Toric geometry of the action of compact torus on complex Grassmannians

Svjetlana Terzić

University of Montenegro

joint work with V. M. BUCHSTABER

Algebraic topology and Abelian functions

Conference in honor of Victor M. Buchstaber

Moscow, June 21, 2013

Content of the talk

- Formulation of the problem
- Classes of manifolds
- Orbit space $G_{4,2}/T^3$
- Orbit space CP^5/T^3
- On differentiable structure of the orbit space $G_{4,2}/T^3$

- M^{2n} projective toric variety, $T^n \hookrightarrow M^{2n}$;
- $\mu: M^{2n} \to \mathbb{R}^n$ moment map, T^n invariant;
- $Im\mu = P$ simple convex polytope.

 μ splits as:

$$M^{2n} \stackrel{\pi}{\longrightarrow} M^{2n}/T^n \stackrel{\cong}{\longrightarrow} P$$

- M^{2n} smooth, closed, oriented manifold; $T^n \hookrightarrow M^{2n}$;
- The action is locally isomorphic to the standard action $T^n \hookrightarrow C^n$;
- There exists $\mu: M \to P$, P simple convex polytope;
- $\mu^{-1}(x)$ is an orbit of T^n -action for any $x \in P$.

Again μ splits as:

$$M^{2n} \stackrel{\pi}{\longrightarrow} M^{2n}/T^n \stackrel{\cong}{\longrightarrow} P$$

Formulation of the problem

Our generalization

We consider the following setting:

- M²ⁿ smooth, closed manifold;
- $T^k \hookrightarrow M^{2n}$, k < n effective action;
- There exists $\mu: M^{2n} \to R^k$, T^k invariant;
- $Im\mu = P$ convex polytope (not necessarily simple!).

It is defined a map

$$f: M^{2n}/T^k \longrightarrow P$$
 by $\mu = \pi \circ f$

Note: f — is not a homeomorphism

Problem: Provide the class of manifolds M^{2n} with a moment map μ for which M^{2n}/T^k and the map f can be effectively described.

Results

We demonstrate our approach in the case of $G_{4,2}$ and CP^5 :

For the canonical action $T^4 \hookrightarrow G_{4,2}$ we obtain effective action of T^3 We prove:

- $P = \Delta_{4,2}$ octahedron

$$G_{4,2}/T^4 \cong \partial \Delta_{4,2} * CP^1$$
,

•

$$f: \partial \Delta_{4,2} * CP^1 \rightarrow \Delta_{4,2} ---$$
 projection

Moreover from topological results:

$$G_{4,2}/T^4\cong S^5$$
.

Results

For the action $T^4 \hookrightarrow CP^5$ defined by the representation $T^4 \to T^6$:

$$(t_1, t_2, t_3, t_4) \rightarrow (t_1 t_2, t_1 t_3, t_1 t_4, t_2 t_3, t_2 t_4, t_3 t_4)$$

we obtain effective action $T^3 \hookrightarrow CP^5$

We prove:

•
$$P = \Delta_{4,2}$$

•

$$CP^5/T^4\cong\partial\Delta_{4,2}*CP^2,$$

$$f:\partial\Delta_{4,2}*CP^2\to\Delta_{4,2}\;---\;\text{projection}$$

Classes of manifolds

- $M^{2n} = CP^n$;
- $T^{n+1} \hookrightarrow CP^n$ canonical;
- Assume that representation $\rho: T^k \to T^{n+1}$, k < n is a regular and given by $t \to (\alpha_0(t), \dots, \alpha_n(t))$;
- $\alpha_i: T^k \to S^1$ are characters of T^k ;
- The weight vectors we denote by the same letters α_j , $0 \le j \le n$
- It is defined the action $T^k \hookrightarrow CP^n$;
- The moment map $\mu_{T^k}: \mathbb{C}P^n \to \mathbb{R}^k$,

$$\mu_{T^k}(z) = \frac{1}{\|z\|^2} \sum_{0 \le j \le n} |z_j|^2 \alpha_j,$$

$$z = [(z_0, \ldots, z_n)],$$

• $Im\mu = P = convh(\alpha_0, \dots, \alpha_n)$

- $G_{n,k}$ Grassmann manifold (k-dimensional subspaces in C^n);
- $T^n \hookrightarrow G_{n,k}$ acts by the canonical action on C^n ;
- $T^{n-1} \subset T^n$ acts effectively

 $G_{n,k}$ are represented by $n \times k$ matrices A, rangA = k, for a fixed base in C^n

$$P(A) = (P^{J}(A)) = (\det A_{J})$$
 – Plücker coordinates,

$$J \subset \{1, ..., n\}, \quad |J| = k,$$

 J are ordered by $J = \{j_1 < j_2\} < \bar{J} = \{\bar{j_1} < \bar{j_2}\} \Leftrightarrow j_1 < \bar{j_1},$
 A^J is $k \times k$ -matrix given by the columns of A indexed by J .

- Plücker coordinates, up to constant, are uniquely defined;
- Plücker coordinates give the embedding of $G_{n,k}$ into $CP^{\binom{n}{k}-1}$.

Gel'fand-Serganova moment map $\mu: G_{n,k} \to R^k$ is defined by

$$\mu(X) = \frac{\sum\limits_{J} |P^{J}(X)|^2 \delta_J}{\sum\limits_{J} |P^{J}(X)|^2},$$

 $(P^{J}(X))$ are Plöker coordinates for X and $\delta_{J} \in R^{n}$ is given by

$$(\delta_J)_i = 1, i \in J, (\delta_J)_i = 0, i \notin J.$$

- μ is T^n -invariant;
- $Im\mu = convh(\delta_J)$ denoted by $\Delta_{n,2}$ called hypersimplex.

Classes of manifolds

 $G_{n,k}$ - algebraic orbits

 $T^n \hookrightarrow G_{n,k}$ extends to $(C^*)^n \hookrightarrow G_{n,k}$. The well known results for the orbits of $(C^*)^n$ -action:

- $(C^*)^n \cdot X$ is a compact algebraic manifold;
- $\overline{(C^*)^n \cdot X} (C^*)^n \cdot X$ consists of finitely many $(C^*)^n$ orbits of lower dimension:
- $(C^*)^n \cdot X$ is unique everywhere dense open orbit in $\overline{(C^*)^n \cdot X}$;
- $\overline{(C^*)^n \cdot X}$ is a toric manifold.

The classical result (Atiyah, Guillemin-Sternberg, Gelfand-MacPherson):

Theorem

- ② μ gives a bijection between p-dimensional $(C^*)^n$ -orbits in $(C^*)^n \cdot X$ and p-dimensional open faces of the polytope $\mu(\overline{(C^*)^n \cdot X})$.

- The subpolytope $P \subseteq \Delta_{n,2}$ is called admissible if $\mu(\overline{C^*)^n \cdot X}) = P$ for some $X \in G_{n,k}$;
- $X_1, X_2 \in G_{n,k}$ are said to belong to the same stratum Γ of $G_{n,k}$ if they have the same admissible polytopes.
- All strata $\{\Gamma\}$ gives partition of $G_{n,k}$ stratification;
- Admissible polytopes ≡ the polytopes of strata;
- $P = \Delta_{n,k} \Gamma$ is called main stratum (generic orbits).

Atlas for
$$G_{n,k}$$
: (M_J, u_J) , $J \subset \{1, ..., n\}$, $|J| = k - given by$

$$M_J = \{X \in G_{n,k} \mid P^J(X) \neq 0\}, \ u_J : M_J \to C^{k(n-k)}.$$

 $X \in M_J \Rightarrow$ it can be represented by matrix A such that $A_J = I_d$ and

$$u_J(X)=(a_{ij}(X))\in C^{k(n-k)},\ i\notin J$$

Atlas for $G_{n,k}$: (M_J, u_J) , $J \subset \{1, ..., n\}$, |J| = k - given by

$$M_J = \{X \in G_{n,k} \mid P^J(X) \neq 0\}, \quad u_J : M_J \to C^{k(n-k)}.$$

 $X \in M_J \Rightarrow$ it can be represented by matrix A such that $A_J = I_d$ and

$$u_J(X) = (a_{ij}(X)) \in C^{k(n-k)}, i \notin J$$

Note:

- the charts M_J are invariant under the action of $(C^*)^n$ and $(C^*)^{n-1}$ acts effectively on M_J ,
- $(C^*)^n$ -action, by the homeomorphism u_J , induces the action of $(C^*)^n$ on $C^{k(n-k)}$.

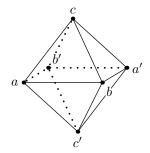
Admissible polytopes for G_{4,2}

ullet $\mu(G_{4,2}) = \mathit{Conv}(\delta_{ij}) = \Delta_{4,2}$ — octahedron;

•

$$\begin{split} \delta_{12} &= (1,1,0,0), \delta_{13} = (1,0,1,0), \delta_{14} = (1,0,0,1), \\ \delta_{23} &= (0,1,1,0), \delta_{24} = (0,1,0,1), \delta_{34} = (0,0,1,1). \end{split}$$

- δ_{ij} , $1 \le i < j \le 4$ belong to the hyperplane in R^4 given by the equation $x_1 + x_2 + x_3 + x_4 = 0$;
- P admissible its vertices are some of δ_{ij} .



Lemma

The admissible polytopes are:

- \bullet $\Delta_{4,2}$;
- any four-sided pyrhamid;
- three diagonal squares;
- any face on the boundary for $\Delta_{4,2}$.

To summarize — the number of admissible polytopes in each dimension:

Stratification of G_{4,2}

In local chart M_{12} the orbit of (a_1, a_2, a_3, a_4) is given by

$$\begin{pmatrix} t_1 & 0 \\ 0 & t_2 \\ t_3 a_1 & t_3 a_3 \\ t_4 a_2 & t_4 a_4 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \frac{t_3}{t_1} a_1 & \frac{t_3}{t_2} a_3 \\ \frac{t_4}{t_1} a_2 & \frac{t_4}{t_2} a_4 \end{pmatrix}.$$

The strata with admissible polytopes:

- 0
- **1** (0,0,0,0) if $a_i = 0$ for all i point δ_{12} ;
- ② C^* if $a_i = 0$ for three i edge on $\partial \Delta_{4,2}$ having vertex δ_{12} ;
- **3** $(C^*)^2$ if $a_i = 0$ for two i triangle on $\partial \Delta_{4,2}$ or diagonal square having vertex δ_{12} ;
- ① $(C^*)^3$ if $a_i = 0$ for one i pyramid having vertex δ_{12} at the base;
- **5** $\frac{z_1 z_4}{z_2 z_3} = 1$ if $a_1 a_4 = a_2 a_3$ pyramid having top-vertex $δ_{12}$.
- The hypersurface:

$$\frac{z_1z_4}{z_2z_3}=c \ \text{ for } \ c=\frac{a_1a_4}{a_2a_3}, \ a_i\neq 0, i=1,\ldots,4, \ c\neq 1$$

Admissible polytope is $\Delta_{4,2}$ — main stratum;

We obtain the description of stratification for $G_{4,2}$.

Corollary

The strata on Grassmannian G_{4,2}, dimension and the number:

- the strata of dimension 8 is an open everywhere dense in G_{4,2};
- **2** each strata of dimension \leq 6 consists of one orbit.

- ② these orbits (of the main stratum Γ) are parametrized by $c \in C \{0, 1\}$;

Using this we continuously parametrize by $c \in CP^1$ all orbits for $(C^*)^4$ -action on $G_{4,2}$.

Proposition

The points of 6-dimensional non-generic $(C^*)^3$ -orbit with admissible polytope K_{ij} can be continuously parametrized by $c=0,1,\infty$:

- for $K_{14} = \Delta_{4,2} \delta_{14}$ or $K_{23} = \Delta_{4,2} \delta_{23} \longrightarrow c = 0$;
- for $K_{13} = \Delta_{4,2} \delta_{13}$ or $K_{24} = \Delta_{4,2} \delta_{24} \longrightarrow c = \infty$;
- for $K_{12} = \Delta_{4,2} \delta_{12}$ or $K_{34} = \Delta_{4,2} \delta_{34} \longrightarrow c = 1$.

Proposition

The points of 2I-dimensional orbit, where $I \le 2$, with admissible polytope K can be continuously parametrized using the parametrization of 6-dimensional orbits:

- if $I = 0, 1 \longrightarrow any c \in CP^1$;
- if I = 2 and K is a triangle \longrightarrow any $c \in CP^1$;
- if I = 2 and K is a square:

 - 2 $K_{13,24} = \Delta_{4,2} \{\delta_{13}, \delta_{24}\} \longrightarrow c = \infty$.
 - $K_{12,34} = \Delta_{4,2} \{\delta_{12}, \delta_{34}\} \longrightarrow c = 1.$

Corollary

- $K_{14} \cup K_{23} \cup K_{14,23} = \Delta_{4,2} \longrightarrow c = 0$,
- $K_{13} \cup K_{24} \cup K_{13,24} = \Delta_{4,2} \longrightarrow c = \infty$,
- $K_{12} \cup K_{34} \cup K_{12,34} = \Delta_{4,2} \longrightarrow c = 1$.

This leads to:

Theorem

 $X = G_{4,2}/T^3$ is homeomorphic to the quotient space

$$(\Delta_{4,2} \times CP^{1})/\approx \text{ where } (x,c) \approx (y,c') \Leftrightarrow x=y \in \partial \Delta_{4,2}.$$

Corollary

- $K_{14} \cup K_{23} \cup K_{14,23} = \Delta_{4,2} \longrightarrow c = 0$,
- $K_{13} \cup K_{24} \cup K_{13,24} = \Delta_{4,2} \longrightarrow c = \infty$,
- $K_{12} \cup K_{34} \cup K_{12,34} = \Delta_{4,2} \longrightarrow c = 1$.

This leads to:

Theorem

 $X = G_{4,2}/T^3$ is homeomorphic to the quotient space

$$(\Delta_{4,2} \times CP^1)/\approx \text{ where } (x,c) \approx (y,c') \Leftrightarrow x=y \in \partial \Delta_{4,2}.$$

Corollary

 $G_{4,2}/T^3$ is homeomorphic to the join $S^2 * S^2$.

Generalized Poincare conjecture:

Theorem

 $G_{4,2}/T^3$ is a topological manifold without boundary, and, thus, $G_{4,2}/T^3$ is homeomorphic to the sphere S^5 .

We have:

$$f:G_{4,2}/T^3\cong\partial\Delta_{4,2}*S^2\longrightarrow\Delta_{4,2}--$$
 projection
$$\mu=\pi\circ f.$$

The action $T^4 \hookrightarrow CP^5$ is defined by the representation $\rho: T^4 \to T^6$:

$$(t_1, t_2, t_3, t_4) \rightarrow (t_1 t_2, t_1 t_3, t_1 t_4, t_2 t_3, t_2 t_4, t_3 t_4)$$

and the canonical action $T^6 \hookrightarrow CP^5$.

By this action we obtain effective action T^3 on CP^5 .

The moment map:

$$\mu(z) = \frac{1}{\|z\|^2} (|z_1|^2 \delta_{12} + |z_2|^2 \delta_{13} + |z_3|^2 \delta_{14} + |z_4|^2 \delta_{23} + |z_5|^2 \delta_{24} + |z_6|^2 \delta_{34})$$

- This action extends to the action of (C*)³;
- Easy to see: any polytope spanned by some subset of vertices for Δ_{4,2} is admissible polytope;

In local charts

$$M_0 = \{z_0 \neq 0\}$$
 - chart on CP^5 - coordinates (z_1, \dots, z_5) ;
$$(C^*)^4 \cdot (a_1, \dots, a_5) = (\frac{t_3}{t_2} a_1, \frac{t_4}{t_2} a_2, \frac{t_3}{t_1} a_3, \frac{t_4}{t_1} a_4, \frac{t_3 t_4}{t_1 t_2} a_5) = (\bar{t_1} a_1, \bar{t_2} a_2, \bar{t_3} a_3, \frac{\bar{t_2} \bar{t_3}}{\bar{t}} a_4, \bar{t_2} \bar{t_3} a_5).$$

The strata with admissible polytopes:

- **1** (0,0,0,0) point δ_{12} ;
- ② C^* edges having vertex δ_{12} ;
- **3** $(C^*)^2$ triangles having vertex δ_{12} ;
- surfaces:

$$z_1 = z_4 = 0$$
, $\frac{z_2 z_3}{z_5} = c$ or $z_2 = z_3 = 0$, $\frac{z_1 z_4}{z_5} = c$, $c \neq 0$

— squares having vertex δ_{12} ;

5 $(C^*)^3$ – if $a_i = a_j = 0$ for $\{i, j\} \neq \{1, 4\}, \{2, 3\}$ — tetrahedra having vertex δ_{12} ;

surfaces:

$$z_1 = 0 \ \land \ \frac{z_2 z_3}{z_5} = c, \text{ or } z_4 = 0 \ \land \ \frac{z_2 z_3}{z_5} = c,$$
 $z_2 = 0 \ \land \ \frac{z_1 z_4}{z_5} = c, \text{ or } z_3 = 0 \ \land \ \frac{z_1 z_4}{z_5} = c,$
 $z_5 = 0 \ \land \ \frac{z_2 z_3}{z_1 z_4} = c, \ c \neq 0$

- four-sided pyramids having vertex δ_{12} ;
- surfaces (main stratum) :

$$\frac{z_2z_3}{z_5}=c_1 \wedge \frac{z_1z_4}{z_5}=c_2, \ c_1,c_2\neq 0$$

 $-\Delta_{4,2}$

The generic orbits of the main stratum are parametrized by $(c_1 : c_2 : 1)$, $c_1, c_2 \neq 0$,

Theorem

Using the parametrization of the main stratum, each non-generic orbit which are not on $\partial \Delta_{4,2}$

- can be parametrized by $(0: c_2: 1)$, $c_1 \neq 0$ or $(c_1: 0: 1)$, $c_2 \neq 0$ or (0: 0: 1) or $(c_1: c_2: 0)$, $c_1, c_2 \in C$, $(c_1, c_2) \neq (0, 0)$.
- They can be divided into four groups such that:
 - All orbits from the same group are equally parametrized;
 - The admissible polytopes for the orbits from the same groups glue together to give Δ_{4,2}.

The orbits on $\partial \Delta_{4,2}$ can be parametrized by \mathbb{CP}^2 .

This leads:

Theorem

$$\textit{CP}^{5}/\textit{T}^{3} \cong \left(\Delta_{4,2} \times \textit{CP}^{2}\right)/\approx \textit{ where } (\textit{x},\textit{c}) \approx \left(\textit{y},\textit{c}^{'}\right) \Leftrightarrow \textit{x} = \textit{y} \in \partial \Delta_{4,2}$$

This leads:

Theorem

$$\textit{CP}^{5}/\textit{T}^{3} \cong \left(\Delta_{4,2} \times \textit{CP}^{2}\right)/\approx \textit{ where } (\textit{x},\textit{c}) \approx \left(\textit{y},\textit{c}^{'}\right) \Leftrightarrow \textit{x} = \textit{y} \in \partial \Delta_{4,2}$$

Corollary

$$CP^5/T^3 \cong S^2 * CP^2$$

This leads:

Theorem

$$\textit{CP}^{5}/\textit{T}^{3} \cong \left(\Delta_{4,2} \times \textit{CP}^{2}\right)/\approx \textit{ where } \left(x,c\right) \approx \left(y,c^{'}\right) \Leftrightarrow x=y \in \partial \Delta_{4,2}$$

Corollary

$$CP^5/T^3 \cong S^2 * CP^2$$

<u>Remark:</u> Embedding $G_{4,2} \subset CP^5$ by the Plücker coordinates is equivariant for T^3 -action $\Longrightarrow G_{4,2}/T^3 \subset CP^5/T^3$. In homogeneous coordinates:

$$\begin{split} G_{4,2} \subset CP^5: & z_1z_6 + z_3z_4 = z_2z_5 \\ G_{4,2}/T^3 \subset CP^5/T^3: & S^2*CP^1 \subset S^2 \subset CP^2, \text{ where } CP^1 \subset CP^2 \\ & (c,1) \to (c:1:(1-c)), \ \ (1,0) \to (0,0,1). \end{split}$$

Quotients of algebraic torus orbits

 $X \in G_{4,2}, \ (\overline{(C^*)^3 \cdot X})/T^3$ with a admissible polytope P:

- has 6 or 1 singular points, otherwise it is a manifold with corners, if $P = \Delta_{4,2}$ or P is four-sided pyramid;
- 2 is a manifold with corners if P is a triangle, square or interval.

Differentiable structure on $G_{4,2}/T^3 \cong S^5$

- S⁵ has unique differentiable structure, the standard one;
- suggests: no differentiable structure on $X = G_{4,2}/T^3$ such that $\pi: G_{4,2} \to X$ is a smooth map; otherwise X would be diffeomoirphic to the standard sphere S^5 , $S^1 \hookrightarrow S^5$ smoothly, while it is not clear where such an action on X would come from.
- We prove the quotient structure is not differentiable;
- Describe the corresponding smooth and singular points;

Differentiable structure on $G_{4,2}/T^3$

Slice theorem

We use the slice or equivariant tubular neighborhood theorem: M — a smooth manifold, $G \hookrightarrow M$ — smooth action, G - compact group

Differentiable structure on $G_{4,2}/T^3$

Slice theorem

We use the slice or equivariant tubular neighborhood theorem: M — a smooth manifold, $G \hookrightarrow M$ — smooth action, G - compact group The slice theorem states:

Theorem

For a fixed point p there exist G-equivariant diffeomorphism from a neighbourhood of the origin in T_pM onto neighbourhood of p in M.

Differentiable structure on $G_{4,2}/T^3$

Slice theorem

We use the slice or equivariant tubular neighborhood theorem: M — a smooth manifold, $G \hookrightarrow M$ — smooth action, G - compact group The slice theorem states:

Theorem

For a fixed point p there exist G-equivariant diffeomorphism from a neighbourhood of the origin in T_pM onto neighbourhood of p in M.

- If p is not a fixed point, let H be its stabilizer, a proper subgroup of G;
- The slice representation V for p:

the normal bundle in the tangent bundle for M along the points of orbit $G \cdot p$, to the tangent bundle $T(G \cdot p)$ of the orbit. It is taken related to some G-invariant metric on M. We obtain representation of H in V. The general slice theorem states:

Theorem

There exists G-equivariant diffeomorphism from the vector bundle $G \times_H V$ onto neighbourhood of the orbit $G \cdot p$ in M.

 $\pi: G_{4,2} \to G_{4,2}/T^4$ — a natural projection.

Theorem

The point $q \in G_{4,2}/T^4$ is:

- a smooth point if dim $\pi^{-1}(q) = 3$;
- a cone-like singularity point if $\dim \pi^{-1}(q) \le 2$ which has the neighborhood of the form

 - 2 $D^1 \times cone(S^5/T^2)$ for $\dim \pi^{-1}(q) = 1$;
 - **3** $cone(S^7/T^3)$ for $dim \pi^1(q) = 0$,

with the induced actions of T^2 on S^5 and T^3 on S^7 .

Proposition

The orbit space S^5/T^2 has three cone-like singular points, while all other points are smooth. Moreover, the singular points have a neghbourhood of the form cone(S^2).

Proposition

The points of the orbit space S^7/T^3 which correspond to the:

- three-dimensional orbits are smooth points;
- two-dimensional orbits are cone like singularities with a neioghbourhood of the form D¹ × cone(S²);
- one-dimensional orbits are cone-like singularirities with a neighborhood of the form cone (S⁵/T²).

 $H \hookrightarrow V \Rightarrow V = V^H \oplus L$ related to some *G*-invariant metric, V^H is the subspace of the vectors fixed by *H*.

$$G \times_H V = G \times_H (V^H \oplus L) = V^H \times (G \times_H L).$$

If further implies that

$$(G \times_H V)/G = V^H \times L/H.$$

We have fixed some G-invariant Riemannian metric \Rightarrow the action of H on L preserves the scalar product meaning that $H(S(L)) \subseteq S(L)$ where S(L) is an unitary sphere whose center is at origin p of L. Therefore

$$L/H = ([0, \infty) \times S(L))/H = cone(S(L)/H),$$

what gives

$$(G \times_H V)/G = V^H \times cone(S(L)/H).$$

