Walks around Monte-Carlo

Boris Polyak

with Elena Gryazina

Institute for Control Science, Moscow

Seminar MFTI

March, 2012

Monte Carlo: beginning

J. von Neumann, E. Teller, S. Ulam and N. Metropolis (1949)

First applications

- Simulation (physical processes of particle motion and binary collisions).
- Multidimensional integration.
- Computational mathematics.

Recent applications

- Convex and global optimization
- Robustness analysis in control and optimization.
- Sampling in complex domains.
- Data mining, Learning, Signal processing, Image processing

Goal: Sampling in complicated domains

Possible approaches:

- Special regions (box, simplex, l_p -ball, positive definite matrices cone)
- Rejection
- Markov chain Monte Carlo (MCMC)— random walk in the domain

1D Sampling

Long ago: Tables of random numbers, physical devices (analogs of roulette or coin).

Now there are highly effective pseudo-random generators, fast and with good statistical properties. Example: code rand in Matlab generates points uniformly distributed in [0,1].

How to generate random variables with given cdf F(x)? Solution: $x = rand, y = F^{-1}(x)$.

Normal N(0,1): randn or $x_1 = rand, x_2 = rand,$ $y_1 = \sqrt{-2 \log x_1} \cos(2\pi x_2),$ $y_2 = \sqrt{-2 \log x_1} \sin(2\pi x_2),$ $y \sim N(0, I_2).$

nD Sampling

- 1. rand(n, 1) uniform distribution in the box $B = [0, 1]^n \in \mathbb{R}^n$.
- 2. $randn(n, 1) \sim N(0, I)$.

Exercises: how to generate samples uniformly distributed in 1) sphere 2) ball 3) simplex 4) l_p ball 5) ellipsoid 6) matrix balls

General problem: given a bounded set $Q \in \mathbb{R}^n$, how to generate points uniformly distributed in Q? Typical example — Q is a polytope.

Rejection: Take simple $G \supseteq Q$ (e.g. a box), generate points uniformly in G, reject those which are not in Q. Example Q is a unit ball, G is a box $[-1,1]^n$. Then for n=2k we have $Vol(G)/Vol(Q)=k!2^k/\pi^k=4\cdot 10^7$ for n=20, that is we should generate 10^8 points to get 1-2 points in Q. For polytopes this ratio can be much larger.

Markov Chain Monte Carlo (MCMC)

Idea — apply random walks (vs independent generation of points in MC).

P.Diaconis, The Markov Chain Monte Carlo Revolution, Bull. AMS, Vol. 46, No. 9, 179–205 (2009).

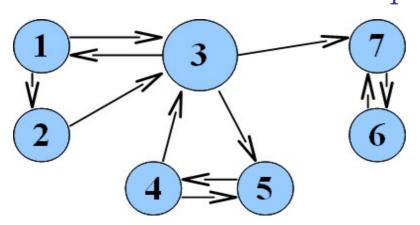
A lot of applications in applied math.

Random walks in graphs

Given oriented graph G(V, E), V - vertices, E - edges, and p_{ij} - probabilities of transition from vertex j to vertex $i, P = ((p_{ij}))$ - transition matrix which is column stochastic $(p_{ij} \ge 0, \sum_{i} p_{ij} = 1)$ (nonstandard notation!)

Problem: if there exist limiting probability distribution $x^* = Px^*, x^* \in S, S$ - standard simplex and if power method $x^{k+1} = Px^k$ converges to x^* . This is well known in Markov chain theory: x^* always exists, and if $p_{ij} > 0 \quad \forall i, j$ then it is unique and $||x^k - x^*|| \leq c|\lambda_2|^k$, where λ_2 is the second eigenvalue of P. Note that x_i^* can be interpreted as average time of visiting vertex i under random walk.

Example



$$P = \begin{pmatrix} 0 & 0 & 1/3 & 0 & 0 & 0 & 0 \\ 1/2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1/2 & 1 & 0 & 1/2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1/3 & 1/2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1/3 & 0 & 0 & 1 & 0 \end{pmatrix}$$

$$x^* = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1/2 \\ 1/2 \end{bmatrix}$$

Uniform distribution on the graph

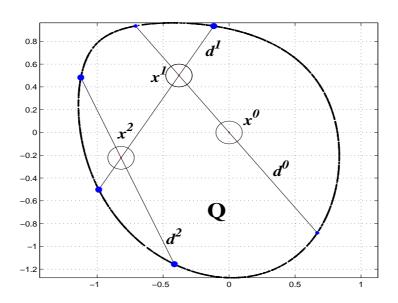
How to make limiting distribution x^* uniform on G, i.e. $x^* = e, e_i = 1/n, n$ is the number of vertices?

Note that $P^T e = e$ and for $y^{k+1} = P^T y^k$ we have $y^k \to e$. Thus if $P = P^T$ and $p_{ij} > 0$ then invariant distribution is uniform. How to achieve this if for original transition probabilities $p_{ij} \neq p_{ji}$?

Metropolis random walk. At vertex j choose vertex i randomly with probability p_{ij} . Then proceed to i with probability $q = \frac{p_{ji}}{p_{ij} + p_{ji}}$ and stay in j with probability 1 - q. For such random walk transition probabilities are symmetric and average time of visiting each vertex is the same.

Hit-and-Run algorithm (sampling in $Q \subset \mathbb{R}^n$)

This is random walk in Q. Turchin (1971), Smith (1984)



- 1. Initial point $x^0 \in Q$.
- 2. d = s/||s||, s = randn(n, 1) random direction uniform on the unit sphere
- 3. Boundary oracle: $L = \{t \in \mathbb{R} : x^0 + td \in Q\}$
- 4. Next point $x^1 = x^0 + t_1 d$, t_1 is uniform random in L.
- 5. x^0 is replaced by x^1 , go to Step 2.

Theorem Points x^k are asymptotically uniform in Q, i.e., the probability to reach a subset $A \subset Q$ can be estimated as: $|P_k(A) - P(A)| \leq cq^k$, where P(A) = Vol(A)/Vol(Q), $P_k(A) = \text{(number of visits of } xA)/k)$ where q < 1 does not depend on the initial point x^0 (but it depends on the dimension and the geometry of the set).

Idea: for any sets $A \subset Q$, $B \subset Q$ with nonzero volume the probabilities of transition are equal and positive.

Advantages

- Very simple.
- Q should not be neither convex nor connected (boundary oracle may consist of several intervals), the only assumption is that Q is a closure of an open set.
- Points on the boundary are also generated.
- Boundary oracle is available for numerous sets.

Boundary oracle is available for numerous sets

• Linear algebraic inequalities set (a polytope)

$$Q = \left\{ x \in \mathbb{R}^n : c_i^T x \le a_i, \ i = 1, \dots, m \right\}$$

• LMI set

$$Q = \left\{ x \in \mathbb{R}^n : A_0 + \sum_{i=1}^n x_i A_i \le 0 \right\}$$

• LMI constrained set of symmetric matrices P

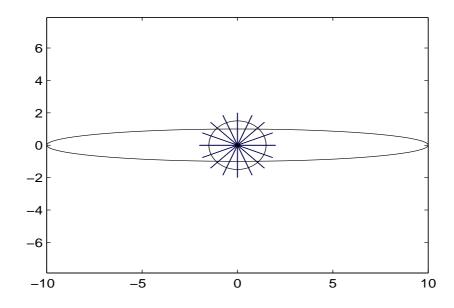
$$Q = \left\{ P : AP + PA^{T} + C \le 0, \ P \ge 0 \right\}$$

• Quadratic matrix inequalities set

$$Q = \left\{ P : AP + PA^{T} + PBB^{T}P + C \le 0, \ P \ge 0 \right\}$$

Drawbacks

- HR jams in corners.
- HR jams for narrow bodies.
- Strong serial correlation.



(Lovasz, Vempala. Hit-and-Run from a corner, 2007) necessary number of iterations to achieve uniformity with precision ε

$$N > 10^{10} \frac{n^2 R^2}{r^2} \ln \frac{M}{\varepsilon}$$

How to accelerate convergence?

Kaufman, Smith. Direction choice for accelerated convergence in Hit-and-Run sampling // Operations Research, Vol. 46, No. 1, 1998, p. 84-95.

d – uniform on the sphere \rightarrow some other distribution H

Kannan and Narayanan. Random walks on polytopes and an affine interior point method

for linear programming // Proc. of ACM Symp. on Theory of Computing, 2009.

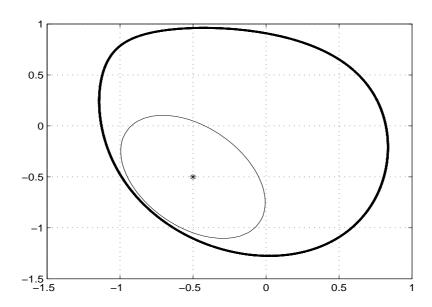
Barrier function machinery

F(x) – self-concordant barrier for Q,

F(x) is defined in int Q and $F(x) \to \infty$ as $x \to \partial Q$. Dikin ellipsoid

$$E_x = \{y : (\nabla^2 F(x)(y - x), y - x) \le 1\} \subset Q$$

 $\nabla^2 F(x) \succ 0$ for all $x \in Q$, suppose $(\nabla^2 F(x))^{-\frac{1}{2}}$ can be calculated.



New: Barrier Hit-and-Run method

Given $x \in \text{Int}Q$, barrier F(x), i = 1.

- 1. $x = x^i$.
- 2. Pick random direction d uniformly in E_x :

 $d_x = (\nabla^2 F(x))^{-1/2} \xi$, ξ is uniform random in the unit ball.

- 3. Pick $y = x + \lambda d$, where $\lambda \in [\underline{\lambda}, \overline{\lambda}]$ is defined via Boundary Oracle as in the original version of Hit-and-Run.
- 4. Calculate $r_x = \frac{||d||}{\sqrt{(H_x d, d)}}$, $H_y = \nabla^2 F(y)$ and $r_y = \frac{||d||}{\sqrt{(H_y d, d)}}$.
- 5. Accept y with probability $\min\left(1, \left(\frac{r_y}{r_x}\right)^n \cdot \frac{vol(E_x)}{vol(E_y)}\right), i = i+1, x^i = y$. Go to 1.

Theoretical validation

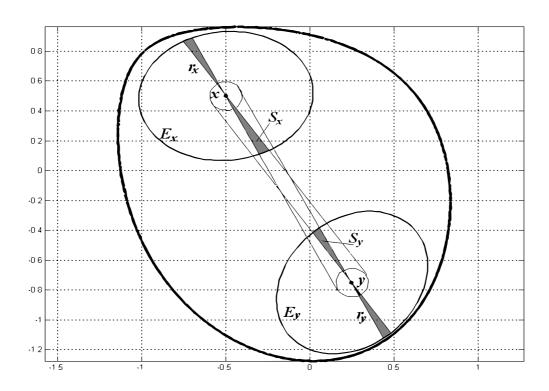
How can an asymptotical uniformity be guaranteed?

- 1. There exists a probability density p(y|x) > 0 for all $x, y \in Q$.
- 2. Reversibility

$$p(x|y) = p(y|x)$$

We check both properties for our algorithm.

Theorem BHR algorithm provides asymptotically uniformly distributed points for convex set Q.



$$P_{x \to \varepsilon(y)} = \frac{vol(S_x)}{vol(E_x)} \cdot \frac{\varepsilon}{L_{xy}} = c \cdot r_x^n \sqrt{\det H_x} \cdot \alpha = \varphi_x \alpha$$
, where α is a probability to accept point y as a new generated point.

 $P_{y\to\varepsilon(x)}=\varphi_y\beta$, where β is a probability to transfer to point x starting from y.

Metropolis rule: taking
$$\alpha = \min \left\{ 1, \frac{\varphi_y}{\varphi_x} \right\}$$
, $\beta = \min \left\{ 1, \frac{\varphi_x}{\varphi_y} \right\}$ we obtain $P(x \to B_y) = P(y \to B_x)$.

How it works for polytopes

$$Q = \{x : Ax \le b\}, A : m \times n$$

Barrier function and its Hessian

$$F(x) = -\sum \ln(b_i - (a^i, x)), \quad a^i - \text{ the rows of matrix } A$$
$$H = \nabla^2 F(x) = A^T D^2 A, \quad D = \text{diag} \left\{ \frac{1}{b_i - (a^i, x)} \right\}$$

Random uniform point in Dikin ellipsoid: just solve a system of linear equations!

 $Hd = A^T D\xi$, ξ – random vector on the unit sphere

Comparison with uniform distribution

For the given Q and samples $x^i \in Q$ take arbitrary function f(x) for which cdf-function

$$\Phi(t)$$

can be calculated in a closed form.

Construct an empirical cdf

$$\hat{\Phi}(t) = \left\{ \frac{\text{number of points } x^i : f(x^i) \le t}{N} \right\}$$

Compare $\Phi(t)$ and $\hat{\Phi}(t)$

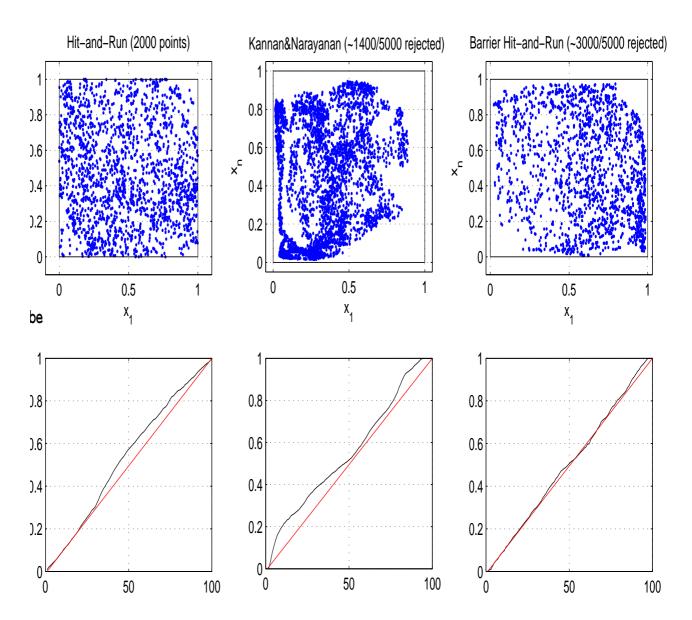
Kannan&Narayanan method (KN)

$$E_x = \{ y : (\nabla^2 F(x)(y-x), y-x) \le \frac{3}{40} \}$$

- 1. Flip a fear coin. If Heads, stay at x.
- 2. Otherwise, pick random $y \in E_x$.
- 3. If $x \notin E_y$, then stay at x;
 if $x \in E_y$ accept y (replace x) with probability min $\left(1, \frac{vol(E_x)}{vol(E_y)}\right)$

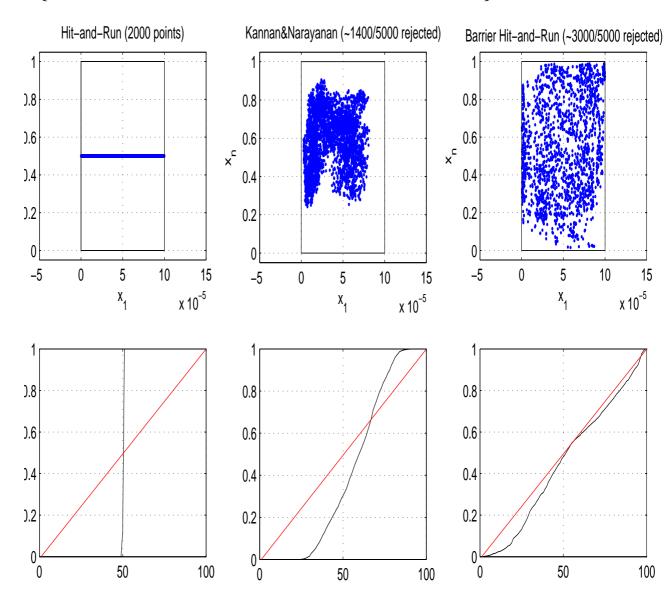
$$\min\left(1,\sqrt{\frac{det(H_y)}{det(H_x)}}\right)$$
. Go to step 1.

Simulations: \mathbb{R}^{10} -cube $f = x_{10}$

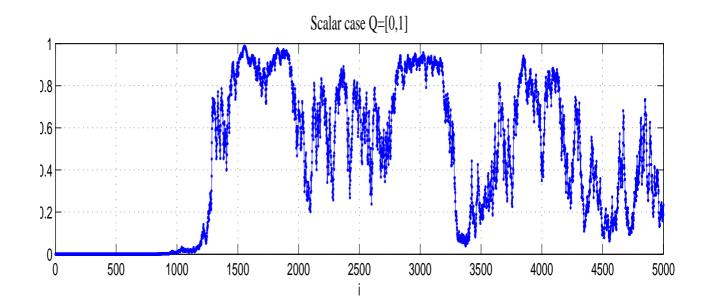


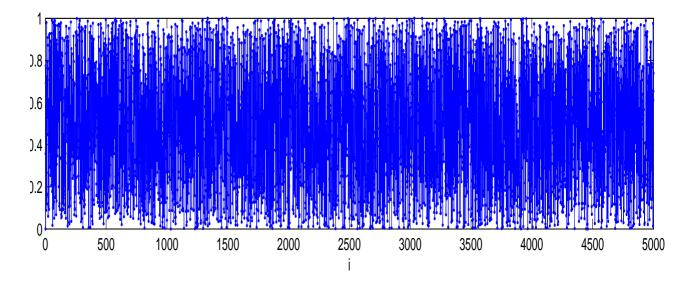
Simulations: \mathbb{R}^{10} -stick

$$Q = \{0 \le x_i \le 10^{-4}, i = 1, \dots, 9; 0 \le x_{10} \le 1\}, f = x_{10}$$



Simulations: scalar case





Comparison with other methods

- BHR and KN are both affine invariant.

 The behavior of the trajectories is the same for Q for its affine transformation T(Q).
- There exists polynomial estimate of convergence rate for KN method: $N > 7 \times 10^8 \times mn \left(n \ln(20s\sqrt{m}) + \ln\left(\frac{32}{\epsilon}\right) \right)$ [for n = 10, $m = 20 N \sim 10^{13}$ iterations]
- Strong serial correlation for KN method and its absence for BHR.
- BHR: large steps are allowed.
- Original KN method is proposed for polytopes only*, BHR for arbitrary convex set with barrier and Boundary Oracle.

^{*} Hariharan Narayanan. Randomized interior point methods for sampling and optimization (preprint in ArXiv) New version of KN algorithm for arbitrary convex set with a self-concordant barrier.

Shake-and-Bake: an alternative technique

Idea: billiards with random reflections

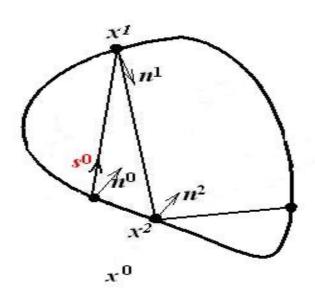
K.A. Borovkov (1991) "On a new variant of the Monte Carlo method Theory of Probability and its Applications, Vol. 36, No. 2, pp. 355-360; (1994) "On simulation of random vectors with given densities in regions and on their boundaries Journal of Applied Probability, Vol. 31, No.1, pp. 205-220.

F. Comets, S. Popov, G.M. Schutz, M. Vachkovskaia "Billiards in a general domain with random reflections"/arXiv:math/0612799v3

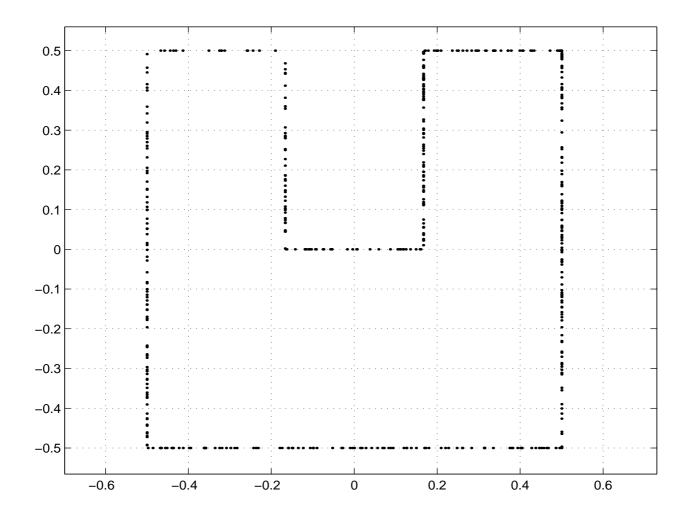
- ullet Points are asymptotically uniformly distributed in the boundary of Q.
- Boundary oracle is used (first intersection with the boundary).
- Normals to the boundary are needed.
- \bullet The set Q should be connected, but not necessarily convex.

Shake-and-Bake: the algorithm

- 1. $i = 0, x^0 \in \partial X, n^0$ is the normal.
- 2. Choose random direction s^i , $s^i = \sqrt{1 \xi^{\frac{2}{n-1}}} n^0 + r$, ξ uniform random in (0,1), r is random unit uniform direction $(n^0, r) = 0$.
- 3. $x^{i+1} = x^i + \overline{t}s$, \overline{t} is given by the boundary oracle for the direction s.
- 4. $x^{i+1} \Rightarrow x^i$, go to Step 2.



Shake-and-Bake for nonconvex sets



Open problems

- Parallel versions of Hit-and-Run and Shake-and-Bake.
- How to generate direction x, ||x|| = 1 uniformly in a polyhedral cone $Ax \leq 0$? How to exploit it in HR and SB?
- Multistep HR. From a point $x^0 \in Q$ take several directions d^i (uniformly distributed on the unit sphere) and find corresponding t_i via boundary oracles. Then choose *i*-th direction with probability proportional to t_i^n . Probably this method is much faster than the standard HR.
- Random walks on discrete grids.
- Other ideas for points generation triangulization, approximation by ellipsoids or polytopes etc.