Characterization of simplicial complexes with Buchstaber number two

Nikolay Erokhovets

Lomonosov Moscow State University

Laboratory of Discrete and Computational Geometry, Yaroslavl State University

June 18-22, 2013 MI RAS

Toric topology

Canonical correspondence

simplicial complex Kdim K = n - 1 \longrightarrow number of vertices = m moment-angle complex \mathcal{Z}_K $\dim \mathcal{Z}_K = m + n$ canonical T^m -action

Combinatorics of K

 \longleftrightarrow

Topology of \mathcal{Z}_K

K-power

 $A \subset X$ – a pair of topological spaces.

$$(X,A)^K = \bigcup_{\sigma \in K} X^{\sigma} \times A^{[m] \setminus \sigma} \subset X^m,$$

where
$$X^{\sigma} \times A^{[m] \setminus \sigma} = X_1 \times \cdots \times X_m$$
, $X_i = \begin{cases} X, & i \in \sigma \\ A, & i \in [m] \setminus \sigma \end{cases}$

Special cases

$$D^2 = \{ \boldsymbol{z} \in \mathbb{C} : |\boldsymbol{z}| \leqslant 1 \}, \ S^1 = \{ \boldsymbol{z} \in \mathbb{C} : |\boldsymbol{z}| = 1 \},$$

$$(D^2, S^1)^K - \text{a moment-angle complex } \mathcal{Z}_K.$$

$$D^1 = \{x \in \mathbb{R} \colon |x| \leqslant 1\}, \ S^0 = \{\pm 1\}$$

 $(D^1,S^1)^K$ – a real moment-angle complex $\mathbb{R}\mathcal{Z}_K\subset\mathcal{Z}_K$.

There are canonical coordinate actions of $T^m = (S^1)^m$ on \mathcal{Z}_K , and $(S^0)^m \simeq \mathbb{Z}_2^m$ on $\mathbb{R}\mathcal{Z}_K$.

Definition

A Buchstaber invariant s(K) is the maximal dimension r of toric subgroups $H \subset T^m$, $H \simeq T^r$, that act freely on \mathcal{Z}_K .

A real Buchstaber invariant $s_{\mathbb{R}}(K)$ is the maximal dimension s of subgroups $H_2 \subset \mathbb{Z}_2^m$ that act freely on $\mathbb{R}\mathcal{Z}_K$.

$$egin{aligned} s(\Delta^{n-1}) &= s_{\mathbb{R}}(\Delta^{n-1}) = 0, \ 1 \leqslant s(K) \leqslant s_{\mathbb{R}}(K) \leqslant m-n, \qquad K
eq \Delta^{n-1} \end{aligned}$$

Buchstaber problem

Problem (V. M. Buchstaber, 02)

To find an EFFECTIVE combinatorial description of s(K).

Modifications (V. M. Buchstaber, 12)

Problem'

For any n to calculate s(K) for all simplicial complexes with dim K = n - 1.

Problem"

For any r to characterize combinatorially simplicial complexes K with s(K) = r.

Two descriptions of a toric subgroup ⇒

- (S) s(K) is the maximal r that admits a matrix $S \in \mathbb{Z}^{m \times r}$ such that for any $\sigma \in K$, the rows $\{S^i : i \in [m] \setminus \sigma\}$ span \mathbb{Z}^r ;
- (Λ) s(K) is the maximal r that admits a mapping $\Lambda \colon [m] \to \mathbb{Z}^{m-r}$ such that for any simplex $\sigma \in K$ the vectors $\Lambda(\sigma)$ form part of a basis in \mathbb{Z}^{m-r} .

Two descriptions of a linear subspace in $\mathbb{Z}_2^m \Rightarrow$

- (S₂) $s_{\mathbb{R}}(K)$ is the maximal r that admits a matrix $S \in \mathbb{Z}_2^{m \times r}$ such that for any $\sigma \in K$, the rows $\{S^i : i \in [m] \setminus \sigma\}$ span \mathbb{Z}_2^r ;
- (Λ_2) $s_{\mathbb{R}}(K)$ is the maximal r that admits a mapping $\Lambda \colon [m] \to \mathbb{Z}_2^{m-r}$ such that for any simplex $\sigma \in K$ the vectors $\Lambda(\sigma)$ are linearly independent.

Generalized chromatic number

Classical chromatic number $\gamma(K)$ – minimal r such that there exists a non-degenerate simplicial mapping $K \to \Delta^{r-1}$.

```
Simplicial complex U(r)
vertices \longleftrightarrow vectors in \mathbb{Z}^r \setminus \{0\}
simplices \longleftrightarrow parts of bases in \mathbb{Z}^r
```

s(K) is the maximal r such that there exists a non-degenerate simplicial mapping $K \to U(m-r)$.

Lemma

- 2 $s(K) = s_{\mathbb{R}}(K)$ for dim K = 0, 1, 2.

The proof is based on the following fact

Lemma

For a matrix $A \in \{0,1\}^{r \times r}$, r = 1,2,3, the equality $\det A = 1 \mod 2$ implies $\det A = \pm 1$. For $r \geqslant 4$ this is not true.

Some known results

s(K) has been studied since 2001 by I. Izmestiev, A. Ayzenberg, M. Masuda and Y. Fukukawa, E and others.

Proposition (Izmestiev, 01)

$$s(K) \geqslant m - \gamma(K);$$

Proposition (E, 08)

$$s(K) \geqslant m - \gamma(K) + s(\Delta_{n-1}^{\gamma-1}).$$

M. Masuda and Y. Fukukawa (09) obtained nice results for the real Buchstaber invariant of skeleta of simplices.

Simple polytopes

- Let $K_P = \partial P^{\Delta}$, P simple convex n-polytope with m facets.
- Then \mathcal{Z}_P is a smooth manifold (V. M. Buchstaber, T. E. Panov) such that $\mathcal{Z}_P/T^m=P$.
- s(pt) = 0. We have $1 \leqslant s(P) \leqslant m n$ for dim P > 0.
- If s(P) = m n, then \mathcal{Z}_P/T^{m-n} is a quasitoric manifold topological generalization of an algebraic toric manifold.
- The 4-colors theorem $\Longrightarrow s(P) = m n$ for n = 3.
- I. Izmestiev (2001) found the lower bound in terms of the Joswig group of projectivities of P.
- There are polytopes P and Q with equal numbers of faces and chromatic numbers but $s(P) \neq s(Q)$ (E, 08).

Minimal non-simplices

Definition

The set $\omega \subset [m]$ is called a non-simplex, if $\omega \notin K$. Non-simplex ω is minimal, if it's any proper subset belongs to K.

Denote by N(K) the set of all minimal non-simplices.

$$\sigma \in K \Leftrightarrow \nexists \omega \in N(K) : \omega \subset \sigma$$

Thus, N(K) determines K in a unique way.

$$K = \Delta^n \Leftrightarrow N(K) = \emptyset;$$

Theorem (E, 09)

- **1** Let $[m] = \omega_1 \sqcup \cdots \sqcup \omega_r$, where $\omega_i \notin K$. Then $s(K) \geqslant r$.
- 2 Let P be a simple polytope with m n = 3. Then $s(P) = 3 \Leftrightarrow |N(K_P)| \leqslant 7$.

Problem': Polytopes

- $s(P^0) = 0$;
- $s(P^1) = 1;$
- $s(P^2) = m 2;$
- $s(P^3) = m 3$ due to the 4-colors theorem;

Problem': Simplicial complexes

• If dim K = 0 then s(K) = m - 1.

Theorem (Ayzenberg, 09)

If dim K = 1, then $s(K) = m - \lceil \log_2(\gamma(K) + 1) \rceil$. In general case $s(K) \leq m - \lceil \log_2(\gamma(K) + 1) \rceil$.

Proposition (E, 13)

If $\dim K = 2$, then

$$m-1-\lceil \log_2(\gamma(K))\rceil \leqslant s(K) \leqslant m-\lceil \log_2(\gamma(K)+1)\rceil.$$

In particular, if $\gamma(K) = 2^k$, then s(K) = m - k - 1.

Problem": Polytopes

Proposition

- 2 For any $k \ge 2$ there exists P with m n = k and s(P) = 2;
- ③ If s(P) = 2, then $2 \le m n \le 2 + \left[\frac{n}{2}\right]$. In this case either $P = I \times \Delta^n$, or any two facets of P intersect. Moreover any (m n 2) facets of P intersect. We have:
 - if m n = 2, then $P = \Delta^i \times \Delta^j$;
 - if m n = 3, then $|N(K_P)| \le 7$;
 - if n = 2, then $P = I \times I$;
 - if n = 3, then $P = I \times \Delta^2$.

Problem": Simplicial complexes

Proposition

 $s(K) \geqslant 1$ if and only if $N(K) \neq \emptyset$, i.e. $K \neq \Delta^n$.

Proposition

 $s(K) \geqslant 2$ if and only if N(K) contains one of the subsets:

- **2** $\{\tau_1, \tau_2\}$: $\tau_1 \cap \tau_2 = \emptyset$.

Theorem

 $s(K) \geqslant 3$ if and only if N(K) contains one of the subsets:

- **5** $\{\tau_1, \tau_2, \tau_3\}$: $\tau_1 \cap \tau_2 = \tau_1 \cap \tau_3 = \tau_2 \cap \tau_3 = \emptyset$.

Proposition

Condition (S_2) is equivalent to the following condition (S_2^*) : for any nonzero vector $\mathbf{a} \in \mathbb{Z}_2^k$ there exists $\omega(\mathbf{a}) \in N(K)$ such that $\langle \mathbf{a}, S^i \rangle = 1$ in \mathbb{Z}_2 for all $i \in \omega(\mathbf{a})$.

Proposition

We have $s_{\mathbb{R}}(K) \geqslant r$ if and only if there exists a mapping $\xi \colon \mathbb{Z}_2^r \setminus \{0\} \to N(K)$ such that $\xi(\mathbf{a}_1) \cap \cdots \cap \xi(\mathbf{a}_{2l+1}) = \emptyset$ for any minimal linear dependence $\mathbf{a}_1 + \cdots + \mathbf{a}_{2l+1} = 0$.

Corollary

Condition $s_{\mathbb{R}}(K) \geqslant 3$ is equivalent to the existence of the mapping $\xi \colon \mathbb{Z}_2^3 \setminus \{0\} \to N(K)$ such that $\xi(\boldsymbol{a}) \cap \xi(\boldsymbol{b}) \cap \xi(\boldsymbol{c}) = \varnothing$ for any triple of pairwise distinct vectors \boldsymbol{a} , \boldsymbol{b} , \boldsymbol{c} with $\boldsymbol{a} + \boldsymbol{b} + \boldsymbol{c} = 0$.

Problem

To classify all simplicial complexes K with s(K) = 2 and all polytopes P with s(P) = 2.

Minimal non-simplices are closely related to other combinatorial characteristics of simplicial complexes such as bigraded Betti numbers

$$\beta^{-i,2j}(K) = \operatorname{rank} \operatorname{Tor}_{\mathbb{Z}[\mathbf{v}_1,\ldots,\mathbf{v}_m]}^{-i,2j}(\mathbb{Z}[K],\mathbb{Z})$$

For example, $\sum_{j} \beta^{-1,2j} = |N(K)|$.

Problem

To find a criterion for s(K) = 2 in terms of bigraded Betti numbers.

Problem

To find an exact formula for s(K) in the case dim K = 2.

References I

A. Ayzenberg,

The problem of Buchstaber number and its combinatorial aspects, arXiv:1003.0637v1 [math.CO], 2010.

A. Ayzenberg,

Relation between the Buchstaber invariant and generalized chromatic numbers, Far-Eastern Math. J.,11:2(2011),113-119.(in russian).

A. Ayzenberg

Relation between the Buchstaber invariant and generalized chromatic numbers, Far-Eastern Math. J.,11:2(2011),113-119.(in russian).

Victor M. Buchstaber, Taras E. Panov,

Torus Actions and Their Applications in Topology and Combinatorics, Providense, R.I.: American Mathematical Society, 2002. (University Lecture Series; V.24).

M. Davis, T. Januszkiewicz,

Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J., 1991, V.62, N2, 417-451.

Y. Fukukawa, M. Masuda,

Buchstaber invariants of skeleta of a simplex.

Osaka J. Math. Volume 48, Number 2 (2011), 549-582; arXiv:0908.3448v2 [math.AT].

Y. Fukukawa, M. Masuda,

Buchstaber invariants of skeleta of a simplex,

Osaka J. Math. Volume 48, Number 2 (2011), 549-582; arXiv:0908.3448v2 [math.AT].

References II

N. Erokhovets.

Buchstaber invariant of simple polytopes, UMN, 2008, 63:5, 962-964.

N. Erokhovets,

Buchstaber invariant of simple polytopes, arXiv:0908.3407 [math.AT], 2009.

N. Erokhovets,

Moment-angle manifolds of simple n-polytopes with n+3 facets, UMN, 2011, 66:5, 1006-1008.

M. Joswig,

The group of projectivities and colouring of the facets of a simple polytope, Russian Mathematical Surveys, 2001, 56:3, 584-585.

I. V. Izmestiev,

Three-dimensional manifolds defined by coloring a simple polytope, Math. Notes, 2001, 69:3, 340-346.

I. I. Izmestiev,

Free torus action on the manifold \mathcal{Z}_P and the group of projectivities of a polytope P, Russian Math. Surveys, 2001, 56:6, 582-583.

Thank You for Your Attention!