Almost complex quasitoric manifolds.

Andrey Kustarev

Conference in honour of V. M. Buchstaber on the occasion of his 70th birthday,

Moscow, June 22, 2013

Outline

We sketch the solution of the following problem:

Find out whether a T^n -invariant almost complex structure exists on a given quasitoric manifold.

We start with necessary definitions, then provide precise formulations, main ideas of the proof and several examples.

Quasitoric manifolds

M is a topological manifold of dimension 2n, equipped with a continious action of compact torus T^n .

1) The action is locally standart: like $T^n \circlearrowleft \mathbb{C}^n$.

The condition 1 implies that orbit space M/T^n has the structure of manifold with corners.

2) M/T^n is isomorphic, as manifold with corners, to a simple polytope P.

M is said to be quasitoric if it satisfies conditions 1 and 2 [D-J].

Examples

- 1) $M = \mathbb{C}P^n$, $P = \Delta^n$.
- 2) *M* is any projective toric variety, *P* is a Delzant polytope.
- 3) Non-toric example: $M = \mathbb{C}P^2 \# \mathbb{C}P^2$, $P = I \times I$.

There may exist multiple quasitoric M's for given P!

Combinatorial data

Denote by $p: M \to P$ the projection map. The submanifolds of the form $p^{-1}(F_j)$ where $F_j \subset P$, dim $F_j = n-1$, $j = 1 \dots m$, are called *characteristic submanifolds*.

We assume that M and all of $p^{-1}(F_j)$ are oriented. Then every 1-dim subgroup $\operatorname{Stab}(p^{-1}(F_j))$ determines a vector $\Lambda_j \subset \mathbb{Z}^n$. The vectors Λ_j , $j=1\ldots m$, form an integer-valued matrix $\Lambda=(n\times m)$.

Theorem ([D-J],[B-P-R]). M is uniquely determined by combinatorial data (P, Λ) .

So one can try to express topological properties of M in purely combinatorial terms.

Examples

1)
$$M = \mathbb{C}P^n$$
, $P = \Delta^n$, $\Lambda =$

$$\begin{pmatrix} 1 & 0 & \dots & -1 \\ 0 & 1 & \dots & -1 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 1 & -1 \end{pmatrix},$$

- 2) M is any projective toric variety, P is a Delzant polytope, $\Lambda = (1\text{-dim cones of a normal fan})$,
- 3) $M = \mathbb{C}P^2 \# \mathbb{C}P^2$, $P = I \times I$, $\Lambda =$

$$\begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 2 & -1 \end{pmatrix}.$$

Remarks

- 1) M admits a canonical T^n -invariant smooth structure ([D-J],[B-P-R]).
- 2) M admits a canonical T^n -invariant stably complex structure J_{can} ([D-J],[B-P-R]).

Almost and stably complex structures

Complex structure J on a real vector bundle ξ is $J \in \operatorname{End}(\xi)$ s.t. $J^2 = -id$.

If $\xi = \tau(M)$, M is almost complex. If $\xi = \tau(M) \oplus \mathbb{R}^{I}$, M is said to be stably complex.

J is called T^n -invariant if it commutes with dt for any $t \in T^n$.

Non-invariant case: Thomas theorem (1967)

Let J_{st} be a stably complex structure on M. Then J_{st} is equivalent to some almost complex structure if and only if

$$(c_n(J_{st}),[M]) = \chi(M)$$

- necessary condition is also the sufficient!

The problem

Problem 7.6 from [D-J]:

Find a combinatorial criteria in terms of Λ for existence of T^n -invariant almost complex structure on M.

Related work

Mikiya Masuda. Unitary toric manifolds, multi-fans and equivariant index (1999).

A very well-known paper containing, besides many other results, description of the case of 4-dimensional smooth almost complex toric manifolds.

Related work

Natalia Dobrinskaya (unpublished, 2000s) – handling the case of M^{2n} , $n \leq 7$, by means of obstruction theory on M^{2n} .

Related work

M. Poddar, S. Ganguli. Almost complex structures, blowdowns and McKay correspondence in quasitoric orbifolds (2012) – extending this proof to quasitoric orbifolds.

The answer

The canonical structure J_{can} on M is equivalent to some T^n -invariant almost complex structure if and only if

$$\det \Lambda_{\nu} = +1$$

for every vertex v of polytope P.

Here by Λ_{ν} we denote corresponding square matrix – rows remain the same and columns correspond to facets adjacent to ν .

Example 1

$$M = \mathbb{C}P^1 \times \mathbb{C}P^1$$
, $P = I \times I$, $\Lambda =$
$$\begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix}.$$

– a toric example. All signs det Λ_{ν} are +1:

$$\det \left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix} \right) = \det \left(\begin{smallmatrix} 0 & -1 \\ 1 & 0 \end{smallmatrix} \right) = \det \left(\begin{smallmatrix} -1 & 0 \\ 0 & -1 \end{smallmatrix} \right) = \det \left(\begin{smallmatrix} 0 & 1 \\ -1 & 0 \end{smallmatrix} \right) = +1.$$

Example 2

$$M = \mathbb{C}P^2 \# \mathbb{C}P^2$$
, $P = I \times I$, $\Lambda =$
$$\begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 2 & -1 \end{pmatrix}.$$

– no almost complex structure, because $det \begin{pmatrix} -1 & 1 \\ 2 & -1 \end{pmatrix} = -1$.

Example 3

$$M=\mathbb{C}P^2\#\mathbb{C}P^2\#\mathbb{C}P^2$$
, P is a pentagon, $\Lambda=$
$$\begin{pmatrix} 1&0&-1&0&1\\0&1&0&-1&-1 \end{pmatrix}.$$

All signs are +1.

M admits an T^n -inv. almost complex structure – but NOT a symplectic structure, by a result of Taubes.

Therefore M is not a projective toric variety!

Proof of existence

We utilize the fact that P is a convex polytope – and therefore a cellular complex.

Hence, its cellular cohomology groups with any coefficients are all zero in positive dimensions.

Proof: defining an obstruction cochain

It is possible to construct a cellular obstruction cochain

$$\sigma_J^i \in H^i(P^n, \pi_{i-1}(SO/U))$$

that controls extension of structure J from $p^{-1}(sk_{i-1}(P^n))$ to $p^{-1}(sk_i(P^n))$.

Main job is to show that σ^i_J is well-defined.

Proof: where should signs appear?

In the very beginning,

when we construct T^n -invariant almost complex structure on $TM^{2n}|_{fixed\ points}$ and then extend it to $TM^{2n}|_{p^{-1}(sk_1(P^n))}$.

This is possible only when all signs are +1!

The set of invariant structures

Let S be the set of all T^n -invariant almost complex structures J inducing given omniorientation.

Structures are considered up to T^n -equivariant homotopy.

Assume S is non-empty.

- 1. S is «affine equivalent» to $\mathbb{Z}^{f_1(P^n)-f_0(P^n)+1}$.
- 2. Any two structures from S are non-equivariantly homotopic!

The set of positive omniorientations: upper bound

Theorem: the number of positive omniorientations (that is, number of T^n -invariant structures up to non-equivariant homotopy) does not exceed 2^n .

We have a dimension-based upper bound.

Happy birthday, Victor Matveevich!

References

- M. Davis, T. Januskiewicz. Convex polytopes, Coxeter orbifolds and torus actions // Duke Math J. 1991. V.62 N2 P. 417-451.
- Mikiya Masuda. Unitary toric manifolds, multi-fans and equivariant index // Tohoku Math. J. 51 (1999), no. 2, 237-265.
- V. Buchstaber, T. Panov, N. Ray. Spaces of polytopes and cobordism of quasitoric manifolds // Moscow Math. J (2007) V.7 N2.
- A. Kustarev. Equivariant almost complex structures on quasitoric manifolds // Trudy MIAN, 2009, Vol. 266, pp. 140-148.
- M. Poddar, S. Ganguli. Almost complex structure, blowdowns and McKay correspondence in quasitoric orbifolds (2012). arXiv:1202.5578