Equivariant cobordism of unitary toric manifolds —Joint work with Qiangbo Tan

Zhi Lü

School of Mathematical Sciences Fudan University, Shanghai

Conference in honour of Victor Buchstaber on the occasion of his 70th birthday, Moscow, June 22, 2013

- Notation—unitary toric manifold and quasitoric manifold

- Notation—unitary toric manifold and quasitoric manifold
- Problem

- Notation—unitary toric manifold and quasitoric manifold
- Problem
- Main result 1—equivariant Chern numbers

- Notation—unitary toric manifold and quasitoric manifold
- Problem
- Main result 1—equivariant Chern numbers
- Two applications

- Notation—unitary toric manifold and quasitoric manifold
- Problem
- Main result 1—equivariant Chern numbers
- Two applications
- Main result 2-relation with real case

A unitary toric manifold M^{2n} of dimension 2n is a smooth closed manifold with an effective T^n -action such that its tangent bundle admits a T^n -equivariant stably complex structure.

A unitary toric manifold M^{2n} of dimension 2n is a smooth closed manifold with an effective T^n -action such that its tangent bundle admits a T^n -equivariant stably complex structure.

Remark

- The notion of unitary toric manifolds was introduced by Masuda in his paper [Tohoku Math. J. 51 (1999), 237–265].
- If the fixed point set of a unitary toric manifold M^{2n} is nonempty, then it is 0-dimensional (i.e., it consists of some isolated points).

A unitary toric manifold M^{2n} of dimension 2n is a smooth closed manifold with an effective T^n -action such that its tangent bundle admits a T^n -equivariant stably complex structure.

Remark

- The notion of unitary toric manifolds was introduced by Masuda in his paper [Tohoku Math. J. 51 (1999), 237–265].
- If the fixed point set of a unitary toric manifold M²ⁿ is nonempty, then it is 0-dimensional (i.e., it consists of some isolated points).
- More generally, a **unitary** T^k -**manifold** M^{2n} means that M^{2n} is a smooth closed manifold with an effective T^k -action such that its tangent bundle admits a T^k -equivariant stably complex structure.

A unitary toric manifold M^{2n} of dimension 2n is a smooth closed manifold with an effective T^n -action such that its tangent bundle admits a T^n -equivariant stably complex structure.

Remark

- The notion of unitary toric manifolds was introduced by Masuda in his paper [Tohoku Math. J. 51 (1999), 237–265].
- If the fixed point set of a unitary toric manifold M²ⁿ is nonempty, then it is 0-dimensional (i.e., it consists of some isolated points).
- More generally, a unitary T^k-manifold M²ⁿ means that M²ⁿ is a smooth closed manifold with an effective T^k-action such that its tangent bundle admits a T^k-equivariant stably complex structure.

Notion-Quasitoric manifolds as examples

- A quasitoric mfd M²ⁿ is a closed smooth manifold with an effective action of Tⁿ such that
 - 1) M^{2n} is locally iso. to the standard T^n -repre. on \mathbb{C}^n ;
 - 2) its orbit space M^{2n}/T^n is a simple convex polytope.

Two key points for Davis–Januszkiewicz theory of quasitoric mfds

 $\pi: M^{2n} \longrightarrow P^n$: a quasitoric mfd over P^n .

Algebraic topology

• Equivariant cohomology: $H_{T^n}^*(M) \cong R(P^n; \mathbb{Z})$ where $R(P^n; \mathbb{Z})$ is the Stanley-Reisner face ring of P^n :

$$R(P^n; \mathbb{Z}) = \mathbb{Z}[F_1, ..., F_m]/I$$

 $I = (F_{i_1} \cdots F_{i_r} | F_{i_1} \cap \cdots \cap F_{i_r} = \emptyset)$ is an ideal, and each F_i is a facet (ie., codim-one face) of P^n .

• Betti numbers: $(b_0, b_2, ..., b_{2n}) = (h_0, h_1, ..., h_n)$ where

 $(h_0, h_1, ..., h_n)$ is the h-vector of P^n

Two key points for Davis–Januszkiewicz theory of quasitoric mfds

 $\pi: M^{2n} \longrightarrow P^n$: a quasitoric mfd over P^n .

Algebraic topology

• Equivariant cohomology: $H_{T^n}^*(M) \cong R(P^n; \mathbb{Z})$ where $R(P^n; \mathbb{Z})$ is the Stanley-Reisner face ring of P^n :

$$R(P^n; \mathbb{Z}) = \mathbb{Z}[F_1, ..., F_m]/I$$

 $I = (F_{i_1} \cdots F_{i_r} | F_{i_1} \cap \cdots \cap F_{i_r} = \emptyset)$ is an ideal, and each F_i is a facet (ie., codim-one face) of P^n .

• Betti numbers: $(b_0, b_2, ..., b_{2n}) = (h_0, h_1, ..., h_n)$ where $(h_0, h_1, ..., h_n)$ is the *h*-vector of P^n

Two key points for Davis–Januszkiewicz theory of quasitoric mfds

 $\pi: M^{2n} \longrightarrow P^n$: a quasitoric mfd over P^n .

Algebraic topology

• Equivariant cohomology: $H_{T^n}^*(M) \cong R(P^n; \mathbb{Z})$ where $R(P^n; \mathbb{Z})$ is the Stanley-Reisner face ring of P^n :

$$R(P^n; \mathbb{Z}) = \mathbb{Z}[F_1, ..., F_m]/I$$

 $I = (F_{i_1} \cdots F_{i_r} | F_{i_1} \cap \cdots \cap F_{i_r} = \emptyset)$ is an ideal, and each F_i is a facet (ie., codim-one face) of P^n .

- **Betti numbers:** $(b_0, b_2, ..., b_{2n}) = (h_0, h_1, ..., h_n)$ where $(h_0, h_1, ..., h_n)$ is the *h*-vector of P^n
- <u>. . . .</u>

Two key points for Davis–Januszkiewicztheory of quasitoric mfds

Geometric topology

• Characteristic function: Each $\pi: M^{2n} \longrightarrow P^n$ determines

$$\lambda: \mathcal{F}(P^n) \longrightarrow \mathbb{Z}^n$$

mapping *n* facets at each vertex to a basis of \mathbb{Z}^n , where $\mathcal{F}(P^n)$:=all facets of P^n .

• **Reconstruction:** M^{2n} can be recovered by the pair (P^n, λ) .

Notion—Quasitoric manifolds as examples

Theorem (Buchstaber–Ray–Panov) (2010)

Each omnioriented quasitoric manifold is a unitary toric manifold.

Notion-Quasitoric manifolds as examples

Theorem (Buchstaber-Ray-Panov) (2010)

Each omnioriented quasitoric manifold is a unitary toric manifold.

RK. An omniorientation of *M* is a collection of orientations of facial submfds and *M*

{Omnioriented quasitoric manifolds} ⊂ {Unitary toric manifolds}

Notion-Quasitoric manifolds as examples

Theorem (Buchstaber-Ray-Panov) (2010)

Each omnioriented quasitoric manifold is a unitary toric manifold.

RK. An omniorientation of *M* is a collection of orientations of facial submfds and *M*

 $\{\mathsf{Omnioriented}\ \mathsf{quasitoric}\ \mathsf{manifolds}\} \subset \{\mathsf{Unitary}\ \mathsf{toric}\ \mathsf{manifolds}\}$

Basic problem

Basic problem

To classify unitary T^k -manifolds M^{2n} up to equivariant cobordism.

Case: k = n (i.e., unitary toric manifolds)

Case: k = n (i.e., unitary toric manifolds)

 Ω_{2n}^{U,T^n} : the group formed by equivariant cobordism classes of all 2*n*-dim unitary toric manifolds.

Case: k = n (i.e., unitary toric manifolds)

 Ω_{2n}^{U,T^n} : the group formed by equivariant cobordism classes of all 2*n*-dim unitary toric manifolds.

Question 1

Which kinds of equivariant chern numbers completely determine a class of Ω_{2n}^{U,T^n} ?

Case: k = n (i.e., unitary toric manifolds)

 Ω_{2n}^{U,T^n} : the group formed by equivariant cobordism classes of all 2n-dim unitary toric manifolds.

Question 1

Which kinds of equivariant chern numbers completely determine a class of Ω_{2n}^{U,T^n} ?

Question 2

Whether dose each class of Ω_{2n}^{U,T^n} contain an omnioriented quasitoric manifold as its representative?

A note on Question 1-GGK Theorem

Theorem (Guillemin-Ginzburg-Karshon) (2002)

Let M be a unitary T^k -manifold fixing **isolated points**. Then $M \sim 0$ if and only if all equivariant Chern numbers of M are zero.

RK. Atiyah–Bott–Berline–Vergne localization theorem (1984): Let $T^k \curvearrowright M^{2n}$: unitary T^k -mfld fixing isolated points. Then

$$\langle c_{\omega}^{T^k}, [M] \rangle = \sum_{p \in M^T} \frac{c_{\omega}^{T^k}|_p}{\chi^T(p)} \in H^*(BT^k)$$

where $\omega = (i_1, ..., i_n)$ is a multi-index, $c_{\omega}^{T^n}|_p$ is the restriction of $c_{\omega}^{T^k}$ to p, and $\chi^T(p)$ is the equivariant Euler class of $\tau_p M \longrightarrow p$.

A note on Question 1–GGK Theorem

Theorem (Guillemin-Ginzburg-Karshon) (2002)

Let M be a unitary T^k -manifold fixing isolated points. Then $M \sim 0$ if and only if all equivariant Chern numbers of Mare zero.

RK. Atiyah–Bott–Berline–Vergne localization theorem (1984): Let $T^k \sim M^{2n}$: unitary T^k -mfld fixing isolated points. Then

$$< c_{\omega}^{T^k}, [M] > = \sum_{oldsymbol{p} \in \mathcal{M}^T} \frac{c_{\omega}^{T^k}|_{oldsymbol{p}}}{\chi^T(oldsymbol{p})} \in \mathcal{H}^*(\mathcal{B}T^k)$$

where $\omega = (i_1, ..., i_n)$ is a multi-index, $c_{\omega}^{T^n}|_{p}$ is the restriction of $c_{i}^{T^{k}}$ to p, and $\chi^{T}(p)$ is the equivariant Euler class of $\tau_{p}M \longrightarrow p$.

Note 1: Buchstaber and Ray gave an affirmative answer to Question 2 in non-equivariant case. Namely, they showed

Theorem (Buchstaber-Ray) (1999)

Each class of Ω_{2n}^U contains a 2n-dim quasitoric manifold as its representative, where Ω_{2n}^U is the group formed by cobordism classes of all stably complex 2n-manifolds.

Note 2: In the case of $(\mathbb{Z}_2)^n \curvearrowright M^n$ (called 2-torus manifold), we have obtained

- Each class of \mathfrak{M}_n contains an n-dim small cover as its representative, where \mathfrak{M}_n is the group formed by equiv. cobordism classes of all 2-torus mfds.
- $\mathfrak{M}_* = \sum \mathfrak{M}_n$ is generated by classes of all generalized real Bott mfds (i.e., small covers over the products of simplices)
- In particular,

$$\dim_{\mathbb{Z}_0} \mathfrak{M}_3 = 13$$

$$\dim_{\mathbb{Z}_0} \mathfrak{M}_4 = 510$$

Note 2: In the case of $(\mathbb{Z}_2)^n \curvearrowright M^n$ (called 2-torus manifold), we have obtained

- Each class of \mathfrak{M}_n contains an n-dim small cover as its representative, where \mathfrak{M}_n is the group formed by equiv. cobordism classes of all 2-torus mfds.
- $\mathfrak{M}_* = \sum \mathfrak{M}_n$ is generated by classes of all generalized real Bott mfds (i.e., small covers over the products of simplices)
- In particular,

$$\dim_{\mathbb{Z}_2}\mathfrak{M}_3=13$$

$$\dim_{\mathbb{Z}_2} \mathfrak{M}_4 = 510$$

Note 2: In the case of $(\mathbb{Z}_2)^n \curvearrowright M^n$ (called 2-torus manifold), we have obtained

- Each class of \mathfrak{M}_n contains an n-dim small cover as its representative, where \mathfrak{M}_n is the group formed by equiv. cobordism classes of all 2-torus mfds.
- $\mathfrak{M}_* = \sum \mathfrak{M}_n$ is generated by classes of all generalized real Bott mfds (i.e., small covers over the products of simplices)
- In particular,

$$\dim_{\mathbb{Z}_2}\mathfrak{M}_3=13$$

$$\dim_{\mathbb{Z}_2}\mathfrak{M}_4=510$$

Main result 1-Equivariant Chern numbers

On Question 1, we have

Theorem (Lü-Tan)

Let *M* be a unitary toric manifold. Then *M* bounds equivariantly if and only if the equivariant Chern numbers

$$\langle (c_1^{T^n})^i(c_2^{T^n})^j, [M] \rangle = 0$$

for all $i, j \in \mathbb{N}$, where [M] is the fundamental class of M with respect to the given orientation.

On Question 1, we have

Theorem (Lü-Tan)

Let M be a unitary toric manifold. Then M bounds equivariantly if and only if the equivariant Chern numbers

$$\langle (c_1^{T^n})^i(c_2^{T^n})^j, [M] \rangle = 0$$

for all $i, j \in \mathbb{N}$, where [M] is the fundamental class of M with respect to the given orientation.

Our result is a refinement of the following result

Theorem (Guillemin-Ginzburg-Karshon)

Let M be a unitary T^k -manifold fixing isolated points. Then $M \sim 0$ if and only if all equivariant Chern numbers of M are zero.

Main result 1-Equivariant Chern numbers

Proof:

Atiyah-Bott-Berline-Vergne localization theorem

Let M^{2n} be a (2n)-dimensional unitary toric manifold. Then

$$< c_{\omega}^{T^n}, [M] > = \sum_{oldsymbol{p} \in M^{T^n}} \frac{\sigma_1(oldsymbol{p})^{l_1} \cdots \sigma_n(oldsymbol{p})^{l_n}}{\pm \sigma_n(oldsymbol{p})}$$

where $\omega = (i_1, ..., i_n)$ is a multi-index.

For $p \in M^T$, $\sigma(p)$ means the collection of $\sigma_1(p), ..., \sigma_n(p)$.

Key Lemma

$$\sigma(p) = \sigma(q) \iff \sigma_1(p) = \sigma_1(q) \text{ and } \sigma_2(p) = \sigma_2(q)$$

Two applications-Application I

Application I: the lower bound of the number of isolated fixed points

Theorem (Lü-Tan)

Suppose that M^{2n} is a (2n)-dimenional unitary toric manifold. If M does not bound equivariantly, then the number of fixed points is at least $\lceil \frac{n}{2} \rceil + 1$, where $\lceil \frac{n}{2} \rceil$ denotes the minimal integer no less than $\frac{n}{2}$.

Application I-A remark

Remark. This gives a supporting evidence on Kosniowski **conjecture**, saying that for a unitary S^1 -manifold M^{2n} with isolated fixed points, if M^{2n} does not bound equivariantly then the number of fixed points is greater than f(n), where f(n) is some linear function.

Application I-A remark

Remark. This gives a supporting evidence on Kosniowski **conjecture**, saying that for a unitary S^1 -manifold M^{2n} with isolated fixed points, if M^{2n} does not bound equivariantly then the number of fixed points is greater than f(n), where f(n) is some linear function.

As was noted by Kosniowski, the most likely function is $f(n) = \frac{n}{2}$, so the number of fixed points of M^{2n} is at least $\left[\frac{n}{2}\right] + 1$.

Application I-A remark

Remark. This gives a supporting evidence on Kosniowski **conjecture**, saying that for a unitary S^1 -manifold M^{2n} with isolated fixed points, if M^{2n} does not bound equivariantly then the number of fixed points is greater than f(n), where f(n) is some linear function.

As was noted by Kosniowski, the most likely function is $f(n) = \frac{n}{2}$, so the number of fixed points of M^{2n} is at least $\left[\frac{n}{2}\right] + 1$.

Kosniowski conjecture is still open!!!

Two applications-Application II

Application II to Buchstaber-Panov-Ray conjecture

Buchstaber-Panov-Ray conjecture

Let M^{2n} be a specially omnioriented quasitoric manifold. Then M^{2n} represents 0 in Ω_{2n}^U .

Remark. Buchstaber-Panov-Ray have showed that when n < 5, the conjecture holds.

Two applications-Application II

Application II to Buchstaber-Panov-Ray conjecture

Buchstaber-Panov-Ray conjecture

Let M^{2n} be a specially omnioriented quasitoric manifold. Then M^{2n} represents 0 in Ω_{2n}^U .

Remark. Buchstaber-Panov-Ray have showed that when n < 5, the conjecture holds.

Application II to Buchstaber-Panov-Ray conjecture

A partial answer to Buchstaber-Panov-Ray conjecture

Theorem (Lü-Tan)

Let M^{2n} be a specially omnioriented quasitoric manifold. If n is odd, then M^{2n} represents 0 in Ω_{2n}^U .

Namely, if *n* is odd, then Buchstaber-Panov-Ray conjecture holds.

Main result 2

Now let us discuss Question 2. Recall

Question 2

Whether dose each class of Ω_{2n}^{U,T^n} contain an omnioriented quasitoric manifold as its representative?

Now let us discuss Question 2. Recall

Question 2

Whether dose each class of Ω_{2n}^{U,T^n} contain an omnioriented quasitoric manifold as its representative?

- Ω_{2n}^{U,T^n} : the group formed by equivariant cobordism classes of all 2*n*-dim unitary toric manifolds.
- \mathfrak{M}_n : the group formed by equivariant cobordism classes of all *n*-dim 2-torus manifolds $(\mathbb{Z}_2)^n \curvearrowright M^n$.

Define a homomorphism $\Phi_n: \Omega_{2n}^{U,T^n} \longrightarrow \mathfrak{M}_n$ as follows:

- Given a class $\{M^{2n}\}$ in Ω_{2n}^{U,T^n} , GKM theory tells us that M^{2n} gives a GKM graph (Γ_M, α) , where $\alpha: E(\Gamma_M) \longrightarrow \operatorname{Hom}(T^n, S^1) \cong H^2(BT^n)$ is an axial function with certain condition.

$$\Phi_n(\{M^{2n}\}) = \{M^n\}$$

Define a homomorphism $\Phi_n: \Omega^{U,T^n}_{2n} \longrightarrow \mathfrak{M}_n$ as follows:

- Given a class $\{M^{2n}\}$ in Ω_{2n}^{U,T^n} , GKM theory tells us that M^{2n} gives a GKM graph (Γ_M, α) , where $\alpha: E(\Gamma_M) \longrightarrow \operatorname{Hom}(T^n, S^1) \cong H^2(BT^n)$ is an axial function with certain condition.
- Then we may obtain a mod 2 GKM graph (Γ_M, α) where

$$\widetilde{\alpha}: E(\Gamma_M) \longrightarrow \mathsf{Hom}((\mathbb{Z}_2)^n, \mathbb{Z}_2) \cong H^1(B(\mathbb{Z}_2)^n; \mathbb{Z}_2).$$

$$\Phi_n(\{M^{2n}\}) = \{M^n\}$$

Define a homomorphism $\Phi_n: \Omega^{U,T^n}_{2n} \longrightarrow \mathfrak{M}_n$ as follows:

- Given a class $\{M^{2n}\}$ in Ω_{2n}^{U,T^n} , GKM theory tells us that M^{2n} gives a GKM graph (Γ_M, α) , where $\alpha: E(\Gamma_M) \longrightarrow \operatorname{Hom}(T^n, S^1) \cong H^2(BT^n)$ is an axial function with certain condition.
- Then we may obtain a mod 2 GKM graph (Γ_M, α) where

$$\widetilde{\alpha}: E(\Gamma_M) \longrightarrow \mathsf{Hom}((\mathbb{Z}_2)^n, \mathbb{Z}_2) \cong H^1(B(\mathbb{Z}_2)^n; \mathbb{Z}_2).$$

- Lü-Tan showed that such a mod 2 GKM graph (Γ_M, α) uniquely determines a class $\{M^n\}$ in \mathfrak{M}_n .

$$\Phi_n(\{M^{2n}\}) = \{M^n\}$$

Define a homomorphism $\Phi_n:\Omega_{2n}^{U,T^n}\longrightarrow \mathfrak{M}_n$ as follows:

- Given a class $\{M^{2n}\}$ in Ω_{2n}^{U,T^n} , GKM theory tells us that M^{2n} gives a GKM graph (Γ_M, α) , where $\alpha : E(\Gamma_M) \longrightarrow \operatorname{Hom}(T^n, S^1) \cong H^2(BT^n)$ is an axial function with certain condition.
- Then we may obtain a mod 2 GKM graph $(\Gamma_M, \widetilde{\alpha})$ where

$$\widetilde{\alpha}: E(\Gamma_M) \longrightarrow \mathsf{Hom}((\mathbb{Z}_2)^n, \mathbb{Z}_2) \cong H^1(B(\mathbb{Z}_2)^n; \mathbb{Z}_2).$$

- Lü-Tan showed that such a mod 2 GKM graph $(\Gamma_M, \widetilde{\alpha})$ uniquely determines a class $\{M^n\}$ in \mathfrak{M}_n .
- Finally, define

$$\Phi_n(\{M^{2n}\}) = \{M^n\}.$$

$$\Phi_n:\Omega_{2n}^{U,T^n}\longrightarrow \mathfrak{M}_n$$
 is well-defined.

- It suffices to show that if $\{M^{2n}\}=0$ in Ω_{2n}^{U,T^n} , then $\Phi(\{M^{2n}\})=\{M^n\}=0$ in \mathfrak{M}_n .
- By ABBV localization theorem, take $\omega = (0, ..., 0, 2)$, we have

$$< c_\omega^{T^n}, [M]> = \sum_{
ho \in V(\Gamma_M)} ig(\pm \prod_{e \in E_
ho} lpha(e) ig) = 0 ext{ in } H^*(\mathcal{B}T^n)$$

Further, we have

$$\sum_{e \in V(\mathbb{F}_n)} \prod_{e \in E_n} \widetilde{\alpha}(e) = 0 \text{ in } H^*(B(\mathbb{Z}_2)^n; \mathbb{Z}_2)$$

 $\Phi_n:\Omega_{2n}^{U,T^n}\longrightarrow \mathfrak{M}_n$ is well-defined.

- It suffices to show that if $\{M^{2n}\}=0$ in Ω_{2n}^{U,T^n} , then $\Phi(\{M^{2n}\})=\{M^n\}=0$ in \mathfrak{M}_n .
- By ABBV localization theorem, take $\omega = (0, ..., 0, 2)$, we have

$$< c_{\omega}^{T^n}, [M] > = \sum_{p \in V(\Gamma_M)} \left(\pm \prod_{e \in E_p} \alpha(e) \right) = 0 \text{ in } H^*(BT^n)$$

Further, we have

$$\sum_{e \in V(\Gamma_M)} \prod_{e \in E_p} \widetilde{lpha}(e) = 0 ext{ in } H^*(B(\mathbb{Z}_2)^n; \mathbb{Z}_2)$$

• By a result of Stong, $\Phi(\{M^{2n}\}) = \{M^n\} = 0$ in \mathfrak{M}_n

 $\Phi_n:\Omega_{2n}^{U,T^n}\longrightarrow \mathfrak{M}_n$ is well-defined.

- It suffices to show that if $\{M^{2n}\}=0$ in Ω_{2n}^{U,T^n} , then $\Phi(\{M^{2n}\})=\{M^n\}=0$ in \mathfrak{M}_n .
- By ABBV localization theorem, take $\omega = (0, ..., 0, 2)$, we have

$$< c_{\omega}^{T^n}, [M] > = \sum_{p \in V(\Gamma_M)} \left(\pm \prod_{e \in E_p} \alpha(e) \right) = 0 \text{ in } H^*(BT^n)$$

Further, we have

$$\sum_{\rho\in V(\Gamma_M)}\prod_{e\in E_\rho}\widetilde{\alpha}(e)=0 \text{ in } H^*(B(\mathbb{Z}_2)^n;\mathbb{Z}_2)$$

• By a result of Stong, $\Phi(\{M^{2n}\}) = \{M^n\} = 0$ in \mathfrak{M}_n

 $\Phi_n:\Omega_{2n}^{U,T^n}\longrightarrow \mathfrak{M}_n$ is well-defined.

- It suffices to show that if $\{M^{2n}\}=0$ in Ω_{2n}^{U,T^n} , then $\Phi(\{M^{2n}\})=\{M^n\}=0$ in \mathfrak{M}_n .
- By ABBV localization theorem, take $\omega = (0, ..., 0, 2)$, we have

$$< c_{\omega}^{T^n}, [M] > = \sum_{p \in V(\Gamma_M)} \left(\pm \prod_{e \in E_p} \alpha(e) \right) = 0 \text{ in } H^*(BT^n)$$

Further, we have

$$\sum_{oldsymbol{
ho}\in V(\Gamma_M)}\prod_{oldsymbol{e}\in E_{oldsymbol{
ho}}}\widetilde{lpha}(oldsymbol{e})=0 ext{ in } H^*(B(\mathbb{Z}_2)^n;\mathbb{Z}_2)$$

• By a result of Stong, $\Phi(\{M^{2n}\}) = \{M^n\} = 0$ in \mathfrak{M}_n .

Main result 2

Theorem (Lü-Tan)

The homomorphism $\Phi_n: \Omega_{2n}^{U,T^n} \longrightarrow \mathfrak{M}_n$ is onto.

Main result 2

Theorem (Lü-Tan)

The homomorphism $\Phi_n: \Omega_{2n}^{U,T^n} \longrightarrow \mathfrak{M}_n$ is onto.

Remark. We only obtain that there is at least one class in $\Phi_n^{-1}(\alpha) \subset \Omega_{2n}^{U,T^n}$, containing an omnioriented quasitoric mfd as its a representative.

Proof outline of Main result 2

 $\mathcal{Q}_{2n}^{T''}$: consists of equivariant cobordism classes of all 2*n*-dim quasitoric manifolds.

$$Q_{2n}^{T^n} \subseteq \Omega_{2n}^{U,T^n}$$

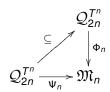
Recall: Lü-Tan's result

 \mathfrak{M}_n is generated by those classes of all small covers over the products of simplices (i.e., generalized real Bott manifolds).

Key Lemma

The natural homomorphism $\Psi_n: \mathcal{Q}_{2n}^{T^n} \longrightarrow \mathfrak{M}_n$ is onto.

Proof outline of Main result 2



Further problem

Problem 1

Is the number $\lceil \frac{n}{2} \rceil + 1$ the best possible lower bound of the number of fixed points for (2n)-dimensional nonbounding unitary toric manifolds?

Problem 2

$$\mathcal{Q}_{2n}^{T^n} = \Omega_{2n}^{U,T^n}$$
?

In particular, if this is true, to find which kinds of omnioriented quasitoric manifolds can be used as generators of \mathcal{Q}_{-n}^{Tn} ?

Further problem

Problem 1

Is the number $\lceil \frac{n}{2} \rceil + 1$ the best possible lower bound of the number of fixed points for (2n)-dimensional nonbounding unitary toric manifolds?

Problem 2

$$Q_{2n}^{T^n} = \Omega_{2n}^{U,T^n}$$
?

In particular, if this is true, to find which kinds of omnioriented quasitoric manifolds can be used as generators of Q_{2n}^{Tn} ?

Thank You!