On Gromov's macroscopic dimension conjecture

A. Dranishnikov

University of Florida and Steklov Mathematical Institute

Moscow, June 22nd, 2013

Scalar curvature

• The scalar curvature Sc_v of a Riemannian manifold V^n at a point $v \in V^n$ is the number defined by

Vol
$$B_V(\epsilon, v) = \text{Vol } B_{\mathbb{R}^n}(\epsilon, 0)(1 - \frac{Sc_v}{6n}\epsilon^2 + o(\epsilon^2))$$

where $B_V(\epsilon, v)$ is the ϵ -ball centered at $v \in V^n$.

• Sc_V = the sum of sectional curvatures over all 2-planes $e_i \wedge e_j$ in the tangent space to v, where e_1, \ldots, e_n is the orthonormal basis.

Scalar curvature

• The scalar curvature Sc_v of a Riemannian manifold V^n at a point $v \in V^n$ is the number defined by

Vol
$$B_V(\epsilon, v) = \text{Vol } B_{\mathbb{R}^n}(\epsilon, 0)(1 - \frac{Sc_v}{6n}\epsilon^2 + o(\epsilon^2))$$

where $B_V(\epsilon, v)$ is the ϵ -ball centered at $v \in V^n$.

• Sc_V = the sum of sectional curvatures over all 2-planes $e_i \wedge e_j$ in the tangent space to v, where e_1, \ldots, e_n is the orthonormal basis.

Properties

• There is the product formula:

$$Sc_{(v_1,v_2)} = Sc_{v_1} + Sc_{v_2}$$

for
$$(V_1 \times V_2, \mathcal{G}_1 \oplus \mathcal{G}_2)$$
.

- Thus, for every closed manifold M, the product M × S² admits a metric with Sc > 0
- Take the S^2 factor to be ϵ -small ! Note that $Sc(S^2_{\epsilon}) = 2/\epsilon^2$.

Properties

• There is the product formula:

$$Sc_{(v_1,v_2)} = Sc_{v_1} + Sc_{v_2}$$

for
$$(V_1 \times V_2, \mathcal{G}_1 \oplus \mathcal{G}_2)$$
.

- Thus, for every closed manifold M, the product M × S² admits a metric with Sc > 0
- Take the S^2 factor to be ϵ -small! Note that $Sc(S^2_{\epsilon}) = 2/\epsilon^2$.

Properties

• There is the product formula:

$$Sc_{(v_1,v_2)} = Sc_{v_1} + Sc_{v_2}$$

for
$$(V_1 \times V_2, \mathcal{G}_1 \oplus \mathcal{G}_2)$$
.

- Thus, for every closed manifold M, the product M × S² admits a metric with Sc > 0
- Take the S^2 factor to be ϵ -small ! Note that $Sc(S^2_{\epsilon}) = 2/\epsilon^2$.

Gromov's Conjecture

GROMOV PSC CONJECTURE.

 $dim_{mc}\widetilde{M}^n \le n-2$ for every closed *n*-manifold with Sc(M) > 0.

EXAMPLE: $N^n = M^{n-2} \times S^2$ admits a metric with Sc > 0. The universal cover $\widetilde{N}^n = M^{n-2} \times S^2$ looks at most (n-2)-dimensional on a large scale.

Gromov's Conjecture

GROMOV PSC CONJECTURE.

 $dim_{mc}\widetilde{M}^n \le n-2$ for every closed *n*-manifold with Sc(M) > 0.

EXAMPLE: $N^n = M^{n-2} \times S^2$ admits a metric with Sc > 0. The universal cover $\widetilde{N^n} = M^{n-2} \times S^2$ looks at most (n-2)-dimensional on a large scale.

- The conjecture is from Gelfand-80 book
 M. Gromov, Positive curvature, macroscopic dimension, spectral gaps and higher signatures, Functional analysis on the eve of the 21st century. Vol II, Birhauser, Boston, 1996.
- First time it appeared in Gromov's "filling" paper [1983] in a different language.

- The conjecture is from Gelfand-80 book
 M. Gromov, Positive curvature, macroscopic dimension, spectral gaps and higher signatures, Functional analysis on the eve of the 21st century. Vol II, Birhauser, Boston, 1996.
- First time it appeared in Gromov's "filling" paper [1983] in a different language.

Macroscopic dimension

• For a metric space *X*, the *macroscopic dimension*

$$dim_{mc}X \leq k$$

iff there is a uniformly cobounded map $\phi: X \to N^k$ to a k-dimensional simplicial complex.

• A map $\phi: X \to N$ is *uniformly cobounded* if there is b > 0 such that $diam(\phi^{-1}(y)) \le b$ for all $y \in N$.

Macroscopic dimension

• For a metric space *X*, the *macroscopic dimension*

$$dim_{mc}X \leq k$$

iff there is a uniformly cobounded map $\phi: X \to N^k$ to a k-dimensional simplicial complex.

• A map $\phi: X \to N$ is *uniformly cobounded* if there is b > 0 such that $diam(\phi^{-1}(y)) \le b$ for all $y \in N$.

- $dim_{mc}X \leq dimX$
- dim_{mc}X ≤ asdimX
- $dim_{mc}\mathbb{R}^n = n$ and
- generally, $dim_{mc}V^n = n$ for every uniformly contractible manifold with proper metric.

- $dim_{mc}X < dimX$
- dim_{mc}X ≤ asdimX
- $dim_{mc}\mathbb{R}^n = n$ and
- generally, $dim_{mc}V^n = n$ for every uniformly contractible manifold with proper metric.

- $dim_{mc}X < dimX$
- dim_{mc}X ≤ asdimX
- $dim_{mc}\mathbb{R}^n = n$ and
- generally, $dim_{mc}V^n = n$ for every uniformly contractible manifold with proper metric.

- $dim_{mc}X < dimX$
- dim_{mc}X ≤ asdimX
- $dim_{mc}\mathbb{R}^n = n$ and
- generally, $dim_{mc}V^n = n$ for every uniformly contractible manifold with proper metric.

Gromov's Conjecture implies the Gromov-Lawson:

Gromov-Lawson Conjecture

- *Proof.* The result follows from the facts that \widetilde{M} is uniformly contractible and $dim_{mc}V^n=n$ for all uniformly contractible manifolds.
- The Gromov-Lawson is a Novikov type conjecture.

Gromov's Conjecture implies the Gromov-Lawson:

Gromov-Lawson Conjecture

- *Proof.* The result follows from the facts that M is uniformly contractible and $dim_{mc}V^n = n$ for all uniformly contractible manifolds.
- The Gromov-Lawson is a Novikov type conjecture.

Gromov's Conjecture implies the Gromov-Lawson:

Gromov-Lawson Conjecture

- *Proof.* The result follows from the facts that \widetilde{M} is uniformly contractible and $dim_{mc}V^n=n$ for all uniformly contractible manifolds.
- The Gromov-Lawson is a Novikov type conjecture.

Gromov's Conjecture implies the Gromov-Lawson:

Gromov-Lawson Conjecture

- *Proof.* The result follows from the facts that \widetilde{M} is uniformly contractible and $dim_{mc}V^n=n$ for all uniformly contractible manifolds.
- The Gromov-Lawson is a Novikov type conjecture.

Gromov modulo Novikov

• Gromov's conjecture for a group π = Gromov's conjecture for manifolds with the fundamental group π .

• For which groups π Gromov's conjecture does hold?

Gromov modulo Novikov

• Gromov's conjecture for a group π = Gromov's conjecture for manifolds with the fundamental group π .

• For which groups π Gromov's conjecture does hold?

Finite index subgroups

- PROPOSITION. Let $\pi' \subset \pi$ be a subgroup of finite index, $[\pi : \pi'] < \infty$. If Gromov's conjecture holds for manifolds with fundamental group π' , then it holds for manifolds with the fundamental group π .
- Proof. Let $\pi_1(M) = \pi$ and let M have a PSC metric. Then M' corresponding to π' has a PSC metric. Then $\dim_{mc} \tilde{M}' \leq n-2$ by Gromov's Conjecture for π' . Note that $\tilde{M}' = \tilde{M}$.

Finite index subgroups

- PROPOSITION. Let $\pi' \subset \pi$ be a subgroup of finite index, $[\pi : \pi'] < \infty$. If Gromov's conjecture holds for manifolds with fundamental group π' , then it holds for manifolds with the fundamental group π .
- Proof. Let $\pi_1(M) = \pi$ and let M have a PSC metric. Then M' corresponding to π' has a PSC metric. Then $\dim_{mc} \tilde{M}' \leq n-2$ by Gromov's Conjecture for π' . Note that $\tilde{M}' = \tilde{M}$.

Previous Results

Let ko = KO(0) be the connective cover of the real K-theory.

Theorem (Bolotov-Dr. 2010)

Suppose that a discrete group π has the following properties:

- The Strong Novikov Conjecture holds for π .
- The natural map $per : ko_n(B\pi) \to KO_n(B\pi)$ is injective.

Then the Gromov PSC Conjecture holds true for spin n-manifolds M with the fundamental group $\pi_1(M) = \pi$.

Corollary.

The Gromov conjecture holds for spin n-manifolds M with the fundamental group $\pi_1(M)$ equal the product of free groups $F_1 \times \cdots \times F_n$. In particular, it holds for free abelian groups.

New Results

Theorem 1

Suppose that π is a virtual duality group that satisfies the Strong Novikov conjecture. Then the Gromov PSC Conjecture holds true for spin n-manifolds M with the fundamental group $\pi_1(M) = \pi$.

Theorem 2

Suppose that π is a virtual duality group that satisfies the Coarse Baum-Connes conjecture. Then the Gromov PSC Conjecture holds true for almost spin n-manifolds M with the fundamental group $\pi_1(M) = \pi$.

New Results

Theorem 1

Suppose that π is a virtual duality group that satisfies the Strong Novikov conjecture. Then the Gromov PSC Conjecture holds true for spin n-manifolds M with the fundamental group $\pi_1(M) = \pi$.

Theorem 2

Suppose that π is a virtual duality group that satisfies the Coarse Baum-Connes conjecture. Then the Gromov PSC Conjecture holds true for almost spin n-manifolds M with the fundamental group $\pi_1(M) = \pi$.

Duality groups

• We recall that a group π is called a *duality group* if there is a π -module D such that

$$H^{i}(\pi, M) \cong H_{m-i}(\pi, M \otimes D)$$

for all π -modules M and all i where $m = cd(\pi)$.

- A group π is called a *virtual duality group* if it contains a duality group as a finite index subgroup.
- Examples of virtual duality groups include the fundamental groups of aspherical manifolds, free groups, polycyclic groups, arithmetic groups, knot groups, mapping class groups, their products, etc.

Duality groups

• We recall that a group π is called a *duality group* if there is a π -module D such that

$$H^{i}(\pi, M) \cong H_{m-i}(\pi, M \otimes D)$$

for all π -modules M and all i where $m = cd(\pi)$.

- A group π is called a *virtual duality group* if it contains a duality group as a finite index subgroup.
- Examples of virtual duality groups include the fundamental groups of aspherical manifolds, free groups, polycyclic groups, arithmetic groups, knot groups, mapping class groups, their products, etc.

Duality groups

• We recall that a group π is called a *duality group* if there is a π -module D such that

$$H^{i}(\pi, M) \cong H_{m-i}(\pi, M \otimes D)$$

for all π -modules M and all i where $m = cd(\pi)$.

- A group π is called a *virtual duality group* if it contains a duality group as a finite index subgroup.
- Examples of virtual duality groups include the fundamental groups of aspherical manifolds, free groups, polycyclic groups, arithmetic groups, knot groups, mapping class groups, their products, etc.

Strong Novikov Conjecture

Strong Novikov Conjecture

The real analytic assembly map

$$\alpha: KO_*(B\pi) \to KO_*(C_r^*(\pi))$$

is a monomorphism for torsion free groups π .

Here $C_r^*(\pi)$ is the completion of $\mathbb{R}\pi$ in the operator norm where $\mathbb{R}\pi$ acts on $\ell^2(\pi)$ by multiplication on the left.

Rosenberg's Theorem

Let $f: M \to B\pi$ be a classifying map for the universal cover of M.

Rosenberg's Theorem

Let M be a closed connected spin manifold with Sc > 0. Then $\alpha \circ f_*([M]_{KO}) = 0$.

This result led to the Gromov-Lawson-Rosenberg Conjecture which is an extension of the Gromov-Lawson conjecture to general manifolds. (disproved by T. Schick)

GLR-conjecture

Let M be a closed connected spin manifold. Then M admits a metric with Sc > 0 iff $\alpha \circ f_*([M]_{KO}) = 0$.

Rosenberg's Theorem

Let $f: M \to B\pi$ be a classifying map for the universal cover of M.

Rosenberg's Theorem

Let M be a closed connected spin manifold with Sc > 0. Then $\alpha \circ f_*([M]_{KO}) = 0$.

This result led to the Gromov-Lawson-Rosenberg Conjecture which is an extension of the Gromov-Lawson conjecture to general manifolds. (disproved by T. Schick)

GLR-conjecture

Let M be a closed connected spin manifold. Then M admits a metric with Sc > 0 iff $\alpha \circ f_*([M]_{KO}) = 0$.

Coarse Baum-Connes conjecture

The coarse Baum-Connes conjecture for a metric space X:
 The coarse assembly map

$$\mathcal{A}_{\infty}: \mathit{KX}_*(X) o \mathit{K}_*(\mathit{C}^*_{Roe}(X))$$

is an isomorphism.

• The Baum-Connes conjecture for a torsion free group π : The analytic assembly map

$$\alpha: K_*(B\pi)) \to K_*(C_r^*(\pi))$$

is an isomorphism.

Coarse Baum-Connes conjecture

The coarse Baum-Connes conjecture for a metric space X:
 The coarse assembly map

$$\mathcal{A}_{\infty}: \mathit{KX}_*(X) o \mathit{K}_*(\mathit{C}^*_{\mathit{Boe}}(X))$$

is an isomorphism.

• The Baum-Connes conjecture for a torsion free group π : The analytic assembly map

$$\alpha: \mathcal{K}_*(\mathcal{B}\pi)) \to \mathcal{K}_*(\mathcal{C}_r^*(\pi))$$

is an isomorphism.

Coarse K-homology

ullet \mathcal{A}_{∞} is the direct limit of coarse index maps

$$\mathcal{A}_*: \textit{K}_*^{\textit{If}}(\textit{N}_i) \rightarrow \textit{K}_*(\textit{C}^*_{\textit{Roe}}(\textit{N}_i)) \cong \textit{K}_*(\textit{C}^*_{\textit{Roe}}(\textit{X}))$$

for an Anti-Čech approximation $\{N_i\}$ of X.

• By the definition the coarse K-homology of *X* is

$$KX_*(X) = \lim_{\to} K_*^{lf}(N_i).$$

• When $X = \pi$,

$$KX_*(\pi) = \lim_{\longrightarrow} K_*^{lf}(R_m(\pi))$$

for the the Rips complexes $R_m(\pi)$

Coarse K-homology

ullet \mathcal{A}_{∞} is the direct limit of coarse index maps

$$\mathcal{A}_*: \mathit{K}_*^{\mathit{lf}}(N_i) \to \mathit{K}_*(\mathit{C}^*_{Roe}(N_i)) \cong \mathit{K}_*(\mathit{C}^*_{Roe}(X))$$

for an Anti-Čech approximation $\{N_i\}$ of X.

By the definition the coarse K-homology of X is

$$KX_*(X) = \lim_{\longrightarrow} K_*^{lf}(N_i).$$

• When $X = \pi$,

$$KX_*(\pi) = \lim_{\longrightarrow} K_*^{lf}(R_m(\pi))$$

for the the Rips complexes $R_m(\pi)$

Coarse K-homology

ullet \mathcal{A}_{∞} is the direct limit of coarse index maps

$$\mathcal{A}_*: \mathit{K}_*^{\mathit{lf}}(N_i) \to \mathit{K}_*(\mathit{C}^*_{Roe}(N_i)) \cong \mathit{K}_*(\mathit{C}^*_{Roe}(X))$$

for an Anti-Čech approximation $\{N_i\}$ of X.

By the definition the coarse K-homology of X is

$$KX_*(X) = \lim_{\stackrel{\rightarrow}{\longrightarrow}} K_*^{lf}(N_i).$$

• When $X = \pi$,

$$KX_*(\pi) = \lim_{\stackrel{\longrightarrow}{}} K_*^{lf}(R_m(\pi))$$

for the the Rips complexes $R_m(\pi)$

Macrscopically small manifolds

- There is a coarsening map $c_Y : H_*^{lf}(Y) \to HX_*(Y)$.
- DEFINITION(Gong G. Yu) An open manifold N is macroscopically small if c_N([N]) = 0 for integral coefficients.
- THEOREM 3. The universal cover \widetilde{M} of a closed n-manifold is macroscopically small if and only if $\dim_{mc} \widetilde{M} < n$.

Macrscopically small manifolds

- There is a coarsening map $c_Y : H_*^{lf}(Y) \to HX_*(Y)$.
- DEFINITION(Gong G. Yu) An open manifold N is macroscopically small if c_N([N]) = 0 for integral coefficients.
- THEOREM 3. The universal cover \widetilde{M} of a closed n-manifold is macroscopically small if and only if $\dim_{mc} \widetilde{M} < n$.

Macrscopically small manifolds

- There is a coarsening map $c_Y : H_*^{lf}(Y) \to HX_*(Y)$.
- DEFINITION(Gong G. Yu) An open manifold N is macroscopically small if c_N([N]) = 0 for integral coefficients.
- THEOREM 3. The universal cover \widetilde{M} of a closed n-manifold is macroscopically small if and only if $\dim_{mc} \widetilde{M} < n$.

Roe's Theorem

Theorem (Roe)

Suppose that a closed almost spin manifold M has positive scalar curvature. Then the coarse index map

$$\mathcal{A}_*: \mathcal{K}_*^{\mathit{lf}}(\widetilde{\mathit{M}})
ightarrow \mathcal{K}_*(\mathcal{C}^*_{\mathit{Roe}}(\pi))$$

takes the K-theory fundamental class $[\widetilde{M}]_K$ to zero.

Open problem

- Roe's theorem implies that \widetilde{M} is macroscopically small over \mathbb{O} .
- Is every Q-macroscopically small manifold macroscopically small?
- 'Yes' implies the first part of Gromov's PSC conjecture:

$$\dim_{mc} \widetilde{M} \leq n-1$$

for a *n*-manifold *M* with PSC.

Open problem

- Roe's theorem implies that \widetilde{M} is macroscopically small over \mathbb{O} .
- Is every Q-macroscopically small manifold macroscopically small?
- 'Yes' implies the first part of Gromov's PSC conjecture:

$$\dim_{mc} \widetilde{M} \leq n-1$$

for a *n*-manifold *M* with PSC.

Open problem

- Roe's theorem implies that \widetilde{M} is macroscopically small over \mathbb{O} .
- Is every Q-macroscopically small manifold macroscopically small?
- 'Yes' implies the first part of Gromov's PSC conjecture:

$$\dim_{mc} \widetilde{M} \leq n-1$$

for a *n*-manifold *M* with PSC.

First part of Gromov's conjecture

Theorem 4

Suppose that the natural transformation $ku_*(E\pi) \to KU_*(E\pi)$ is a monomorphism for a group π that satisfies the coarse Baum-Connes conjecture. Then the first part of Gromov's conjecture holds for manifolds with the fundamental group π : $\dim_{mc} \widetilde{M} \le n-1$ for every n-manifold with PSC and $\pi_1(M)=\pi$.

Second part of Gromov's conjecture

The second part of Gromov's conjecture (where it's proven) is based on the fact that the suspension of the Hopf map $h: S^n \to S^{n-1}$ induces a non-zero homomorphism for the real K-theory:

$$h_*: KO_n(S^n) \to KO_n(S^{n-1}).$$

Thank you!!!