Cohomological localization towers

Carles Casacuberta

Universitat de Barcelona

(joint work with Imma Gálvez)

Conference in Honour of Professor Buchstaber

Moscow, 18 June 2013

► Homological localizations of spaces or spectra are useful tools in Algebraic Topology since the decade of 1970.

- ► Homological localizations of spaces or spectra are useful tools in Algebraic Topology since the decade of 1970.
- Cohomological localizations are not known to exist.

- Homological localizations of spaces or spectra are useful tools in Algebraic Topology since the decade of 1970.
- Cohomological localizations are not known to exist.
- In 2012 we proved that the existence of supercompact cardinals (a large-cardinal axiom) implies that cohomological localizations exist.

- Homological localizations of spaces or spectra are useful tools in Algebraic Topology since the decade of 1970.
- Cohomological localizations are not known to exist.
- In 2012 we proved that the existence of supercompact cardinals (a large-cardinal axiom) implies that cohomological localizations exist.
- In work in progress we show that, assuming that cohomological localizations of spectra exist, they can be constructed by means of homotopy inverse limits.

We consider **representable** homology theories and cohomology theories defined on **spectra**.

We consider **representable** homology theories and cohomology theories defined on **spectra**.

Let S be the sphere spectrum. For each spectrum E, define

$$E_k(X) = \pi_k(E \wedge X) = [\Sigma^k S, E \wedge X]$$

We consider **representable** homology theories and cohomology theories defined on **spectra**.

Let S be the sphere spectrum. For each spectrum E, define

$$E_k(X) = \pi_k(E \wedge X) = [\Sigma^k S, E \wedge X]$$

and

$$E^k(X) = \pi_{-k} \operatorname{Map}(X, E) = [\Sigma^{-k} X, E]$$

for $k \in \mathbb{Z}$ and every spectrum X.

We consider **representable** homology theories and cohomology theories defined on **spectra**.

Let S be the sphere spectrum. For each spectrum E, define

$$E_k(X) = \pi_k(E \wedge X) = [\Sigma^k S, E \wedge X]$$

and

$$E^k(X) = \pi_{-k} \operatorname{Map}(X, E) = [\Sigma^{-k} X, E]$$

for $k \in \mathbb{Z}$ and every spectrum X.

Then E_* is a homology theory and E^* is a cohomology theory.

We consider **representable** homology theories and cohomology theories defined on **spectra**.

Let S be the sphere spectrum. For each spectrum E, define

$$E_k(X) = \pi_k(E \wedge X) = [\Sigma^k S, E \wedge X]$$

and

$$E^k(X) = \pi_{-k} \operatorname{Map}(X, E) = [\Sigma^{-k} X, E]$$

for $k \in \mathbb{Z}$ and every spectrum X.

Then E_* is a homology theory and E^* is a cohomology theory.

They are homotopy invariant, additive functors sending fibre sequences of spectra to long exact sequences of abelian groups.

Let *E* be any spectrum.

▶ E_* -localization is an idempotent functor L_E from the homotopy category of spectra to itself such that $L_E X = 0$ if and only if X is E_* -acyclic, that is, $E_*(X) = 0$.

Let *E* be any spectrum.

- ▶ E_* -localization is an idempotent functor L_E from the homotopy category of spectra to itself such that $L_E X = 0$ if and only if X is E_* -acyclic, that is, $E_*(X) = 0$.
- ▶ E^* -localization is an idempotent functor L^E from the homotopy category of spectra to itself such that $L^E X = 0$ if and only if X is E^* -acyclic, that is $E^*(X) = 0$.

Let *E* be any spectrum.

- ▶ E_* -localization is an idempotent functor L_E from the homotopy category of spectra to itself such that $L_E X = 0$ if and only if X is E_* -acyclic, that is, $E_*(X) = 0$.
- ▶ E^* -localization is an idempotent functor L^E from the homotopy category of spectra to itself such that $L^E X = 0$ if and only if X is E^* -acyclic, that is $E^*(X) = 0$.

The class of E_* -acyclics is equal to the class of $(IE)^*$ -acyclics, where IE is the **Brown–Comenetz dual** of E.

Let *E* be any spectrum.

- ▶ E_* -localization is an idempotent functor L_E from the homotopy category of spectra to itself such that $L_E X = 0$ if and only if X is E_* -acyclic, that is, $E_*(X) = 0$.
- ▶ E^* -localization is an idempotent functor L^E from the homotopy category of spectra to itself such that $L^E X = 0$ if and only if X is E^* -acyclic, that is $E^*(X) = 0$.

The class of E_* -acyclics is equal to the class of $(IE)^*$ -acyclics, where IE is the **Brown–Comenetz dual** of E.

Hovey conjectured in 1995 that for each spectrum E there is another spectrum F such that the class of E^* -acyclics is equal to the class of F_* -acyclics. This is still an open problem.

Motivation

Localization with respect to ordinary homology $(H\mathbb{Z}_{(p)})_*$ with p-local coefficients gives rise to H-space structures on some spheres (Adams, Sullivan) and homotopy splittings (Brown–Peterson, Mimura–Nishida–Toda).

Motivation

Localization with respect to ordinary homology $(H\mathbb{Z}_{(p)})_*$ with p-local coefficients gives rise to \pmb{H} -space structures on some spheres (Adams, Sullivan) and homotopy splittings (Brown–Peterson, Mimura–Nishida–Toda).

Under suitable assumptions on X, the Adams–Novikov spectral sequence for a homology theory E_* converges to the homotopy groups of the E_* -localization of X:

$$\textit{E}_{2}^{s,t} = \mathsf{Ext}_{\textit{E}_{*}\textit{E}}^{s}(\Sigma^{t}\pi_{*}(\textit{E}),\textit{E}_{*}(\textit{X})) \Longrightarrow \pi_{t-s}(\textit{\textbf{L}}_{\textit{E}}\textit{\textbf{X}}).$$

Motivation

Localization with respect to ordinary homology $(H\mathbb{Z}_{(p)})_*$ with p-local coefficients gives rise to \pmb{H} -space structures on some spheres (Adams, Sullivan) and **homotopy splittings** (Brown–Peterson, Mimura–Nishida–Toda).

Under suitable assumptions on X, the Adams–Novikov spectral sequence for a homology theory E_* converges to the homotopy groups of the E_* -localization of X:

$$E_2^{s,t} = \operatorname{Ext}_{E_*E}^s(\Sigma^t \pi_*(E), E_*(X)) \Longrightarrow \pi_{t-s}(\mathbf{L}_{\mathbf{E}}\mathbf{X}).$$

This has been extensively studied for E = BP and for E = E(n), where $E(n) = K(0) \lor \cdots \lor K(n)$ is a wedge of Morava K-theories. The resulting Adams–Novikov spectral sequence is called **chromatic spectral sequence**.

The existence of an E_* -localization functor L_E for every spectrum E was proved by Bousfield in 1979.

The existence of an E_* -localization functor L_E for every spectrum E was proved by Bousfield in 1979.

Proving the existence of (cohomological) E^* -localization functors is still an open problem.

The existence of an E_* -localization functor L_E for every spectrum E was proved by Bousfield in 1979.

Proving the existence of (cohomological) E^* -localization functors is still an open problem.

In a joint article with Bagaria, Mathias, and Rosický we proved in 2012 that, if arbitrarily large **supercompact cardinals** exist, then E^* -localization exists for every spectrum E.

The existence of an E_* -localization functor L_E for every spectrum E was proved by Bousfield in 1979.

Proving the existence of (cohomological) E^* -localization functors is still an open problem.

In a joint article with Bagaria, Mathias, and Rosický we proved in 2012 that, if arbitrarily large **supercompact cardinals** exist, then E^* -localization exists for every spectrum E.

What remains to be done: Show that the existence of arbitrary cohomological localizations is indeed a set-theoretical problem, that is, it **cannot** be proved using only the ZFC axioms.

Sets versus Classes

For each spectrum E, the class of E^* -acyclic spectra is a **proper class.** If it were a **set**, then we could let A be the coproduct of all its members, and then Farjoun's **nullification** functor P_A would be an E^* -localization.

Sets versus Classes

For each spectrum E, the class of E^* -acyclic spectra is a **proper class.** If it were a **set**, then we could let A be the coproduct of all its members, and then Farjoun's **nullification** functor P_A would be an E^* -localization.

Strategy: Find a **set** of E^* -acyclic spectra such that every E^* -acyclic spectrum is a **filtered colimit** of spectra in this set.

Sets versus Classes

For each spectrum E, the class of E^* -acyclic spectra is a **proper class.** If it were a **set**, then we could let A be the coproduct of all its members, and then Farjoun's **nullification** functor P_A would be an E^* -localization.

Strategy: Find a **set** of E^* -acyclic spectra such that every E^* -acyclic spectrum is a **filtered colimit** of spectra in this set.

Why this works for homology: Every spectrum is the union of its finite subspectra. Since $E \wedge -$ is a left adjoint functor, it preserves colimits. Hence, if X is E_* -acyclic (thus $E \wedge X = 0$), then for each finite subspectrum $Y \subseteq X$ there is a bigger finite subspectrum Y' with $Y \subseteq Y' \subseteq X$ such that $E \wedge Y' = 0$. In this way we construct a **cofinal** family of E_* -acyclic subspectra of X, so X is indeed a filtered colimit of E_* -acyclic finite subspectra.

Disclaimer

The content of the next slides, until further notice, is **not** to be followed in detail. Its only purpose is to illustrate our method to prove the existence of cohomological localizations by means of set-theoretical techniques.

Structures

A (finitary) S-sorted **signature** Σ consists of a set S of **sorts**, a set $\Sigma_{\rm op}$ of **operation symbols**, another set $\Sigma_{\rm rel}$ of **relation symbols**, and an **arity** function that assigns to each operation symbol a finite sequence $\langle s_i : i \leq n \rangle$ of **input sorts** and an **output sort** $s \in S$, and to each relation symbol a finite sequence of sorts $s \in S$.

Structures

A (finitary) S-sorted **signature** Σ consists of a set S of **sorts**, a set $\Sigma_{\rm op}$ of **operation symbols**, another set $\Sigma_{\rm rel}$ of **relation symbols**, and an **arity** function that assigns to each operation symbol a finite sequence $\langle s_i : i \leq n \rangle$ of **input sorts** and an **output sort** $s \in S$, and to each relation symbol a finite sequence of sorts $\langle s_i : j \leq m \rangle$.

Given an S-sorted signature Σ , a Σ -structure X consists of a nonempty set X_s for each sort $s \in S$, a function $\sigma_X \colon \prod_{i \leq n} X_{s_i} \to X_s$ for each operation symbol σ of arity $\langle s_i : i \leq n \rangle \to s$, and a set $\rho_X \subseteq \prod_{j \leq m} X_{s_j}$ for each relation symbol ρ of arity $\langle s_j : j \leq m \rangle$.

Models of Set Theory

We denote by **ZFC** the Zermelo–Fraenkel axioms with the Axiom of Choice.

Models of Set Theory

We denote by **ZFC** the Zermelo–Fraenkel axioms with the Axiom of Choice.

A **model of ZFC** is a pair $\langle M, \in \rangle$ where M is a set or a proper class and \in is the restriction of the membership relation to M, in which the formalized ZFC axioms are satisfied.

Models of Set Theory

We denote by **ZFC** the Zermelo–Fraenkel axioms with the Axiom of Choice.

A **model of ZFC** is a pair $\langle M, \in \rangle$ where M is a set or a proper class and \in is the restriction of the membership relation to M, in which the formalized ZFC axioms are satisfied.

A class M is **transitive** if every element of an element of M is an element of M. All **ordinals** are transitive. We tacitly assume that models of ZFC are transitive.

Absoluteness

Given two ZFC models $M \subseteq N$, we say that a formula $\varphi(x_1, \ldots, x_k)$ of the language of set theory is **absolute** between M and N if, for all a_1, \ldots, a_k in M,

$$N \models \varphi(a_1, \ldots, a_k)$$
 if and only if $M \models \varphi(a_1, \ldots, a_k)$.

A formula is **absolute** if it is absolute between any two models.

A formula $\varphi(x_1,\ldots,x_k)$ is **upward absolute** if, given any two ZFC models $M\subseteq N$ and given $a_1,\ldots,a_k\in M$ for which $\varphi(a_1,\ldots,a_k)$ is true in $M,\,\varphi(a_1,\ldots,a_k)$ is also true in N. And we say that φ is **downward absolute** if, in the same situation, if $\varphi(a_1,\ldots,a_k)$ holds in N then it also holds in M.

A **class** $\mathcal C$ is **absolute** if it is definable by an absolute formula, possibly with parameters.

The Lévy Hierarchy

A formula of the language of set theory is said to be Σ_0 if all its quantifiers are **bounded**, that is, of the form $\exists x \in a$ or $\forall x \in a$.

The Lévy Hierarchy

A formula of the language of set theory is said to be Σ_0 if all its quantifiers are **bounded**, that is, of the form $\exists x \in a$ or $\forall x \in a$.

It is a basic fact that Σ_0 formulas are absolute.

The Lévy Hierarchy

A formula of the language of set theory is said to be Σ_0 if all its quantifiers are **bounded**, that is, of the form $\exists x \in a$ or $\forall x \in a$.

It is a basic fact that Σ_0 formulas are absolute.

Following Lévy (1965), Σ_n formulas and Π_n formulas are defined inductively as follows:

- ▶ Π_0 formulas are the same as Σ_0 formulas;
- ▶ Σ_{n+1} formulas are of the form $(\exists x_1 \dots x_k) \varphi$, where φ is Π_n ;
- ▶ Π_{n+1} formulas are of the form $(\forall x_1 ... x_k) \varphi$, where φ is Σ_n .

Complexity of Classes

We say that a class C is Σ_n -definable (or, shortly, that C is Σ_n) if it can be defined with a Σ_n formula, and similarly with Π_n .

Complexity of Classes

We say that a class C is Σ_n -definable (or, shortly, that C is Σ_n) if it can be defined with a Σ_n formula, and similarly with Π_n .

If a class \mathcal{C} is Σ_1 with a set of parameters p, then it is **upward absolute** for transitive classes containing p. In fact, given a Σ_1 formula $\exists x \varphi(x, y)$ where φ is Σ_0 , and a set p of parameters, suppose that $M \subseteq N$ are transitive classes with $p \in M$. Then, if $M \models \exists x \varphi(x, p)$, it follows that $N \models \exists x \varphi(x, p)$ as well.

Complexity of Classes

We say that a class C is Σ_n -definable (or, shortly, that C is Σ_n) if it can be defined with a Σ_n formula, and similarly with Π_n .

If a class \mathcal{C} is Σ_1 with a set of parameters p, then it is **upward absolute** for transitive classes containing p. In fact, given a Σ_1 formula $\exists x \, \varphi(x, y)$ where φ is Σ_0 , and a set p of parameters, suppose that $M \subseteq N$ are transitive classes with $p \in M$. Then, if $M \models \exists x \, \varphi(x, p)$, it follows that $N \models \exists x \, \varphi(x, p)$ as well.

Conversely, if a class $\mathcal C$ is upward absolute for transitive models of (some finite fragment of) ZFC, then it is Σ_1 .

Complexity of Classes

We say that a class C is Σ_n -definable (or, shortly, that C is Σ_n) if it can be defined with a Σ_n formula, and similarly with Π_n .

If a class \mathcal{C} is Σ_1 with a set of parameters p, then it is **upward absolute** for transitive classes containing p. In fact, given a Σ_1 formula $\exists x \, \varphi(x, y)$ where φ is Σ_0 , and a set p of parameters, suppose that $M \subseteq N$ are transitive classes with $p \in M$. Then, if $M \models \exists x \, \varphi(x, p)$, it follows that $N \models \exists x \, \varphi(x, p)$ as well.

Conversely, if a class $\mathcal C$ is upward absolute for transitive models of (some finite fragment of) ZFC, then it is Σ_1 .

Similarly, if a class $\mathcal C$ is defined by a Π_1 formula with parameters, then it is **downward absolute** for transitive classes containing the parameters, and, if $\mathcal C$ is downward absolute for transitive models of some finite fragment of ZFC, then it is Π_1 .

Elementary Embeddings

An **elementary embedding** of a structure X into another structure Y (where X and Y can be proper classes) is a function $j: X \to Y$ that preserves and reflects truth. That is, for every formula $\varphi(x_1, \ldots, x_n)$ of the language of Σ and all $\{a_i: i \leq n\}$ in X, the sentence $\varphi(a_1, \ldots, a_n)$ is satisfied in X if and only if $\varphi(j(a_1), \ldots, j(a_n))$ is satisfied in Y.

Elementary Embeddings

An **elementary embedding** of a structure X into another structure Y (where X and Y can be proper classes) is a function $j: X \to Y$ that preserves and reflects truth. That is, for every formula $\varphi(x_1, \ldots, x_n)$ of the language of Σ and all $\{a_i: i \leq n\}$ in X, the sentence $\varphi(a_1, \ldots, a_n)$ is satisfied in X if and only if $\varphi(j(a_1), \ldots, j(a_n))$ is satisfied in Y.

In what follows, we consider elementary embeddings between models of ZFC (viewed as structures of the language of set theory, i.e., with a single relation symbol \in).

Elementary Embeddings

An **elementary embedding** of a structure X into another structure Y (where X and Y can be proper classes) is a function $j \colon X \to Y$ that preserves and reflects truth. That is, for every formula $\varphi(x_1, \ldots, x_n)$ of the language of Σ and all $\{a_i : i \le n\}$ in X, the sentence $\varphi(a_1, \ldots, a_n)$ is satisfied in X if and only if $\varphi(j(a_1), \ldots, j(a_n))$ is satisfied in Y.

In what follows, we consider elementary embeddings between models of ZFC (viewed as structures of the language of set theory, i.e., with a single relation symbol \in).

Let V denote the **universe** of all sets. Namely, we define, recursively on the class of ordinals, $V_0 = \emptyset$, $V_{\alpha+1} = \mathcal{P}(V_\alpha)$ for all α , where \mathcal{P} denotes the power-set operation, and $V_\lambda = \bigcup_{\alpha < \lambda} V_\alpha$ if λ is a limit ordinal. Then every set is an element of some V_α . The **universe** V of all sets is the union of V_α for all ordinals α .

Supercompact Cardinals

If $j: V \to M$ is a nontrivial elementary embedding of the universe V into a transitive class M, then its **critical point** (i.e., the least ordinal moved by j) is a **measurable** cardinal. In fact, the existence of a nontrivial elementary embedding of the universe into a transitive class is equivalent to the existence of a measurable cardinal.

Supercompact Cardinals

If $j: V \to M$ is a nontrivial elementary embedding of the universe V into a transitive class M, then its **critical point** (i.e., the least ordinal moved by j) is a **measurable** cardinal. In fact, the existence of a nontrivial elementary embedding of the universe into a transitive class is equivalent to the existence of a measurable cardinal.

A cardinal κ is **supercompact** if for every cardinal λ there is an elementary embedding $j \colon V \to M$ with M transitive and with critical point κ , such that $j(\kappa) > \lambda$ and M is closed under λ -sequences; that is, every sequence $\langle X_\alpha : \alpha < \lambda \rangle$ of elements of M is an element of M.

For a cardinal κ , we denote by $H(\kappa)$ the set of all sets whose transitive closure has cardinality smaller than κ .

For a cardinal κ , we denote by $H(\kappa)$ the set of all sets whose transitive closure has cardinality smaller than κ .

Theorem 1 Let \mathcal{C} be a class of finitary structures definable with a Σ_2 formula with a set p of parameters. Suppose that there exists a supercompact cardinal κ such that p and the signature are in $H(\kappa)$. Then for every $Y \in \mathcal{C}$ there exists $X \in \mathcal{C} \cap H(\kappa)$ and an elementary embedding of X into Y.

For a cardinal κ , we denote by $H(\kappa)$ the set of all sets whose transitive closure has cardinality smaller than κ .

Theorem 1 Let \mathcal{C} be a class of finitary structures definable with a Σ_2 formula with a set p of parameters. Suppose that there exists a supercompact cardinal κ such that p and the signature are in $H(\kappa)$. Then for every $Y \in \mathcal{C}$ there exists $X \in \mathcal{C} \cap H(\kappa)$ and an elementary embedding of X into Y.

Every category of structures embeds into the category of sets. Elementary embeddings of structures are **injective** functions, since j(x) = j(y) implies that x = y. Moreover, injective functions are **monomorphisms** in every subcategory of sets.

For a cardinal κ , we denote by $H(\kappa)$ the set of all sets whose transitive closure has cardinality smaller than κ .

Theorem 1 Let \mathcal{C} be a class of finitary structures definable with a Σ_2 formula with a set p of parameters. Suppose that there exists a supercompact cardinal κ such that p and the signature are in $H(\kappa)$. Then for every $Y \in \mathcal{C}$ there exists $X \in \mathcal{C} \cap H(\kappa)$ and an elementary embedding of X into Y.

Every category of structures embeds into the category of sets. Elementary embeddings of structures are **injective** functions, since j(x) = j(y) implies that x = y. Moreover, injective functions are **monomorphisms** in every subcategory of sets. Hence, the theorem concludes that **every object** Y of C has a **subobject** X in H(K), if enough supercompact cardinals exist.

Proof

Proof. Suppose that κ is a supercompact cardinal such that $\{p,\Sigma\} \in H(\kappa)$. Let Y be an object of \mathcal{C} . Let μ be a cardinal bigger than κ such that $Y \in H(\mu)$ and such that $H(\mu) \preceq_2 V$ (that is, Σ_2 sentences are absolute between $H(\mu)$ and V).

Let $j\colon V\to M$ be an elementary embedding with M transitive and critical point κ , such that $j(\kappa)>\mu$ and M is closed under μ -sequences. Then j(Y) is a structure and the restriction $j\upharpoonright Y\colon Y\to j(Y)$ is an elementary embedding. Moreover, Y and $j\upharpoonright Y$ are in M because $H(\mu)\in M$, and Y is a structure in M since being a (finitary) structure is absolute.

Since being a cardinal is downward absolute, μ is a cardinal in M, and this implies that $H(\mu)$ in the sense of M is the same as $H(\mu)$ in V. It follows that $H(\mu) \preceq_1 M$, since every Σ_1 sentence ψ which holds in M also holds in V (as Σ_1 sentences are upward absolute) and therefore ψ holds in $H(\mu)$ because $H(\mu) \preceq_2 V$. Hence, Σ_2 formulas are upward absolute between $H(\mu)$ and M. Since $H(\mu) \preceq_2 V$ and the class $\mathcal C$ is defined by a Σ_2 formula $\varphi(x,y)$, we have that $H(\mu) \models \varphi(Y,p)$, and consequently $M \models \varphi(Y,p)$.

Proof (continued)

Now $Y \in H(j(\kappa))$ in V since $j(\kappa) > \mu$, and also in M. Thus, in M there exists a structure X such that $X \in H(j(\kappa))$ and $\varphi(X, p)$ holds, and there is an elementary embedding $X \to j(Y)$; namely, Y witnesses this claim. Note that j(p) = p since $p \in H(\kappa)$.

By elementarity of j, the corresponding statement is true in V; that is, there exists a structure X such that $X \in H(\kappa)$ and $\varphi(X, p)$ holds, and there is an elementary embedding $X \to Y$, as we needed to prove. \square

Main Theorem

Theorem 2 Let $\mathcal C$ be a λ -accessible subcategory closed under λ -filtered colimits in a category of structures for some regular cardinal λ and a finitary signature, and let $\mathcal S$ be a Σ_2 full subcategory of $\mathcal C$. Suppose that there are arbitrarily large supercompact cardinals. Then there is a dense small full subcategory $\mathcal D$ of $\mathcal S$.

Proof

Proof. Choose a Σ_2 formula defining $\mathcal S$ with a set p of parameters. Let $\mathcal C_\lambda$ be a set of representatives of all isomorphism classes of λ -presentable objects in $\mathcal C$.

Pick a supercompact cardinal $\kappa > \lambda$ such that each object in \mathcal{C}_{λ} is in $H(\kappa)$ and $\{p, \Sigma\} \in H(\kappa)$ as well, and such that \mathcal{C} is κ -accessible.

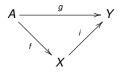
Let $\mathcal D$ be a full subcategory of $\mathcal S$ containing one representative of each isomorphism class of objects in the set $\mathcal S\cap H(\kappa)$. Since each object of $\mathcal D$ is in $H(\kappa)$, all objects of $\mathcal D$ are κ -presentable in $\mathcal C$.

Let \mathcal{C}_κ be a set of representatives of all isomorphism classes of κ -presentable objects of \mathcal{C} , chosen so that $\mathcal{D} \subseteq \mathcal{C}_\kappa$. Let Y be any object of \mathcal{S} . Since \mathcal{C} is κ -accessible, we know that Y is a colimit of the canonical diagram $(\mathcal{C}_\kappa \downarrow Y) \to \mathcal{C}$, which is κ -filtered. Therefore, if we prove that $(\mathcal{D} \downarrow Y)$ is **cofinal** in $(\mathcal{C}_\kappa \downarrow Y)$, it will then follow that Y is a colimit of the canonical diagram $(\mathcal{D} \downarrow Y) \to \mathcal{C}$, and that $(\mathcal{D} \downarrow Y)$ is κ -filtered. Moreover, since Y is in \mathcal{S} , we will be able to conclude that Y is also a colimit of the canonical diagram $(\mathcal{D} \downarrow Y) \to \mathcal{S}$, as we wanted to show.

Proof (continued)

Thus, towards proving that $(\mathcal{D}\downarrow Y)$ is cofinal in $(\mathcal{C}_\kappa\downarrow Y)$, let A be any object of \mathcal{C}_κ and let a morphism $g\colon A\to Y$ be given. Since each object of \mathcal{C}_λ is in $H(\kappa)$, we infer that $A\in H(\kappa)$.

Now we view $(A\downarrow\mathcal{S})$ as a full subcategory of $(A\downarrow\mathcal{C})$. According to Theorem 1, there is an object $\langle X,f\rangle$ in $(A\downarrow\mathcal{S})$ which is in $H(\kappa)$, together with an elementary embedding $i\colon X\to Y$ with $i\circ f=g$. We replace, if necessary, X by an isomorphic object of $\mathcal{S}\cap H(\kappa)$, so we may assume that $X\in\mathcal{D}$. We therefore have a commutative triangle



displaying the fact that $\langle X, f \rangle$ is a subobject of $\langle Y, g \rangle$, but where f can also be viewed as a morphism from $\langle A, g \rangle$ to $\langle X, i \rangle$ in $(\mathcal{C}_{\kappa} \downarrow Y)$. This tells us that $(\mathcal{D} \downarrow Y)$ is cofinal in $(\mathcal{C}_{\kappa} \downarrow Y)$, as we wanted to show. \square

Back to Algebraic Topology

Note that the category of simplicial sets and the category of Bousfield–Friedlander spectra are accessible and embed into categories of finitary structures in such a way that the embedding preserves colimits.

Back to Algebraic Topology

Note that the category of simplicial sets and the category of Bousfield–Friedlander spectra are accessible and embed into categories of finitary structures in such a way that the embedding preserves colimits.

Theorem 3 The class of E_* -acyclic simplicial sets for a spectrum E is Σ_1 with E as a parameter.

Back to Algebraic Topology

Note that the category of simplicial sets and the category of Bousfield–Friedlander spectra are accessible and embed into categories of finitary structures in such a way that the embedding preserves colimits.

Theorem 3 The class of E_* -acyclic simplicial sets for a spectrum E is Σ_1 with E as a parameter.

Proof. If (X,p) is a pointed simplicial set and E is a spectrum with structure maps $\langle \sigma_n : n \geq 0 \rangle$, then $X \wedge E$ is a spectrum with $(X \wedge E)_n = X \wedge E_n$ and structure maps $(\mathrm{id} \wedge \sigma_n) \circ (\tau \wedge \mathrm{id})$ for all n, where $\tau \colon \mathbb{S}^1 \wedge X \to X \wedge \mathbb{S}^1$ is the twist map. Then the spectrum $X \wedge E$ is weakly contractible if and only if the following expression holds, where we need to define $F = X \wedge E$:

$$X \in \mathbf{sSet}_* \wedge \exists F [F \text{ is a spectrum } \wedge (\forall n < \omega)((F_n = X \wedge E_n) \wedge \sigma_n^F = (\mathrm{id} \wedge \sigma_n^E) \circ (\tau \wedge \mathrm{id})) \wedge F \text{ is weakly contractible}].$$

This is a Σ_1 formula, so the theorem is proved. \square

Cohomology Theories

Theorem 4 The class of E^* -acyclic simplicial sets for an Ω -spectrum E is Σ_2 with E as a parameter.

Cohomology Theories

Theorem 4 The class of E^* -acyclic simplicial sets for an Ω -spectrum E is Σ_2 with E as a parameter.

Proof. Let E be an Ω -spectrum, which will be used as a parameter. The definition of an Ω -spectrum is absolute; hence, every transitive model of ZFC containing E will agree with the fact that E is an Ω -spectrum.

A pointed simplicial set (X,p) is E^* -acyclic if and only if for all $n \geq 0$ the simplicial set $\operatorname{Map}_*(X,E_n)$ is weakly contractible (assuming that E is an Ω -spectrum). Thus, X is E^* -acyclic if and only if the following formula holds, where we need to define $M = \operatorname{Map}_*(X,E_n)$:

$$\begin{split} \textbf{\textit{X}} \in \textbf{SSet}_* \, \wedge \, (\forall n < \omega) \, \exists \textbf{\textit{M}} \, [\textbf{\textit{M}} \in \textbf{SSet}_* \\ \wedge \, (\forall k < \omega) \, [(\forall f \in \textit{\textit{M}}_k) \, f \in \textbf{SSet}_* (\textbf{\textit{X}} \wedge \Delta[k]_+, \textit{\textit{E}}_n) \\ \wedge \, \forall \textbf{\textit{g}} \, (g \in \textbf{SSet}_* (\textbf{\textit{X}} \wedge \Delta[k]_+, \textit{\textit{E}}_n) \rightarrow g \in \textit{\textit{M}}_k)] \, \wedge \, \textit{\textit{M}} \, \text{is weakly contractible}]. \end{split}$$

This is indeed a Σ_2 formula. \square

About Hovey's Conjecture

It follows from the above discussion that an important difference between homology acyclics and cohomology acyclics is that classes of homology acyclics are Σ_1 while classes of cohomology acyclics are Σ_2 .

About Hovey's Conjecture

It follows from the above discussion that an important difference between homology acyclics and cohomology acyclics is that classes of homology acyclics are Σ_1 while classes of cohomology acyclics are Σ_2 .

This implies that the existence of **homological localizations** is provable in ZFC, while **cohomological localizations** can be shown to exist by assuming a suitable large-cardinal axiom.

About Hovey's Conjecture

It follows from the above discussion that an important difference between homology acyclics and cohomology acyclics is that classes of homology acyclics are Σ_1 while classes of cohomology acyclics are Σ_2 .

This implies that the existence of **homological localizations** is provable in ZFC, while **cohomological localizations** can be shown to exist by assuming a suitable large-cardinal axiom.

This also leads us close to disproving **Hovey's conjecture**, according to which for every cohomology theory there is a homology theory with the same acyclics.

End of Set Theory

Constructing Cohomological Localizations

From now on, we assume that cohomological localizations exist.

Constructing Cohomological Localizations

From now on, we assume that cohomological localizations exist.

Assume that E is a ring spectrum. We are going to describe a long tower for each spectrum X,

$$\cdots \rightarrow T_{\alpha+1}X \rightarrow T_{\alpha}X \rightarrow \cdots \rightarrow T_2X \rightarrow T_1X,$$

indexed by all the ordinals α , together with compatible maps $\eta_{\alpha} \colon X \to T_{\alpha}$, and we will prove that for each X there is an ordinal $\alpha = \alpha(X)$ such that $T_{\alpha}X \simeq L^{E}X$, where $L^{E}X$ denotes the E^{*} -localization of X.

The first step in the tower is $T_1X = \hat{X}_E$, the **E-completion** of X.

The first step in the tower is $T_1X = \hat{X}_E$, the **E-completion** of X.

View X as a constant cosimplicial spectrum and let $X \to X^{\circ}$ be a fibrant replacement in the *E-resolution model structure*.

The first step in the tower is $T_1X = \hat{X}_E$, the **E-completion** of X.

View X as a constant cosimplicial spectrum and let $X \to X^\circ$ be a fibrant replacement in the **E-resolution model structure**. The weak equivalences are maps $f^\circ: U^\circ \to V^\circ$ of cosimplicial spectra inducing isomorphisms $[V^\circ, E]_n \cong [U^\circ, E]_n$ for all n.

The first step in the tower is $T_1X = \hat{X}_E$, the **E-completion** of X.

View X as a constant cosimplicial spectrum and let $X \to X^\circ$ be a fibrant replacement in the **E-resolution model structure**. The weak equivalences are maps $f^\circ \colon U^\circ \to V^\circ$ of cosimplicial spectra inducing isomorphisms $[V^\circ, E]_n \cong [U^\circ, E]_n$ for all n.

Then one defines $\hat{X}_E = \text{Tot}(X^\circ)$.

The first step in the tower is $T_1X = \hat{X}_E$, the **E-completion** of X.

View X as a constant cosimplicial spectrum and let $X \to X^\circ$ be a fibrant replacement in the **E-resolution model structure**. The weak equivalences are maps $f^\circ \colon U^\circ \to V^\circ$ of cosimplicial spectra inducing isomorphisms $[V^\circ, E]_n \cong [U^\circ, E]_n$ for all n.

Then one defines $\hat{X}_E = \text{Tot}(X^\circ)$.

Next we define by transfinite induction, for each ordinal α ,

$$T_{\alpha+1}X=T_1(T_\alpha X),$$

and $T_{\lambda}X = \text{holim}_{i < \lambda} T_iX$ for each limit ordinal λ .

For each α there is a map

$$\eta_{\alpha} \colon X \longrightarrow T_{\alpha}X$$
,

and $(\eta_{\alpha}, T_{\alpha})$ is a **monad** on the homotopy category of spectra.

For each α there is a map

$$\eta_{\alpha} \colon X \longrightarrow T_{\alpha}X$$
,

and $(\eta_{\alpha}, T_{\alpha})$ is a **monad** on the homotopy category of spectra. However, it is **not idempotent** in general.

For each α there is a map

$$\eta_{\alpha} \colon X \longrightarrow T_{\alpha}X$$
,

and $(\eta_{\alpha}, T_{\alpha})$ is a **monad** on the homotopy category of spectra. However, it is **not idempotent** in general.

Note that $T_{\alpha}X$ is E^* -local for every α . However, η_{α} need not be an E^* -equivalence.

For each α there is a map

$$\eta_{\alpha} \colon X \longrightarrow T_{\alpha}X$$
,

and $(\eta_{\alpha}, T_{\alpha})$ is a **monad** on the homotopy category of spectra. However, it is **not idempotent** in general.

Note that $T_{\alpha}X$ is E^* -local for every α . However, η_{α} need not be an E^* -equivalence.

If $f: X \to Y$ is a map of spectra, then, for every α ,

$$T_{\alpha}f: T_{\alpha}X \simeq T_{\alpha}Y \iff f^*: E^*(Y) \cong E^*(X).$$

Local Complexity

The E^* -local spectra form a **colocalizing subcategory** of the homotopy category of spectra. It is the **smallest** colocalizing subcategory containing E.

Local Complexity

The E^* -local spectra form a **colocalizing subcategory** of the homotopy category of spectra. It is the **smallest** colocalizing subcategory containing E.

Hence, every E^* -local spectrum can be obtained from E by a (possibly transfinite) sequence of **homotopy inverse limits.**

Local Complexity

The E^* -local spectra form a **colocalizing subcategory** of the homotopy category of spectra. It is the **smallest** colocalizing subcategory containing E.

Hence, every E^* -local spectrum can be obtained from E by a (possibly transfinite) sequence of **homotopy inverse limits.**

This yields a **complexity** c(X) for each E^* -local spectrum X. Namely, c(X) = 0 if X is a retract of a product of copies of E, and $c(X) < \kappa + 1$ if $X \simeq \operatorname{holim}_{d \in D} X_d$ where $c(X_d) < \kappa$ for all d.

If X is E^* -local and c(X) = 0, then $\eta_1 : X \simeq \widehat{X}_E$.

If X is E^* -local and c(X) = 0, then $\eta_1 : X \simeq \widehat{X}_E$.

We prove by transfinite induction that, if X is E^* -local and $c(X) = \kappa$, then $\eta_{\kappa+1} \colon X \simeq T_{\kappa+1}X$.

If X is E^* -local and c(X) = 0, then $\eta_1 : X \simeq \widehat{X}_E$.

We prove by transfinite induction that, if X is E^* -local and $c(X) = \kappa$, then $\eta_{\kappa+1} \colon X \simeq T_{\kappa+1}X$.

Proof: Assume it true for $i < \kappa$, and suppose that $X = \operatorname{holim}_{d \in D} X_d$ with $c(X_d) < \kappa$ for all $d \in D$. Then, since homotopy inverse limits commute, $T_{\kappa+1}X \simeq \operatorname{holim}_{d \in D} T_{\kappa+1}X_d$. Thus our claim follows from the induction hypothesis. \square

If X is E^* -local and c(X) = 0, then $\eta_1 : X \simeq \widehat{X}_E$.

We prove by transfinite induction that, if X is E^* -local and $c(X) = \kappa$, then $\eta_{\kappa+1} \colon X \simeq T_{\kappa+1}X$.

Proof: Assume it true for $i < \kappa$, and suppose that $X = \operatorname{holim}_{d \in D} X_d$ with $c(X_d) < \kappa$ for all $d \in D$. Then, since homotopy inverse limits commute, $T_{\kappa+1}X \simeq \operatorname{holim}_{d \in D} T_{\kappa+1}X_d$. Thus our claim follows from the induction hypothesis. \square

Hence, for each spectrum X, if $c(L^{E}X) = \kappa$, then

$$T_{\kappa+1}L^EX\simeq L^EX.$$

Since $T_{\kappa+1}X \simeq T_{\kappa+1}L^EX$, our argument is complete.

► This is joint work with **Imma Gálvez.**

- ► This is joint work with **Imma Gálvez.**
- Our set-theoretical results were obtained in collaboration with Bagaria, Mathias, and Rosický.

- This is joint work with Imma Gálvez.
- Our set-theoretical results were obtained in collaboration with Bagaria, Mathias, and Rosický.
- Resolution model structures were described by Bousfield (2003), after previous work of Bousfield–Kan (1972), Bendersky–Thompson (2000), and others.

- This is joint work with Imma Gálvez.
- Our set-theoretical results were obtained in collaboration with Bagaria, Mathias, and Rosický.
- Resolution model structures were described by Bousfield (2003), after previous work of Bousfield–Kan (1972), Bendersky–Thompson (2000), and others.
- ▶ Long towers for homotopical localizations were first used by **Dror Farjoun** and **Dwyer** (1977).

- This is joint work with Imma Gálvez.
- Our set-theoretical results were obtained in collaboration with Bagaria, Mathias, and Rosický.
- Resolution model structures were described by Bousfield (2003), after previous work of Bousfield–Kan (1972), Bendersky–Thompson (2000), and others.
- Long towers for homotopical localizations were first used by **Dror Farjoun** and **Dwyer** (1977).
- Congratulations to Professor Buchstaber, and most cordial thanks to him for the invitation!

