Stochastics and an Optimization in Stable Dynamic Model.

- Criticism of the classical model
- Stable Dynamic Model
- Stohastic variant. Logit-model
- Potential functions
- Computational aspects

Static network assignment model (Beckmann at al,1956):

Given a network, congestion laws and an origin-destination $(\mathcal{O} - \mathcal{D})$ matrix.

Find a user-equilibrium (UE) regime.

- At UE each driver selects the shortest route (the first Wardrop principle (1952));
- the cost function is nondecreasing in the flow on the arc.

Criticism:

• a large flow corresponds to a fast movement. Then the travel time cannot be too big.

$$flow = speed \times density$$

• Triangle network w_1 , w_2 - origin, δ - destination nodes.

$$t_1^e = \bar{t}_1;$$
 $t_2^e = \bar{t}_2;$ $C^S = d_1\bar{t}_1 + d_2\bar{t}_2.$

After connection of w_1 , w_2 , $\bar{t}_2 > \bar{t}_1 + \bar{t}_3$:

$$t_1^e = \bar{t}_2 - \bar{t}_3;$$

$$C_1^S = d_1(\bar{t}_2 - \bar{t}_3) + d_2\bar{t}_2 > C^S.$$

Stable Dynamic model (Nesterov and de-Palma, 2000):

- Given an established arc travel time pattern $t = \{t_{\beta}\}_{{\beta} \in \mathcal{A}}$ in the network \mathcal{N} , $t \geq \bar{t}$, each driver selects the shortest route;
- the flow f_{β} never exceeds \bar{f}_{β} .

If
$$f_{\beta} < \bar{f}_{\beta} \Longrightarrow t_{\beta} = \bar{t}_{\beta}$$
.
If $f_{\beta} = \bar{f}_{\beta} \Longrightarrow t_{\beta} \ge \bar{t}_{\beta}$

Let

$$T_{(i,j)}(t) = \min_{a \in \mathcal{R}_{(i,j)}} \langle a, t \rangle,$$

 $C(t) = \sum_{(i,j) \in \mathcal{OD}} d_{(i,j)} T_{(i,j)}(t).$

Theorem 1 The arc travel time t^* and the arc flow vector f^* is an equilibrium solution of the model iif t^* is a solution to the problem:

$$\max_{t} [C(t) - \langle \bar{f}, t - \bar{t} \rangle : t \ge \bar{t}], \tag{1}$$

and $f^* = \overline{f} - s^*$, where $s^* \ge 0$ is a vector of optimal dual multipliers for the inequalities constrains in (1).

Note: At UE number of cars involved in free traffic is maximal.

Stochastic route choice model

$$r \in \mathcal{R}$$
 $\{c_r\}_{r=1}^M$ travel cost function $c_r(t) = \sum_{\alpha \in r} t_{(\alpha)}$

Logit Model

$$p_r(t) = Pr(c_r(t) + \epsilon_r = \min_{q \in \mathcal{R}} (c_q(t) + \epsilon_q)).$$
$$p_r(t) = e^{-c_r(t)/\mu} / \sum_{q \in \mathcal{R}} e^{-c_q(t)/\mu}, \qquad r \in \mathcal{R}.$$

The expected arc flow vector of drivers on the route r: $f_r = f_r(t) \in \mathbb{R}^m$:

$$f_r(t) = de^{-c_r(t)/\mu} / \sum_{q \in \mathcal{R}} e^{-c_q(t)/\mu}, \qquad r \in \mathcal{R}.$$

The expected arc low vector $f(t) \in \mathbb{R}^m$:

$$f(t) = \sum_{r \in \mathcal{R}} f_r(t) a_r$$

The potential function

$$\psi_{\mathcal{R}}(t) = \ln \left(\sum_{r \in \mathcal{R}} e^{-c_r(t)} \right).$$

Lemma 1 For any $\mu > 0$ and $t \in R^m$ such that $t/\mu \in int(dom\psi_{\mathcal{R}})$ we have

$$f(t) = -d\nabla \psi_{\mathcal{R}}(t/\mu).$$

Proof.

$$c_r(t) = \langle a_r, t \rangle \Longrightarrow \psi_{\mathcal{R}}(t) = \ln(\sum_{r \in \mathcal{R}} e^{-\langle a_r, t \rangle}).$$

Stochastic traffic assignement

• The expected arc flow of these drivers is as follows:

$$f(t) = -d\nabla \psi_{\mathcal{R}}(t/\mu).$$

If $f_{\alpha} < \bar{f}_{\alpha} \Longrightarrow tt_{\alpha} = \bar{t}t_{\alpha};$ (2) If $f_{\alpha} = \bar{f}_{\alpha} \Longrightarrow tt_{\alpha} \ge \bar{t}t_{\alpha}$

For each pair $(p, k) \in \mathcal{OD}$ we fix the demand flow $d_{p,k}$ and some set of routes $\mathcal{R}_{(p,k)} \in \mathcal{N}$, which connect p and k. Consider the problem:

$$\min[\langle \bar{f}, t \rangle + \mu \psi(t/\mu) : t \ge \bar{t}], \tag{3}$$

where $\mu > 0$ and

$$\psi(t) = \sum_{(p,k)\in\mathcal{OD}} d_{p,k} \cdot \psi_{\mathcal{R}_{p,k}}(t).$$

Theorem 2 1. Let the demand flow be implementable by some flows $f_{p,k}$ such that

$$\sum_{(p,k)\in OD} f_{p,k} < \bar{f}.$$

Then the problem (3) is solvable.

2. Let t^* be a solution (3). Then

$$f_{p,k}^* = -d_{p,k} \cdot \nabla \psi_{\mathcal{R}_{p,k}}(t^*/\mu), \quad (p,k) \in \mathcal{OD}.$$

These flows satisfy the corresponding demand.

3. The equilibrium arc flow $f^* = \Sigma_{(p,k) \in \mathcal{OD}} f_{p,k}^*$ satisfy the arc flow bounds. Moreover, the pair (t^*, f^*) satisfy (2).

Proof.

1. We can bound the objective function in (3) from below by some strictly increasing linear function

$$\langle \bar{f}, t \rangle + \mu \psi(t/\mu) = \langle \bar{f} - \hat{f}, t \rangle + \langle \hat{f}, t \rangle + \mu \psi(t/\mu) \ge$$

 $\ge \langle \bar{f} - \hat{f}, t \rangle + \mu \gamma \Longrightarrow \text{level sets are bounded.}$

2. Follows from Lemma 1. 3. The solution t^* of (3)satisfies KKT conditions:

$$\bar{f} + \nabla \psi(t^*/\mu) = s^*,$$

$$s_{\alpha}^* \cdot (t_{\alpha}^* - t_{\alpha}) = 0,$$

where $s^* \geq 0$. Thus, if $f_{\alpha}^* < \bar{f}_{\alpha}$, we always have $s_{\alpha}^* > 0$ and therefore $t_{\alpha}^* = \bar{t}_{\alpha}$.

Cumulative sets of routes

$$\hat{\mathcal{R}}_{p,k}^L = \cup_{l=1}^L \mathcal{R}_{p,k}^l.$$

Let us fix some node p.

Assume we want to compute the potential functions for the cumulative sets of routes $\hat{\mathcal{R}}_{p,k}^L$, k = 1, ..., n.

Let us fix some $\mu > 0$. Denote

$$\frac{a_k^l(t) = \mu \psi_{\mathcal{R}_{p,k}^l}(t/\mu)}{b_k^l(t) = \mu \psi_{\hat{\mathcal{R}}_{p,k}^l}(t/\mu)} \right\} k = 1, .., n, l = 1, .., L$$

These functions can be computed by a simple recursion:

$$a_k^1(t) = b_k^1(t) = \begin{cases} -t^{\alpha[p,k]} & \text{if} \quad \alpha[p,k] \neq \emptyset, \\ -\infty, & \text{if} \quad \alpha[p,k] = \emptyset. \end{cases} \quad k = 1, .., n.$$

And for l = 1, ..., L - 1 we have:

where $I(k) = \{i : \alpha[i, k] \neq \emptyset\}.$

Each step l takes O(m) a.e. Thus, the computation of the values of all functions $b_k^L(t)$, k = 1, ..., n needs O(Lm).