Hopf algebras and homology of loop suspensions

Jelena Grbić

University of Southampton

joint work with Victor Buchstaber

June 2013

Motivation:

- Milnor double suspension problem (1961):
 - Let M^3 be a homology 3-sphere with $\pi_1(M^3) \neq 0$.
 - Q: $\Sigma^2 M^3 \cong S^5$
 - Edwards (1975): partially proved
 - Cannon (1979): $\Sigma^2 S_H^n \cong S^{n+2}$
- homotopy analogue:

$$\Sigma^n X \simeq \Sigma^{n+1} Y$$

Our question: For which X

$$\Sigma X \simeq \Sigma^2 Y$$
 ?

Hopf algebars

- Hopf algebras homology of topological spaces with multiplication
- Borel (1953): expression Hopf algebra
 honouring the fundamental work of Hopf on Γ-manifolds
- *H*-space:
 - X -pointed topological space
 - multiplication $\mu \colon X \times X \longrightarrow X$

Examples:

topological groups, based loop spaces, Eilenberg-MacLane spaces, finite H-spaces (Lie groups, S^7)

Hopf and Borel:

- classified graded Hopf algebras which can be realised as the cohomology rings of H-spaces
- Examples:

$$\mathbb{C}P^n$$
, $BU(2)$

 existence of the comultiplication in a Hopf algebra restricts the multiplication structure considerably

Definition

A- Hopf algebra, P(A) - primitives in A, I(A) - augmentation ideal, $Q(A) = I(A)/I(A)^2$ - indecomposables.

A is called *Lie-Hopf algebra* if it is primitively generated, that is, if the natural map

$$P(A) \longrightarrow I(A) \longrightarrow Q(A)$$

is onto.

Bott - Samelson

 necessary condition for graded Hopf algebras to be realised as the homology algebra of loop-suspension spaces

Theorem (Bott-Samelson)

R - PID

X - connected space s.t. $H^*(X \times X; R) \cong H^*(X; R) \otimes H^*(X; R)$

Then

$$H_*(\Omega\Sigma X)\cong T(\widetilde{H}_*(X))$$

as an algebra

The suspension map $E: X \longrightarrow \Omega \Sigma X$ induces the canonical inclusion

$$\widetilde{H}_*(X) \longrightarrow H_*(\Omega \Sigma X).$$

- This tensor algebra can be given many different "algebraic"
 Hopf algebra structures
- The diagonal map on X

$$\Delta: X \longrightarrow X \times X$$

induces a coproduct in $H_*(X; R)$ and dually the cup product in $H^*(X; R)$.

Proposition

Let $T(\widetilde{H}_*(X;R))$ be the Hopf algebra where the coalgebra structure is generated by the comultiplication on $\widetilde{H}_*(X;R)$ induced by the diagonal $\Delta_X \colon X \longrightarrow X \times X$. This Hopf algebra structure coincides with the Hopf algebra structure of $H_*(\Omega \Sigma X;R)$ where the comultiplication is induced by the diagonal map $\Delta_{\Omega \Sigma X} \colon \Omega \Sigma X \longrightarrow \Omega \Sigma X \times \Omega \Sigma X$.

Corollary

Let C be a co-H-space. Then the Hopf algebra $H_*(\Omega\Sigma C;R)$ is a Lie-Hopf algebra, that is, it is primitively generated.

• the cup product in $H^*(X;R)$ presents an obstruction to $H_*(\Omega\Sigma X;R)$ be a Lie-Hopf algebra.

Definition

Define a homotopy invariant which to a topological space X associates the isomorphism class (over the integers) of the Hopf algebra $H_*(\Omega\Sigma X)$.

• we say that the invariant is trivial if the Hopf algebra $H_*(\Omega \Sigma X)$ is isomorphic to a Lie-Hopf algebra

Theorem

Let X be a topological space such that $\Sigma X \simeq \Sigma C$ where C is a co-H-space and assume that $H_*(X;\mathbb{Z})$ is torsion free. Then over \mathbb{Z} the Hopf algebra $H_*(\Omega \Sigma X;\mathbb{Z})$ is isomorphic to a Lie-Hopf algebra, that is, to a primitively generated Hopf algebra.

• provides a necessary condition on the homology of $\Omega\Sigma X$ so that $\Sigma X \simeq \Sigma^2 Y$.

Proposition

The Hopf algebra $H_*(\Omega \Sigma X)$ for $X = \Omega \Sigma Z$ with Z a co-H-space is isomorphic to a Lie-Hopf algebra. The change of homology generators is given by Hopf invariants.

Let $\varphi \colon \Sigma X \to \Sigma^2 Y$ be a homotopy equivalence. Then by the Bott-Samelson theorem, we have

$$H_*(\Omega \Sigma X) \cong T(\widetilde{H}_*(X)), \qquad H_*(\Omega \Sigma^2 Y) \cong T(\widetilde{H}_*(\Sigma Y)).$$

Let $\{a_i\}$ be an additive basis for $\widetilde{H}_*(X)$ and let $\{b_i\}$ be an additive basis for $\widetilde{H}_*(\Sigma Y)$. Then the elements b_i are primitive, that is, $\Delta b_i = 1 \otimes b_i + b_i \otimes 1$.

Lemma

The comultiplication $\Delta_X \colon H_*(X) \to H_*(X) \otimes H_*(X)$ is determined by the Hopf algebra homomorphism

$$\varphi_* \colon H_*(\Omega \Sigma X) \longrightarrow H_*(\Omega \Sigma^2 Y)$$

by the formula

$$\Delta_{\Omega\Sigma^2Y}\varphi_*(a) = \varphi_* \otimes \varphi_*(\Delta_{\Omega\Sigma X}a)$$

where $a \in H_*(X)$.

Classical results revisited

 using the invariant, we reformulate the Pontryagin-Whitehead and Freedman theorem

Proposition

Let M_1 and M_2 be closed simply-connected 4-manifolds. If $\Sigma M_1 \simeq \Sigma M_2$, then the manifolds M_1 and M_2 are homotopy equivalent (homeomorphic).

- the Hopf invariant is a classical obstruction to $\Sigma \mathbb{C}P^2$ being a double suspension.
- for $H_*(\Omega\Sigma\mathbb{C}P^2)$ to be isomorphic to a Lie-Hopf algebra,

$$1 + 2\lambda = 0$$

needs to have a solution

• no Hopf invariant one complex X satisfies that $\Sigma X \simeq \Sigma^2 Y$ and thus as a consequence the suspension of the Hopf map is not null homotopic.

Structural properties of the cup product

- topological spaces X such that $\Sigma X \simeq \Sigma^2 Y$ are not rear: polyhedral products, complements of hyperplane arrangements, some simply connected 4-manifolds
- class of manifolds with this property seems to be quite narrow and hard to detect
- the cohomology ring of moment-angle complexes $\mathcal{Z}_K = (D^2, S^1)^K$ is the Stanley-Reisner ring $\mathbb{Z}[K]$
- necessary conditions for an algebra to be realised as the cohomology ring of a moment-angle complex

Proposition

For an algebra A to be the cohomology algebra of a moment-angle complex \mathcal{Z}_K , there must exist a change of basis in $T(A^*)$ such that $T(A^*)$ becomes a Lie-Hopf algebra, where A^* denotes the dual of A.

Quasi-symmetric polynomials

Definition

Let t_1, t_2, \ldots be a finite or an infinite set of variables of degree 2. For a composition $\omega = (j_1, \ldots, j_k)$, consider a quasi-symmetric monomial

$$M_{\omega} = \sum_{l_1 < ... < l_k} t_{l_1}^{j_1} \dots t_{l_k}^{j_k}, \quad M_{()} = 1$$

whose degree is equal to $2|\omega| = 2(j_1 + \ldots + j_k)$.

A product of any two monomials $M_{\omega'}$ and $M_{\omega''}$ is defined in the ring of polynomials $\mathbb{Z}[t_1, t_2, \ldots]$

Finite integer combinations of quasi-symmetric monomials form the *ring of quasi-symmetric functions* denoted by $QSymm[t_1, \ldots, t_n]$, where n is the number of variables.

In the case of an infinite number of variables it is denoted by $QSymm[t_1, t_2,...]$ or QSymm.

• The diagonal map $\Delta \colon \operatorname{QSymm} \longrightarrow \operatorname{QSymm} \otimes \operatorname{QSymm}$ given by

$$\Delta \textit{M}_{(a_1,\ldots,a_k)} = \sum_{i=0}^k \textit{M}_{(a_1,\ldots,a_i)} \otimes \textit{M}_{(a_{i+1},\ldots,a_k)}$$

defines on QSymm the structure of a graded Hopf algebra.

- NSymm denotes the non-commutative analogue of the Hopf algebra of symmetric functions Symm
- $(NSymm)^* = QSymm$
- Baker and Richter: $H_*(\Omega\Sigma\mathbb{C}P^{\infty})\cong \mathrm{NSymm}$
- Ditter's conjecture: QSymm is a free commutative algebra

Lemma

- (i) Over the rationals, $\operatorname{NSymm} \otimes \mathbb{Q} \cong H_*(\Omega \Sigma \mathbb{C} P^{\infty}; \mathbb{Q})$ is isomorphic to a Lie-Hopf algebra.
- (ii) Over the integers, $\operatorname{NSymm} \cong H_*(\Omega\Sigma\mathbb{C}P^{\infty})$ is not isomorphic to a Lie-Hopf algebra.

• using topological methods, we find a maximal subalgebra of $H_*(\Omega\Sigma\mathbb{C}P^\infty)$ which is over $\mathbb Q$ isomorphic to $H_*(\Omega\Sigma\mathbb{C}P^\infty;\mathbb Q)$ but over $\mathbb Z$ is a Lie-Hopf algebra

Theorem

The Hopf algebra $H_*(\Omega\Sigma\Omega\Sigma S^2)$ is a maximal subHopf algebra of $H_*(\Omega\Sigma\mathbb{C}P^\infty)$ which is isomorphic to a Lie-Hopf algebra.

Obstructions to desuspending the homotopy equivalence $e: \Sigma (\Omega \Sigma S^2) \longrightarrow \Sigma (\bigvee_{i=1}^{\infty} S^{2i})$

The homotopy equivalence

$$a \colon \Omega\Sigma\left(\bigvee_{i=1}^{\infty} S^{2i}\right) \longrightarrow \Omega\Sigma(\Omega\Sigma S^2)$$

induces an isomorphism of graded Hopf algebras

$$a_*: \mathbb{Z}\langle \xi_1, \xi_2, \ldots \rangle \longrightarrow \mathbb{Z}\langle w_1, w_2, \ldots \rangle$$

and its algebraic form is determined by the conditions

$$\Delta a_* \xi_n = (a_* \otimes a_*)(\Delta \xi_n).$$

For example, $a_*\xi_1 = w_1$, $a_*\xi_2 = w_2 - w_1|w_1$, $a_*\xi_3 = w_3 - 3w_2|w_1 + 2w_1|w_1|w_1$.

• interesting from the topological point of view, since the elements $(w_n - a_*\xi_n)$ for $n \ge 2$ are obstructions to the desuspension of e.