Quadratic Cohomology

A. Agrachev

SISSA, Trieste & MIAN, Moscow

Systems of inequalities.

Let M be a smooth compact manifold, $\varphi: M \to \mathbb{R}^{k+1}$ a C^1 -vector function and $K \subset \mathbb{R}^{k+1}$ a closed convex cone. A system of inequalities is a relation $\varphi(x) \in K$, $x \in M$. We say that the system of inequalities is regular if $\operatorname{im} D_x \varphi + K = \mathbb{R}^{k+1}$, $\forall x \in \varphi^{-1}(K)$.

We take the dual cone $K^{\circ} = \{p \in \mathbb{R}^{k+1} : \langle p, y \rangle \leq 0, \ \forall y \in K\}$ and consider the "manifold with a convex border" $(K^{\circ} \cap S^k) \times M$.

We say that a subset V of a smooth manifold is a *manifold with* a convex border if V is covered by coordinate neighborhoods whose intersections with V are diffeomorphic to closed convex sets.

Let $f: V \to \mathbb{R}$ be a C^1 function. We say that $v \in V$ is a critical point of f if $\langle d_v f, \xi \rangle \leq 0$, $\forall \xi \in T_v V$.

Now consider the function $\varphi^*: S^k \times M \to \mathbb{R}$ defined by the formula $\varphi^*(p,x) = \langle p, \varphi(x) \rangle$, where $p \in K^{\circ} \cap S^k$.

Lemma 1. If the system of inequalities $\varphi(x) \in K$ is regular, then 0 is not a critical point of φ^* .

A function $f \in C^1(V)$ is regular if 0 is not a critical value of f. A homotopy f_t , $t \in [0,1]$, such that all f_t are regular is a regular homotopy. **Proposition.** Assume that $f_t: (K^{\circ} \cap S^k) \times M \to \mathbb{R}, \ t \in [0,1], \ is$ a regular homotopy and $f_0 = \varphi_0^* \big|_{(K^{\circ} \cap S^k) \times M}, \ f_1 = \varphi_1^* \big|_{(K^{\circ} \cap S^k) \times M}.$ Then $M \setminus \varphi_0^{-1}(K)$ is homotopy equivalent to $M \setminus \varphi_1^{-1}(K)$.

Proof. We set

$$B_t = \left\{ (p, x) \in (K^{\circ} \cap S^k) \times M : f_t(p, x) > 0 \right\}.$$

Note that the projections $(p,x)\mapsto x$ restricted to B_0 and B_1 are fiber bundles over $M\setminus \varphi_0^{-1}(K)$ and $M\setminus \varphi_1^{-1}(K)$ whose fibers are hemispheres. In particular, B_0 is homotopy equivalent to $M\setminus \varphi_0^{-1}(K)$ and B_1 is homotopy equivalent to $M\setminus \varphi_1^{-1}(K)$.

Lemma 2. There exists a smooth family of diffeomorphisms $F_t: S^k \times M \to S^k \times M$ such that $F_0 = id, F_t(B_0) \subset B_t, \ \forall \ t \in [0, 1].$

Proposition. Assume that $f_t: (K^{\circ} \cap S^k) \times M \to \mathbb{R}, \ t \in [0,1]$, is a regular homotopy and $f_0 = \varphi_0^* \big|_{(K^{\circ} \cap S^k) \times M}, \ f_1 = \varphi_1^* \big|_{(K^{\circ} \cap S^k) \times M}.$ Then the homology groups of $\varphi_0^{-1}(K)$ and $\varphi_1^{-1}(K)$ with coefficients in a field are isomorphic.

Proof. Assume that $K \neq -K$, i.e. not all inequalities are equations (otherwise we add the tautological inequality $1 \geq 0$). Then $K^{\circ} \cap S^k$ is contractible and we have the following series of homotopy equivalences of the pairs:

$$(M, M \setminus \varphi_0^{-1}(K)) \sim ((K^{\circ} \cap S^k) \times M, B_0) \sim$$
$$((K^{\circ} \cap S^k) \times M, B_1) \sim (M, M \setminus \varphi_1^{-1}(K)),$$

where $B_t = \{(p,x) \in (K^{\circ} \cap S^k) \times M : f_t(p,x) > 0\}$. Hence $H^*(M,M \setminus \varphi_0^{-1}(K)) \cong H^*(M,M \setminus \varphi_1^{-1}(K))$. The Alexander duality completes the proof.

Localization.

Let V be a manifold with a convex border and $f: V \times M \to \mathbb{R}$ a C^1 -function. Assume that M is a real-analytic manifold and $f_v \doteq f(v,\cdot)$ is a subanalytic function, $\forall v \in V$.

Proposition. Assume that the family $f_v, v \in V$, is regular at $v_0 \in V$. Then v_0 has a compact neighborhood O_{v_0} and centered at v_0 local coordinates Φ such that $U_0 \doteq \Phi(O_{v_0})$ is convex and the function $(f \circ \Phi + t) \Big|_{\varepsilon U_0 \times M}$ is regular for any sufficiently small nonnegative constants t, ε one of which is strictly positive.

A cohomology theory.

Let $\mathcal{A} \subset C^1(M)$ be a set of subanalytic functions, $W \subset V$ a pair of manifolds with convex borders, and $f: V \times M \to \mathbb{R}$ a regular function such that $f_v \in \mathcal{A}, \ \forall \, v \in V$, and $f\big|_{W \times M}$ is also regular.

We set $B_f = \{(v, x) : v \in V, \ f(v, x) > 0\}$ and define $H_{\mathcal{A}}^{\cdot}(f_V, f_W) \doteq H^{\cdot}\left(V \times M, (W \times M) \cup B_f\right), \quad H_{\mathcal{A}}^{\cdot}(f) \doteq H_{\mathcal{A}}^{\cdot}(f_V.f_{\emptyset}).$

The pairs of regular functions (f_V, f_W) form a category $\mathfrak{F}_{\mathcal{A}}$ with morphisms $\varphi^*: (f_{V_0}^0, f_{W_0}^0) \mapsto (f_{V_1}^1, f_{W_1}^1)$, where $\varphi: V_1 \to V_0$ is a C^1 -map such that $\varphi(W_1) \subset W_0$ and $f_v^1 = f_{\varphi(v)}^0$, $\forall v \in V_1$.

Then H_A is a functor from this category to the category of commutative groups.

This is a kind of cohomology functor which satisfies natural modifications of the Steenrod-Eilenberg axioms. The exactness and excision are obvious. Homotopy axiom deals with $f:[0,1]\times V\times M\to\mathbb{R}$ such that $f_{\{t\}\times V}\in\mathfrak{F}_{\mathcal{A}}, \forall\, t\in[0,1],$ and claims that the inclusions $\{t\}\times V\hookrightarrow[0,1]\times V,\ t\in[0,1],$ induce the isomorphisms of cohomology groups:

$$H_{\mathcal{A}}^{\cdot}\left(f_{[0,1]\times V},f_{[0,1]\times W}\right)\cong H_{\mathcal{A}}^{\cdot}\left(f_{\{t\}\times V},f_{\{t\}\times W}\right).$$

The cohomology of a "point": if $V = \{v\}$ then

$$H^i_{\mathcal{A}}(f_{\{v\}}) = H^i(M, \{x \in M : f_v(x) > 0\}) = H_{n-i}(\{x \in M : f_v(x) \le 0\}),$$

 $0 \le i \le n$, where $n = \dim M$.

The "points" for us are regular elements of \mathcal{A} and different points may have different cohomology.

Now assume that $A + t \subset A$ for any nonnegative constant t. The localization implies:

$$H_{\mathcal{A}}^{\cdot}\left(f_{U_{v}}\right)\cong H_{\mathcal{A}}^{\cdot}\left(f_{\{v\}}+\varepsilon\right)$$

for small $U_v \ni v$, $\varepsilon > 0$. In other words, cohomology of a "small neighborhood" is equal to the cohomology of a "point".

Let $M=\mathbb{R}P^N=\{(x,-x):x\in S^k\}$ and $\mathcal Q$ the space of real quadratic forms on \mathbb{R}^{N+1} treated as functions on $\mathbb{R}P^N$.

Let $\lambda_1(q) \ge \cdots \ge \lambda_{N+1}(q)$ be the eigenvalues of the symmetric operator associated to the quadratic form $q \in \mathcal{Q}$. We set

$$\Lambda_{j,m} = \{ q \in \mathcal{Q} : \lambda_{j-1}(q) \neq \lambda_j(q) = \lambda_{j+m-1}(q) \neq \lambda_{j+m}(q) \};$$

then $\Lambda_{i,m}$ is a smooth submanifold of codimension $\frac{m(m+1)}{2}-1$ in \mathcal{Q} .

We say that the pair $(f_V, f_W) \in \mathfrak{F}_Q$ is in the general position if the borders ∂V , ∂W are smooth and the map $v \mapsto f_v$, $v \in V$, as well as the restrictions of this map to W, ∂V , ∂W are transversal to $\Lambda_{j,m}$.

We set:

$$V_f^j = \{ v \in V : \lambda_j(f_v) > 0 \}, \quad C^n(f) = \bigoplus_{i+j=n} C^i(V, V_f^{j+1}),$$

where C^i is the group of singular cochains of dimension i.

Besides the standard coboundary $\delta:C^i\to C^{i+1}$ we consider a differential:

$$\Delta : C^{i}(V, V_{f}^{j+1}) \to C^{i+2}(V, V_{f}^{j}), \quad \Delta(\xi) = \xi \vee \ell_{f}^{j},$$

where $\ell_f^{\mathcal{I}}$ is the Poincaré dual cocycle to the cycle $\{v\in V: f_v\in \Lambda_{j,2}\}.$ Then

$$\ldots \to C^{n-1}(f) \xrightarrow{\delta + \Delta} C^n(f) \xrightarrow{\delta + \Delta} C^{n+1}(f) \to \ldots$$

is a cochain complex.

Relative cochain groups $C^n(f_V, f_W) = \bigoplus_{i+j=n} C^i(V, V_f^{j+1}) \cap C^i(V, W)$ equipped with the same differential $\delta + \Delta$ define a cohomology $\widehat{H}_{\mathcal{Q}}(f_V, f_W)$ that satisfy all the axioms.

Consider a filtration of the complex $\bigoplus_{n\geq 0} C^n(f)$ by subcomplexes

 $\bigoplus_{i\geq\alpha,j\geq0}C^i_{j+1}(f),\ \alpha=0,1,\dots\ \text{and the spectral sequence}\ E^r_{i,j}\ \text{of this filtration converging to}\ \hat{H}_{\mathcal{Q}}(f).$ We have:

$$E_{ij}^2 = H^i(V, V_f^{j+1}), \quad d_2 : \xi \mapsto \xi \setminus \bar{\ell}_f^j.$$

Moreover, $d_r: \bar{\xi} \mapsto \langle \bar{\xi}, \bar{\ell}_f^j, \dots, \bar{\ell}_f^{j-r+2} \rangle$ are Massey operations for $r \geq 3$.

Assume that dim $V=3,\ H_1(V;\mathbb{Z}_2)=0$ and ∂V is connected or empty. We have:

$$d_3: H^0(V, V_f^{j+1}) \longrightarrow H^3(V, V_f^{j-1}).$$

Moreover, ranks of $H^0(V, V_f^{j+1})$ and $H^3(V, V_f^{j-1})$ are either one or zero.

If both ranks are equal to one, then d_3 sends the generator of $H^0(V,V_f^{j+1})$ to the generator of $H^3(V,V_f^{j-1})$ multiplied by the linking number of 1-dimensional submanifolds $f^{-1}(\Lambda_{j,2})$ and $f^{-1}(\Lambda_{j-1,2})$