On hyperbolic 3-manifolds with geodesic boundary

Andrei Vesnin

Soobolev Institute of Mathematics, Novosibirsk, Russia

Algebraic Topology and Abelian Functions Conference in honour of Victor Buchstaber on occasion of his 70th birthday

Plan:

- Three-dimensional manifolds and complexity.
- Geometrization of 3-manifolds.
- Complexity of infinite families of closed hyperbolic 3-manifolds.
- Complexity of infinite families of hyperbolic 3-manifolds with boundary.

1. Three-dimensional manifolds and complexity

There are many ways to construct closed orientable 3-manifolds:

- Gluing from a polyhedron. [Seifert and Threlfall]: M is a manifold if and only if its Euler characteristic $\chi(M) = 0$.
- Heegaard splittings from two handlebodies. [Heegaard]: works for any manifold.
- Dehn surgeries on links in S^3 . [Lickorish]: works for any manifold.
- As a branched (irregular) covering of S^3 . [Alexander]: works for any manifold.

What is a good way to tabulate 3-manifolds?

The tabulation by a complexity.

There are many ways to construct closed orientable 3-manifolds:

- Gluing from a polyhedron. [Seifert and Threlfall]: M is a manifold if and only if its Euler characteristic $\chi(M) = 0$.
- Heegaard splittings from two handlebodies. [Heegaard]: works for any manifold.
- Dehn surgeries on links in S^3 . [Lickorish]: works for any manifold.
- As a branched (irregular) covering of S^3 . [Alexander]: works for any manifold.

What is a good way to tabulate 3-manifolds?

The tabulation by a complexity.

[H. Kneser, 1929]: Triangulation complexity tc(M) of a closed 3-manifold M is the minimal number of tetrahedra needed to obtain M by gluing them together along faces.

Weakness: tc(M) is not "good" since $tc(S^3) \neq 0$. Thus an additivity will not hold: $tc(M \# S^3) < tc(M) + tc(S^3)$

Matveev complexity:

A subpolyhedron P in a 3-manifold M is a spine of M if $\partial M \neq \emptyset$ and the complement $M \setminus P$ is homeomorphic to $\partial M \times (0,1]$. or

 $\partial M = \emptyset$ and the complement $M \setminus P$ is an open ball.

[H. Kneser, 1929]: Triangulation complexity tc(M) of a closed 3-manifold M is the minimal number of tetrahedra needed to obtain M by gluing them together along faces.

Weakness: tc(M) is not "good" since $tc(S^3) \neq 0$. Thus an additivity will not hold: $tc(M \# S^3) < tc(M) + tc(S^3)$

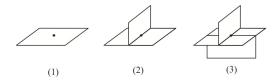
Matveev complexity:

A subpolyhedron P in a 3-manifold M is a spine of M if $\partial M \neq \emptyset$ and the complement $M \setminus P$ is homeomorphic to $\partial M \times (0,1]$, or

 $\partial M = \emptyset$ and the complement $M \setminus P$ is an open ball.

A compact polyhedron P is said to be simple if for each vertex its link is homeomorphic to one of the following 1-dimensional polyhedra:

- circle; and the point is ordinary;
- circle with diameter; and the point is triple;
- circle with three radii (complete graph K_4); and the point is true vertex.



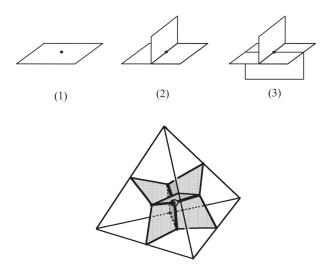
A compact polyhedron P is said to be almost simple if the link of any of its points can be embedded into a complete graph K_4 . A true vertex of an almost simple polyhedron P is a point with the link K_4 .

Definition of Matveev complexity: For a compact 3-manifold M c(M) = k if M admits an almost simple spine with k true vertices and doesn't admit almost simple spines with fewer number of true vertices.

Finiteness property: For any k there is only finite number of closed irreducible manifolds of complexity c(M) = k.

Additivity property: If $M = M_1 \sharp M_2$ then $c(M) = c(M_1) + c(M_2)$.

Duality of triangulation and spine:



"Six-winged butterfly"

Closed 3-manifolds

Theorem [Matveev] Let M be a closed irreducible 3-manifold differ from S^3 , $\mathbb{R}P^3$, $L_{3,1}$. Then c(M) = tc(M).

Manifolds of small complexity:

- up to complexity 5 [Matveev, Savvateev 1974]: generated by computer, distinguished by hand;
- from complexity 6 to complexity 10 [Matveev, Ovchinnikov; Martelli, Petronio]: generated by computer, distinguished by computer;
- complexity 11, 12 [Matveev, Tarkaev, 2003].

												12
3	2	4	7	14	31	74	175	436	1154	3078	8421	23452

2. Geometrization of 3-manifolds

Geometrization Conjecture

William Paul Thurston (30.10.1946 – 21.08.2012)

8 model geometries for 3-manifolds:

 $\mathbb{S}^3, \mathbb{E}^3, \mathbb{H}^3$ – spherical, Euclidean, hyperbolic;

 $\mathbb{S}^2 \times \mathbb{R}^1$, $\mathbb{H}^2 \times \mathbb{R}^1$ – product geometries;

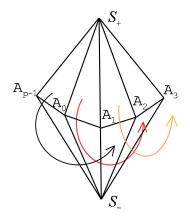
 $Nil, Sol, \operatorname{SL}_2(\mathbb{R})$ – exotic geometries.

Complexity and geometry of closed orientable 3-manifolds [Matveev — Tarkaev], [Burton]

$Geo \ c$	≤ 5	6	7	8	9	10	11	12	Total
\mathbb{S}^3	61	61	117	214	414	798	1582	3118	6365
\mathbb{E}^3	0	6	0	0	0	0	0	0	6
Nil	0	7	10	14	15	15	15	15	91
$\mathbb{H}^2 \times \mathbb{R}$	0	0	0	2	0	8	4	24	38
$\widetilde{\mathrm{SL}}_2(\mathbb{R})$	0	0	39	162	513	1416	3696	9324	15150
Sol	0	0	5	9	23	39	83	149	308
\mathbb{H}^3	0	0	0	0	4	25	120	461	610
non-Geo	0	0	4	35	185	777	2921	10361	14283
Total	61	74	175	436	1154	3078	8421	23452	36851

An example: Lens spaces $L_{p,q}$

Let $p \geqslant 3$, 0 < q < p and (p,q) = 1. Consider p-gonal bipyramid $S_+, A_0, A_1, \ldots, A_{p-1}, S_-$. For every i we glue $A_iS_+A_{i+1} \to A_{i+q}S_-A_{i+q+1} \pmod{p}$. Obtained manifold is a lens space $L_{p,q}$. (Here $\chi = 2 - (1+p) + p - 1 = 0$.) Lens spaces admit spherical geometry. Fundamental group $\pi_1(L_{p,q}) = \mathbb{Z}_p$.



Known results on complexity of spherical 3-manifolds

The initial table of manifolds:

complexity	manifolds
0	$S^3, RP^3, L_{3,1}$
1	$L_{4,1},L_{5,2}$
2	$L_{5,1},L_{7,2},L_{8,3},S^3/Q_8$
3	$L_{6,1}, L_{9,2}, L_{10,3}, L_{11,3}, L_{12,5}, L_{13,5}, S^3/Q_{12}$

Theorem [Jaco – Rubinstein – Tillmann, 2009] For any integer $n \ge 2$ we have $c(L_{2n,1}) = 2n - 3$.

Theorem [Jaco – Rubinstein – Tillmann, 2011] For any integer $n \ge 2$ we have $c(L_{4n,2n-1}) = n$ and $c(S^3/Q_{4n}) = n$. 3. Complexity of infinite families of closed hyperbolic 3-manifolds

Poincare model in the upper half-space

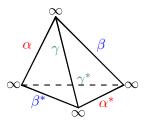
$$\mathbb{H}^3 = \{(x, y, t) \in \mathbb{R}^3 \mid t > 0\} \text{ with } ds^2 = \frac{dx^2 + dy^2 + dt^2}{t^2}.$$

$$\operatorname{Iso}^+(\mathbb{H}^3) \cong \operatorname{PSL}(2,\mathbb{C})$$

Traditionally volumes of hyperbolic polyhedra and manifolds are calculating in terms of the Lobachevsky function:

$$\Lambda(\theta) = -\int_0^\theta \ln|2\sin x| dx$$

Tetrahedron with all vertices at infinity



Lemma
$$\alpha + \beta + \gamma = \pi$$
 and $\alpha^* = \alpha$, $\beta^* = \beta$, $\gamma^* = \gamma$.

Theorem [Milnor] Let $T(\alpha, \beta, \gamma)$ be a tetrahedron with all vertices at infinity. Then

$$\operatorname{vol}(T(\alpha,\beta,\gamma)) = \Lambda(\alpha) + \Lambda(\beta) + \Lambda(\gamma).$$

Corollary A tetrahedron with all vertices at infinity is of maximal volume if and only if it is $T(\pi/3, \pi/3, \pi/3)$. The maximal volume is

$$v_3 = vol(T(\pi/3, \pi/3, \pi/3)) = 3\Lambda(\pi/3) = 1.0149426...$$

Complexity and volume

Observation: Let M be a closed orientable hyperbolic 3-manifold. Its complexity c(M) and hyperbolic volume $\operatorname{vol}(M)$ satisfy the inequality

$$\frac{\operatorname{vol}(M)}{v_3} < c(M).$$

Realization: For cyclic coverings of S^3 branched along the figure-eight knot \mathcal{F} .

The figure-eight knot group

$$\Gamma = \pi_1(S^3 \setminus \mathcal{F}) = \langle a, b \mid ab^{-1}aba^{-1} = b^{-1}aba^{-1}b \rangle.$$

has a faithful representation θ into $PSL_2\mathbb{C} = Iso^+\mathbb{H}^3$:

$$\theta(a) \mapsto \begin{pmatrix} 1 & 0 \\ -\omega & 1 \end{pmatrix} \qquad \theta(b) \mapsto \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},$$

where $\omega = -1/2 + \sqrt{-3}/2$. Moreover, $\Gamma \subset \mathrm{PSL}(\mathbb{Q}(\sqrt{-3}))$.

The figure-eight knot is a hyperbolic knot, i.e. its complement $S^3 \setminus \mathcal{F}$ is a hyperbolic 3-manifold.

Let M_n be the *n*-fold cyclic branched covering of S^3 , branched along the figure-eight knot \mathcal{F} , $n \geq 2$.

$$\pi_1(M_n) = F(2, 2n) = \langle x_1, x_2, \dots, x_{2n} | x_i x_{i+1} = x_{i+2}, i = 1, 2, \dots, 2n \rangle$$

that is a Fibonacchi group introduced by Conway in 1965.

[Helling, Kim, Mennicke, 1998] For $n \ge 4$ manifold M_n is a closed orientable hyperbolic 3-manifold. It is called a Fibonacchi manifold.

Theorem [Matveev – Petronio – Vesnin, 2009] There exists such N that for any $n \geq N$ complexity of the Fibonacci manifold M_n satisfies the following inequalities

$$2n \le c(M_n) \le 3n.$$

The upper bound holds for all $n \ge 4$ and is based on triangulations of fundamental polyhedra.

4 D > 4 D > 4 E > 4 E > E 9990

The lower bound is based on calculations of hyperbolic volumes of manifolds.

Theorem [Mednykh – Vesnin, 1994] For $n \ge 4$ volume vol (M_n) of a Fibonacci manifold equals

$$vol(M_n) = 2n(\Lambda(a_n + \pi/n) + \Lambda(a_n - \pi/n)),$$

where $a_n = (1/2) \cdot \arccos(\cos(2\pi/n) - 1/2)$.

Analyzing the behavior of the volume function we get:

Corollary If n is big enough then

$$2n - \frac{34}{n} < \frac{\operatorname{vol}(M_n)}{v_3} < 2n.$$

Generalization for arbitrary 2-bridge knot

Theorem | Petronio – Vesnin, 2009|

Let K(p,q), where $p \geq 3$, 0 < q < p, (p,q) = 1, be a given two-bridge knot and let $\{M_n(p,q)\}_{n=2}^{\infty}$ be a sequence of n-fold cyclic branched coverings of S^3 , branched along K(p,q). Then:

$$c(M_n(p,q)) \leqslant n(p-1) \quad \forall n.$$

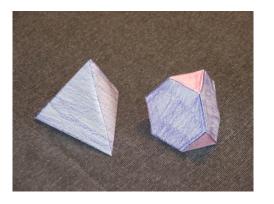
If in addition K(p,q) is hyperbolic then for $n \ge 7$:

$$n \cdot \left(1 - \frac{4\pi^2}{n^2}\right)^{3/2} \cdot \max\{2, 2\ell(p, q) - 2.6668\} < c(M_n(p, q)).$$

Remark The figure-eight knot $\mathcal{F} = K(5, 2)$.

4. Complexity of infinite families of hyperbolic 3-manifolds with boundary

Let Δ denote the standard tetrahedron, and let Δ^* be Δ minus open stars of its vertices.



Let M be a compact 3-manifold with $\partial M \neq \emptyset$. An ideal triangulation of M is a realization of M as a gluing of a finite number of copies of Δ^* , induced by a simplicial face-pairing of the corresponding Δ 's.

Let \mathcal{H} be the class of orientable compact 3-manifolds M having nonempty boundary ∂M and admitting a complete finite-volume hyperbolic metric with respect to which ∂M is totally geodesic.

Denote
$$\mathcal{H}_n = \{M : M \in \mathcal{H} \text{ and } c(M) = n\}.$$

[Frigerio, Martelli, Petronio, 2004]

Enumeration: $\mathcal{H}_1 = \emptyset$; $|\mathcal{H}_2| = 8$; $|\mathcal{H}_3| = 74$; $|\mathcal{H}_4| = 5,002$.

Another subdivision of \mathcal{H} : subclasses $\mathcal{H}_{p,q}$.

 $M \in \mathcal{H}_{p,q}$ if and only if

- number of connected components of ∂M equals q;
- \bullet M admits a special spine with p 2-components and doesn't admit with less number.

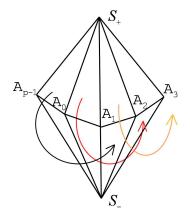
Lemma If $p, q \in \mathbb{N}$ are such that p < q, then $\mathcal{H}_{p,q} = \emptyset$.

Lemma If $M \in \mathcal{H}_{p,q}$, then $c(M) = p - \chi(M)$, where $\chi(M)$ is Euler characteristic.

[Frigerio, Martelli, Petronio]: manifolds from $\mathcal{H}_{q,q}$ for any $q \geq 1$.

An example: Paolluzi — Zimmermann manifolds

Let $n \ge 3$, 0 < k < n, (n, 2 - k) = 1. Consider n-gonal bipyramid $S_+, A_0, A_1, \ldots, A_{n-1}, S_-$. For every i we glue $A_i A_{i+1} S_+ \to S_- A_{i+k} A_{i+k+1} \pmod{n}$. The result is a pseudo-manifold $M'_{n,k}$ with $\chi(M'_{n,k}) = n - 1$. Cutting a neighborhood of the singular point we get a manifold $M_{n,k}$ with boundary.



Properties of Paoluzzi — Zimmermann manifolds

- $M_{n,k}$ hyperbolic manifold with boundary;
- $M_{3,1}$ an example form Thurston lecture notes (1978), it has the smallest volume among all compact hyperbolic 3-manifolds with boundary, $vol(M_{3,1}) \approx 6.451998$;
- A. Ushijima calculated volumes of manifolds $M_{n,k}$ for $n \leq 82$;
- fundamental group $\pi_1(M_{n,k})$ is isomorphic to $\langle x_0, \dots, x_{n-1} \mid \prod_{i=0}^{n-1} x_{i(2-k)} x_{i(2-k)+1}^{-1} x_{(i+1)(2-k)-1}^{-1} = 1 \rangle;$
- $\partial M_{n,k}$ is a closed orientable surface of genus g = n 1;
- boundary $\partial M_{n,1}$ is embedded in \mathbb{R}^3 as a thickness of Suzuki graph θ_n .

Boundary of manifolds $M_{n,1}$

Suzuki's graph θ_n , $n \ge 3$ (see the case n = 4 in the figure).

 θ_3 – the Kinoshita's graph

 θ_2 – the trefoil knot

Generalizations

Analogous manifolds can be constructed in the case (n, 2 - k) = 2.

[Fominykh - Vesnin, 2012]

- construction of manifolds $M_{n,k}$ for the case (n, 2 k) = 2;
- manifolds are hyperbolic with geodesic boundary;
- the volume formula is obtained;
- boundary of M_{n-1} is homeomorphic to a closed orientable surface of genus n-1.

Proposition

Suppose that integers $n \ge 4$ and k are such that $0 \le k \le n-1$ and (n,2-k)=2. Then

$$\operatorname{vol} M_{n,k} = n \left[\Lambda(\pi/n + \theta) - \Lambda(\pi/n - \theta) + \Lambda(\pi/2 + \alpha - \theta) + \Lambda(\pi/2 - \alpha - \theta) + \Lambda(2(\pi/n - \alpha) + \theta) - \Lambda(2(\pi/n - \alpha) - \theta) + 2\Lambda(\pi/2 - \theta) \right],$$

where

$$\theta = \arctan \frac{\sqrt{\cos^2 \alpha - \sin^2(\pi/n)\sin^2(2(\pi/n - \alpha))}}{\cos(\pi/n)\cos(2(\pi/n - \alpha))} \in [0, \pi/2),$$

and $\alpha \in [0, \pi/n)$ is such that $t = \operatorname{tg} \alpha$ is a root of the equation

$$\cos\varphi\sin\varphi\cdot t^4 + (2\cos^2\varphi - \cos\varphi)\cdot t^3 + 3\sin\varphi\cdot t^2 + (2\cos^2\varphi + 3\cos\varphi)\cdot t - \cos\varphi\sin\varphi - \sin\varphi = 0,$$

where $\varphi = 2\pi/n$.

Complexity of hyperbolic 3-manifolds with boundary

Theorem [Frigerio – Martelli – Petronio, 2003]

If $M \in \mathcal{H}$ has dual spine with n true vertices and one 2-cell, then c(M) = n. Moreover, $M \in \mathcal{H}_{1,1}$.

Theorem 1 [Fominykh – Vesnin, 2011]

Suppose $n \ge 4$ and (n, 2 - k) = 1. Then $c(M_{n,k}) = n$. The minimal spine has two 2-cells, and $M_{n,k} \in \mathcal{H}_{2,1}$.

Remark Here $M_{3,1}$ is the Thurston's manifold, and $c(M_{3,1}) = 2$.

Theorem 2 [Fominykh – Vesnin, 2012]

Suppose $n \ge 6$ and (n, 2 - k) = 2. Then $c(M_{n,k}) = n$. The minimal spine has three 2-cells, and $M_{n,k} \in \mathcal{H}_{3,1}$.

Sketch of the proof of theorem 1

- $M_{n,k}$ is hyperbolic manifold.
- $c(M_{n,k}) \leq n$; spine $P_{n,k}$ dual to the original subdivision of the bipiramid into n tetrahedra $\mathcal{T}_i = S_+ S_- A_i A_{i+1}$ has exactly n true vertices.
- Assume on the contrary that $P_{n,k}$ is not minimal.
- Let *P* be a minimal special spine.
- P has n-1 true vertices and one 2-cell, since $\chi(P) = \chi(M_{n,k}) = \chi(P_{n,k}) = 2 n$.

Sketch of the proof of theorem 1

- [Matveev Ovchinnikov Sokolov] ε -invariant of 3-manifolds = homologically trivial part of Turaev Viro invariant of 5-th order.
- Let $\mathcal{F}(P)$ be the set of all simple subpolyhedra of P, including the empty set and P.
- For each $Q \in \mathcal{F}(P)$ corresponds its weight $w_{\varepsilon}(Q) = (-1)^{V(Q)} \varepsilon^{\chi(Q) V(Q)}$, where V(Q) number of true vertices, $\chi(Q)$ Euler characteristic, and $\varepsilon = (1 + \sqrt{5})/2$ a root of the equation $\varepsilon^2 = \varepsilon + 1$.
- ε -invariant t(M) is defined as

$$t(M) = \sum_{Q \in \mathcal{F}(P)} w_{\varepsilon}(Q).$$

Sketch of the proof of theorem 1

- $t(M_{n,k}) = (-1)^n \varepsilon^{2-2n} + \varepsilon^{1-n} + 1$ from spine $P_{n,k}$.
- $t(M_{n,k}) = (-1)^{n-1} \varepsilon^{3-2n} + 1$ from assumed spine P with one 2-cell.
- equality $\varepsilon^{n-3} = (-1)^{n-1}$ doesn't hold if $n \ge 4$. Contradiction.

The proof of Theorem 2 is based on similar (but much more technical) ideas, involving properties of Fibonacchi numbers.

Summary

Complexity is known for

- all closed orientable 3-manifolds up to complexity 13 (more than 60000 manifolds);
- few infinite families of spherical manifolds;
- few infinite families of hyperbolic manifolds with boundary.

Thank you!