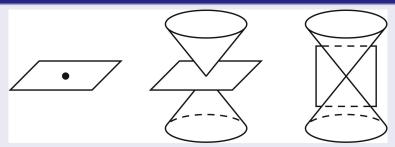
If the quadratic part of F(p,x,z,0) is non-degenerate definite form of the variables p, x, z then the family $F(p,x,z,\varepsilon)=0$ is reduced to the following normal form:

$$p^2 + x^2 + z^2 = \varepsilon + c(\varepsilon)z^3.$$

◆□▶ ◆□▶ ◆필▶ ◆필 ● 외약

() 18 декабря 2012 г. 10 / 16

3 Arnold's cases:



The surface F(p, x, y, 0) = 0 and the contact plane.

Stability of Legendre fibrations:

Let $\Lambda^1 \subset \mathbb{R}^3$ be a Legendre submanifold (singular or not): $\alpha|_{\Lambda} = 0$, $\alpha = p \, dx - dy$

(

Stability of Legendre fibrations:

Let $\Lambda^1 \subset \mathbb{R}^3$ be a Legendre submanifold (singular or not): $\alpha|_{\Lambda} = 0$, $\alpha = p \, dx - dy$ and $\pi : \mathbb{R}^3 \to \mathbb{R}^2$ be a Legendre fibration: the fibers are Legendre smooth submanifolds, e.g. $(p, x, y) \mapsto (x, y)$.

- (.

Stability of Legendre fibrations:

Let $\Lambda^1 \subset \mathbb{R}^3$ be a Legendre submanifold (singular or not): $\alpha|_{\Lambda}=0$, $\alpha=p\,dx-dy$ and $\pi:\mathbb{R}^3\to\mathbb{R}^2$ be a Legendre fibration: the fibers are Legendre smooth submanifolds, e.g. $(p,x,y)\mapsto (x,y)$. Then π is called Λ -stable if and only if for any its perturbation π' there exists a contact diffeomorphism preserving Λ and sending the fibers of π to the fibers of π' .

() 18 декабря 2012 г. 12 / 16

• Infinitesimal criterion of Λ -stability of $\pi:(p,x,y)\mapsto(x,y)$:

$$\mathcal{E}_{p,x,y} = \mathcal{E}_{x,y} + p\mathcal{E}_{x,y} + I_{\Lambda}$$

where \mathcal{E}_* is the ring of smooth functions of * and $I_{\Lambda} = \{ f \in \mathcal{E}_{p,x,y} \mid f_{\Lambda} \equiv 0 \}$ is the ideal of the functions vanishing on Λ .

-C

• Infinitesimal criterion of Λ -stability of $\pi:(p,x,y)\mapsto(x,y)$:

$$\mathcal{E}_{p,x,y} = \mathcal{E}_{x,y} + p\mathcal{E}_{x,y} + I_{\Lambda}$$

where \mathcal{E}_* is the ring of smooth functions of * and $I_{\Lambda} = \{f \in \mathcal{E}_{p,x,y} \mid f_{\Lambda} \equiv 0\}$ is the ideal of the functions vanishing on Λ . Explanation: $\pi' \in \operatorname{Cont}/\operatorname{Cont}_{\pi}$, $T_{\operatorname{id}}\operatorname{Cont} = T_{\operatorname{id}}\operatorname{Cont}_{\pi} + T_{\operatorname{id}}\operatorname{Cont}_{\Lambda}$, $T_{\operatorname{id}}\operatorname{Cont} = \mathcal{E}_{p,x,y}$, $T_{\operatorname{id}}\operatorname{Cont}_{\pi} = \mathcal{E}_{x,y} + p\mathcal{E}_{x,y}$, $T_{\operatorname{id}}\operatorname{Cont}_{\Lambda} = I_{\Lambda}$.

18 декабря 2012 г. — 13 / 16

• Infinitesimal criterion of Λ -stability of $\pi:(p,x,y)\mapsto(x,y)$:

$$\mathcal{E}_{p,x,y} = \mathcal{E}_{x,y} + p\mathcal{E}_{x,y} + I_{\Lambda}$$

where \mathcal{E}_* is the ring of smooth functions of * and $I_{\Lambda} = \{f \in \mathcal{E}_{p,x,y} \mid f_{\Lambda} \equiv 0\}$ is the ideal of the functions vanishing on Λ . Explanation: $\pi' \in \operatorname{Cont}/\operatorname{Cont}_{\pi}$, $T_{\operatorname{id}}\operatorname{Cont} = T_{\operatorname{id}}\operatorname{Cont}_{\pi} + T_{\operatorname{id}}\operatorname{Cont}_{\Lambda}$, $T_{\operatorname{id}}\operatorname{Cont} = \mathcal{E}_{p,x,y}$, $T_{\operatorname{id}}\operatorname{Cont}_{\pi} = \mathcal{E}_{x,y} + p\mathcal{E}_{x,y}$, $T_{\operatorname{id}}\operatorname{Cont}_{\Lambda} = I_{\Lambda}$.

• The criterion of local stability (in a neighborhood of 0) is the same where \mathcal{E}_* is the ring of germs at 0 of smooth functions of *.

◆□ ト ◆□ ト ◆ 亘 ト ◆ 亘 ・ り へ ○ ○

()

• Infinitesimal criterion of Λ -stability of $\pi:(p,x,y)\mapsto(x,y)$:

$$\mathcal{E}_{p,x,y} = \mathcal{E}_{x,y} + p\mathcal{E}_{x,y} + I_{\Lambda}$$

where \mathcal{E}_* is the ring of smooth functions of * and $I_{\Lambda} = \{f \in \mathcal{E}_{p,x,y} \mid f_{\Lambda} \equiv 0\}$ is the ideal of the functions vanishing on Λ . Explanation: $\pi' \in \operatorname{Cont}/\operatorname{Cont}_{\pi}$, $T_{\operatorname{id}}\operatorname{Cont} = T_{\operatorname{id}}\operatorname{Cont}_{\pi} + T_{\operatorname{id}}\operatorname{Cont}_{\Lambda}$, $T_{\operatorname{id}}\operatorname{Cont} = \mathcal{E}_{p,x,y}$, $T_{\operatorname{id}}\operatorname{Cont}_{\pi} = \mathcal{E}_{x,y} + p\mathcal{E}_{x,y}$, $T_{\operatorname{id}}\operatorname{Cont}_{\Lambda} = I_{\Lambda}$.

- The criterion of local stability (in a neighborhood of 0) is the same where \mathcal{E}_* is the ring of germs at 0 of smooth functions of *.
- According to the preparation theorem:

$$\mathcal{E}_{p} = \langle 1, p \rangle_{\mathbb{R}} + I_{\Lambda}|_{\pi^{-1}(0)}.$$

18 декабря 2012 г. — 13 / 16

Theory of Givental'

• Infinitesimal criterion of Λ -stability of $\pi:(p,x,y)\mapsto(x,y)$:

$$\mathcal{E}_{p,x,y} = \mathcal{E}_{x,y} + p\mathcal{E}_{x,y} + I_{\Lambda}$$

where \mathcal{E}_* is the ring of smooth functions of * and $I_{\Lambda} = \{f \in \mathcal{E}_{p,x,y} \mid f_{\Lambda} \equiv 0\}$ is the ideal of the functions vanishing on Λ . Explanation: $\pi' \in \operatorname{Cont}/\operatorname{Cont}_{\pi}$, $T_{\operatorname{id}}\operatorname{Cont} = T_{\operatorname{id}}\operatorname{Cont}_{\pi} + T_{\operatorname{id}}\operatorname{Cont}_{\Lambda}$, $T_{\operatorname{id}}\operatorname{Cont} = \mathcal{E}_{p,x,y}$, $T_{\operatorname{id}}\operatorname{Cont}_{\pi} = \mathcal{E}_{x,y} + p\mathcal{E}_{x,y}$, $T_{\operatorname{id}}\operatorname{Cont}_{\Lambda} = I_{\Lambda}$.

- The criterion of local stability (in a neighborhood of 0) is the same where \mathcal{E}_* is the ring of germs at 0 of smooth functions of *.
- According to the preparation theorem:

$$\mathcal{E}_{p} = \langle 1, p \rangle_{\mathbb{R}} + I_{\Lambda}|_{\pi^{-1}(0)}.$$

• $(p^2) \subseteq I_{\Lambda}|_{\pi^{-1}(0)}$ is a criterion in one-dimensional case.

Stability of $\pi:(p,x,y)\mapsto(x,y)$

• If $\Lambda = \{p = 0, x = t, y = 0\}$ then π is Λ -stable.

Stability of $\pi:(p,x,y)\mapsto(x,y)$

• If $\Lambda = \{p = 0, x = t, y = 0\}$ then π is Λ-stable. Indeed, $I_{\Lambda} = (p, y)$, $I_{\Lambda}|_{\pi^{-1}(0)} = (p) \supset (p^2)$.

Stability of $\pi:(p,x,y)\mapsto(x,y)$

- If $\Lambda = \{p = 0, x = t, y = 0\}$ then π is Λ-stable. Indeed, $I_{\Lambda} = (p, y)$, $I_{\Lambda}|_{\pi^{-1}(0)} = (p) \supset (p^2)$.
- ② If $\Lambda = \{p = t, x = t^2/2, y = t^3/3\}$ then π is Λ-stable.

Stability of $\pi:(p,x,y)\mapsto(x,y)$

- If $\Lambda = \{p = 0, x = t, y = 0\}$ then π is Λ-stable. Indeed, $I_{\Lambda} = (p, y)$, $I_{\Lambda}|_{\pi^{-1}(0)} = (p) \supset (p^2)$.
- ② If $\Lambda = \{p = t, x = t^2/2, y = t^3/3\}$ then π is Λ -stable. Indeed, $I_{\Lambda} = (p^2 2x, p^3 3y), I_{\Lambda}|_{\pi^{-1}(0)} = (p^2).$

-0

Stability of $\pi:(p,x,y)\mapsto(x,y)$

- If $\Lambda = \{p = 0, x = t, y = 0\}$ then π is Λ-stable. Indeed, $I_{\Lambda} = (p, y)$, $I_{\Lambda}|_{\pi^{-1}(0)} = (p) \supset (p^2)$.
- ② If $\Lambda = \{p = t, x = t^2/2, y = t^3/3\}$ then π is Λ -stable. Indeed, $I_{\Lambda} = (p^2 2x, p^3 3y), I_{\Lambda}|_{\pi^{-1}(0)} = (p^2).$
- 3 If $\Lambda = \{p = t, x = t^3/3, y = t^4/4\}$ then π is not Λ-stable.

-()

Stability of $\pi:(p,x,y)\mapsto(x,y)$

- If $\Lambda = \{p = 0, x = t, y = 0\}$ then π is Λ-stable. Indeed, $I_{\Lambda} = (p, y)$, $I_{\Lambda}|_{\pi^{-1}(0)} = (p) \supset (p^2)$.
- ② If $\Lambda = \{p = t, x = t^2/2, y = t^3/3\}$ then π is Λ -stable. Indeed, $I_{\Lambda} = (p^2 2x, p^3 3y), I_{\Lambda}|_{\pi^{-1}(0)} = (p^2).$
- **3** If Λ = { $p = t, x = t^3/3, y = t^4/4$ } then π is not Λ-stable. Indeed, $I_Λ = (p^3 3x, p^4 4y), I_Λ|_{\pi^{-1}(0)} = (p^3) \not\supseteq (p^2).$

-()

Stability of $\pi:(p,x,y)\mapsto(x,y)$

- If $\Lambda = \{p = 0, x = t, y = 0\}$ then π is Λ-stable. Indeed, $I_{\Lambda} = (p, y)$, $I_{\Lambda}|_{\pi^{-1}(0)} = (p) \supset (p^2)$.
- ② If $\Lambda = \{p = t, x = t^2/2, y = t^3/3\}$ then π is Λ -stable. Indeed, $I_{\Lambda} = (p^2 2x, p^3 3y)$, $I_{\Lambda}|_{\pi^{-1}(0)} = (p^2)$.
- **③** If $\Lambda = \{p = t, x = t^3/3, y = t^4/4\}$ then π is not Λ-stable. Indeed, $I_{\Lambda} = (p^3 3x, p^4 4y), I_{\Lambda}|_{\pi^{-1}(0)} = (p^3) \not\supseteq (p^2).$
- If $\Lambda = \{p=t, x=t, y=t^2/2\} \cup \{p=-t, x=t, y=-t^2/2\}$ then π is Λ -stable.

14 / 16

18 декабря 2012 г.

Stability of $\pi:(p,x,y)\mapsto(x,y)$

- If $\Lambda = \{p = 0, x = t, y = 0\}$ then π is Λ -stable. Indeed, $I_{\Lambda} = (p, y), I_{\Lambda}|_{\pi^{-1}(0)} = (p) \supset (p^2).$
- 2 If $\Lambda = \{p = t, x = t^2/2, y = t^3/3\}$ then π is Λ -stable. Indeed, $I_{\Lambda} = (p^2 - 2x, p^3 - 3y), I_{\Lambda}|_{\pi^{-1}(0)} = (p^2).$
- If $\Lambda = \{p = t, x = t^3/3, y = t^4/4\}$ then π is not Λ -stable. Indeed, $I_{\Lambda} = (p^3 - 3x, p^4 - 4y), I_{\Lambda}|_{\pi^{-1}(0)} = (p^3) \not\supseteq (p^2).$
- If $\Lambda = \{p = t, x = t, y = t^2/2\} \cup \{p = -t, x = t, y = -t^2/2\}$ then π is Λ -stable.
 - Indeed, $I_{\Lambda} = (p^2 x^2, y px = 0), I_{\Lambda}|_{\pi^{-1}(0)} = (p^2).$

Stability of $\pi:(p,x,y)\mapsto(x,y)$

- If $\Lambda = \{p = 0, x = t, y = 0\}$ then π is Λ -stable. Indeed, $I_{\Lambda} = (p, y)$, $I_{\Lambda}|_{\pi^{-1}(0)} = (p) \supset (p^2)$.
- ② If $\Lambda = \{p = t, x = t^2/2, y = t^3/3\}$ then π is Λ -stable. Indeed, $I_{\Lambda} = (p^2 - 2x, p^3 - 3y), I_{\Lambda}|_{\pi^{-1}(0)} = (p^2).$
- If $\Lambda = \{p = t, x = t^3/3, y = t^4/4\}$ then π is not Λ -stable. Indeed, $I_{\Lambda} = (p^3 - 3x, p^4 - 4y), I_{\Lambda}|_{\pi^{-1}(0)} = (p^3) \not\supseteq (p^2).$
- If $\Lambda = \{p = t, x = t, y = t^2/2\} \cup \{p = -t, x = t, y = -t^2/2\}$ then π is Λ -stable.
 - Indeed, $I_{\Lambda} = (p^2 x^2, y px = 0), I_{\Lambda}|_{\pi^{-1}(0)} = (p^2).$
- **1** If $\pi(\Lambda)$ is the discriminant of a Coxeter group then π is Λ -stable.

• Instead of a Legendre submanifold Λ we can take any two-dimensional surface S in a contact space. The crucial place is $T_{\rm id}{\rm Cont}_S=I_S$.

- Instead of a Legendre submanifold Λ we can take any two-dimensional surface S in a contact space. The crucial place is $T_{\rm id}{\rm Cont}_S=I_S$.
- In higher dimensional case we can take any coisotropic submanifold.

- Instead of a Legendre submanifold Λ we can take any two-dimensional surface S in a contact space. The crucial place is $T_{\rm id}{\rm Cont}_S=I_S$.
- In higher dimensional case we can take any coisotropic submanifold.
- We can consider a family S_{ε} of surfaces and a family π_{ε} of Legendre fibrations: if $\pi_0: (p, x, y) \mapsto (x, y)$ then $(p^2) \subseteq I_{S_0}$ is a stability criterion.

15 / 16

-()

- Instead of a Legendre submanifold Λ we can take any two-dimensional surface S in a contact space. The crucial place is $T_{\rm id}{\rm Cont}_S=I_S$.
- In higher dimensional case we can take any coisotropic submanifold.
- We can consider a family S_{ε} of surfaces and a family π_{ε} of Legendre fibrations: if $\pi_0: (p, x, y) \mapsto (x, y)$ then $(p^2) \subseteq I_{S_0}$ is a stability criterion.

Application to an implicit ODE:

If π_S is a fold then π is S-stable. The contact structure can define any direction field on S! (As degenerate as we want.)

-C

15 / 16

Proof of the main result:

• In the first case the germs of all Legendre fibrations are stable and form one connected component. So all germs are equivalent.

18 декабря 2012 г. — 16 / 16

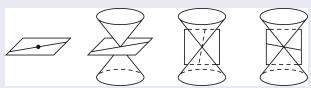
Proof of the main result:

- In the first case the germs of all Legendre fibrations are stable and form one connected component. So all germs are equivalent.
- ② In the second case the germs of all Legendre fibrations are stable and form one connected component. So all germs are equivalent.

() 18 декабря 2012 г. 16 / 16

Proof of the main result:

- In the first case the germs of all Legendre fibrations are stable and form one connected component. So all germs are equivalent.
- ② In the second case the germs of all Legendre fibrations are stable and form one connected component. So all germs are equivalent.
- In the third case the stable germs form two connected components. All germs from each connected component are equivalent.



16 / 16