Weak Reflection Principle and Static Hedging of Barrier Options

Sergey Nadtochiy

Department of Mathematics University of Michigan

Apr 2013

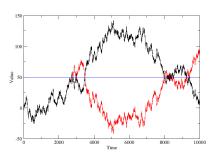
Advanced Finance and Stochastics Steklov Institute, Moscow

Reflection Principle for Brownian motion

B is a standard Brownian motion on a real line, $M_t = \sup_{u \in [0,t]} B_u$. For any U > 0 and K < U:

$$\mathbb{P}\left(B_{t} \leq K, M_{t} > U\right) = \mathbb{P}\left(B_{t-T_{U}}^{U} \leq K, T_{U} < t\right)$$

$$= \mathbb{P}\left(2U - B_{t-T_U}^U \le K, T_U < t\right) = \mathbb{P}\left(B_t \ge 2U - K\right)$$



Relevant properties of Brownian motion

- strong Markov property: $B_t^U B_{T_U} = B_{T_U+t} B_{T_U}$ is a standard Brownian motion, independent of \mathcal{F}_{T_U} ;
- **continuity**: since the paths of B are continuous, $B_{T_U} = U$ and, in view of the above, B^U is a Brownian motion started from U, and independent of \mathcal{F}_{T_U} ;
- **symmetry**: the distribution of B_t^U is symmetric with respect to the initial level U, i.e Law $(B_t^U) = \text{Law}(2U B_t^U)$.

Applications of Refection Principle

- Computation of the joint distribution of the process and its running maximum (minimum).
- Static hedging of barrier options: given payoff h, upper barrier U=0, and maturity T>0, find G such that

$$\mathbb{E}\left(\left.h(B_{T}^{\mathsf{x}})\mathbf{1}_{\left\{\sup_{u\in[0,T]}B_{u}^{\mathsf{x}}<0\right\}}\right|\mathcal{F}_{t\wedge\mathcal{T}_{0}}\right)=\mathbb{E}\left(\left.G(B_{T}^{\mathsf{x}})\right|\mathcal{F}_{t\wedge\mathcal{T}_{0}}\right),\quad\forall t\in[0,T]$$

- if $T_0 \ge T$, we obtain: $G(z)\mathbf{1}_{\{z<0\}} = h(z)$, hence G(z) = h(z) g(z), where $\operatorname{supp}(g) \subset (0,\infty)$;
- if $T_0 < T$, $\mathbb{E}\left(h\left(B_{T-T_0}^0\right)\mathbf{1}_{\{T_0 < T\}}\right) = \mathbb{E}\left(g\left(B_{T-T_0}^0\right)\mathbf{1}_{\{T_0 < T\}}\right)$. The choice g(z) = h(-z) satisfies the above condition, since

$$\mathbb{E}\left(h\left(B_{t}^{0}
ight)
ight)=\mathbb{E}\left(g\left(B_{t}^{0}
ight)
ight),\quad ext{for all }t>0,$$

Thus, G(z) = h(z) - h(-z) solves the static hedging problem.

Static hedging of Up-and-Out Put

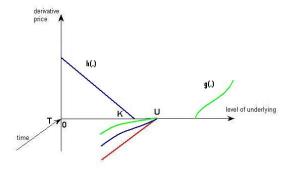


Figure : Price functions of the options with payoffs h (blue) and g (green), along the barrier S=U (red)

Key properties

- What do we need for the above to work?
 - We need the symmetry of the conditional distribution of X_{T_U+t} , given \mathcal{F}_{T_U} , with respect to the initial level U.
 - Strong Markov property and continuity allow us to reduce the problem to the actual expectations, as opposed to conditional ones.
- Keeping the strong Markov property and continuity, how far can we extend the Reflection Principle beyond Brownian motion?
 - **diffusions** whose **coefficients are symmetric** with respect to U;
 - monotone continuous functions of the above.
- This is not quite satisfactory for existing applications...

Strong and Weak symmetries

- Stochastic process X, defined on a real line and started from zero, possesses a **strong symmetry** (with respect to zero) if there exists a mapping $\mathbf{S} : \mathbb{R} \to \mathbb{R}$, such that $x\mathbf{S}(x) \leq 0$, for all $x \in \mathbb{R}$, and $\mathsf{Law}(\mathbf{S}(X_t)) = \mathsf{Law}(X_t)$, for all t > 0.
- Fix two spaces of Lebesgue measurable test functions, \mathcal{B}^- and \mathcal{B}^+ , such that all functions in \mathcal{B}^- have support in $(-\infty,0)$, and all functions in \mathcal{B}^+ have support in $(0,\infty)$. We say that X possesses an **upper weak symmetry** (with respect to zero) if there exists a mapping $\mathbf{W}^+:\mathcal{B}^-\to\mathcal{B}^+$, such that

$$\mathbb{E} h(X_t) = \mathbb{E} (\mathbf{W}^+(h)(X_t)), \text{ for all } t > 0,$$

for any $h \in \mathcal{B}^-$. We will refer to $\mathbf{W}^+(h)$ as the **mirror image** of h.

• If X has a strong symmetry S (with respect to zero), then, the it also possesses a weak symmetry, with $W^{\pm}(h) = h \circ S$

Weak Reflection Principle

- The Standard (Strong) Reflection Principle arises as a combination of the strong Markov property, continuity, and the strong symmetry.
- Similarly, the Weak Reflection Principle requires the strong Markov property, semi-continuity, and the weak symmetry.
- The Weak Reflection Principle (WRP) is sufficient for the applications we described!
- The important questions are:
 - existence of the weak symmetry transformation W;
 - its uniqueness;
 - and numerical approximation.

Time-homogeneous diffusions

In Carr-N. (2011), we develop **WRP** for processes X of the form.

$$dX_t = \mu(X_t)dt + \sigma(X_t)dB_t,$$

where we assume that

- $\inf_{x \in \mathbb{R}} \sigma(x) > 0$,
- $\mu, \sigma \in C^3(\mathbb{R})$.
- μ , σ and their first three derivatives have finite limits at $-\infty$,
- and, for any k=1,2,3, the functions $e^{(3-k)x}|\mu^{(k)}(x)|$ and $e^{(3-k)x}\sigma^{(k)}(x)$ are bounded as $x \to +\infty$.

We do not make any symmetry assumptions on μ and $\sigma!$

Weak Symmetry

Given h, with support in $(-\infty, U)$, find its mirror image g, s.t. it has support in (U, ∞) and

$$\mathbb{E}\left[\left.h\left(X_{\tau}\right)\right|X_{0}=U\right]=\mathbb{E}\left[\left.\mathbf{g}\left(X_{\tau}\right)\right|X_{0}=U\right],\quad\text{for all }\tau>0$$

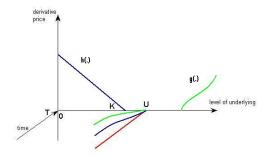


Figure : Expectations of $h(X_{\tau})$ (blue) and $g(X_{\tau})$ (green), along the barrier X = U (red)

WRP for time-homogeneous diffusions

- Assume U=0.
- Consider arbitrary function h, with support in $(-\infty,0)$, such that its weak derivative has finite variation and is exponentially bounded.
- Then, its **Mirror Image W**(h) is given by

$$\mathbf{W}(h)(x) =$$

$$\frac{2}{\pi i} \int_{\varepsilon - \infty i}^{\varepsilon + \infty i} \frac{z \psi_1(x, z)}{\partial_x \psi_1(0, z) - \partial_x \psi_2(0, z)} \int_{-\infty}^0 \frac{\psi_1(s, z)}{\sigma^2(s)} e^{-2 \int_0^s \frac{\mu(y)}{\sigma^2(y)} dy} h(s) ds dz,$$

where the functions $\psi^1(x,z)$ and $\psi^2(x,z)$ are the fundamental solutions of the associated Sturm-Liouville equation:

$$\frac{1}{2}\sigma^{2}\left(x\right)\psi_{xx}\left(x,z\right) + \mu(x)\psi_{x}(x,z) - z^{2}\psi\left(x,z\right) = 0$$

Solution

 Recall that, in order to solve the static hedging problem, we only need to compute the mirror image of the put payoff.

$$h(x) = (K - x)^+$$

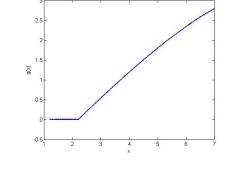
• Thus, the Static Hedge of an UOP option (with barrier U=0 and strike K<0) is given by

$$G(x) = (K - x)^+ - g(x),$$

where

$$g(x) = \frac{1}{\pi i} \int_{\varepsilon - \infty i}^{\varepsilon + \infty i} \frac{\psi^1(x, z) \psi^1(K, z)}{\psi^1_x(0, z) - \psi^2_x(0, z)} \frac{dz}{z},$$

Constant Elasticity of Variance: $\mu = 0$, $\sigma(S) = S^{1+\beta}$



beta = -0.5

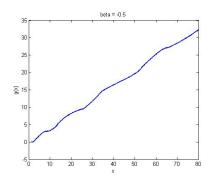
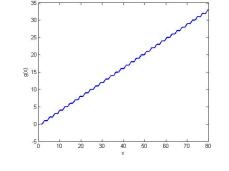


Figure : The "mirror image" g in the zero-drift CEV model with barrier U=1.2 and strike K=0.5: the case of $\beta=-0.5$, for small (left) and large (right) values of the argument.

- 4 ロ ト 4 昼 ト 4 夏 ト 4 夏 - 夕 Q (や

Other CEV: Bachelier and Black-Scholes



beta = -1

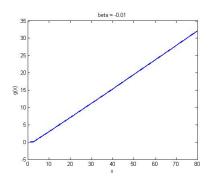


Figure : The "mirror image" g in the zero-drift CEV model with barrier U=1.2 and strike K=0.5: the cases of $\beta=-1$ (left) and $\beta\approx0$ (right).

WRP for Lévy processes with one-sided jumps

• In our recent work Bayraktar-N. (2013), we develop WRP for L'evy **processes** X with the characteristic exponent

$$\psi(\lambda) = \frac{1}{t} \log \left(\mathbb{E} e^{\lambda X_t} \right) = \mu \lambda + \frac{\sigma^2}{2} \lambda^2 + \int_{-\infty}^0 \left(e^{\lambda x} - 1 - \lambda x \right) \Pi(dx),$$

where Π has support in $(-\infty,0)$ and satisfies

$$\int_{-\infty}^{-1} |x| e^{-\zeta x} \Pi(dx) < \infty,$$

with some $\zeta \geq 0$.

• Consider arbitrary function h, such that its support is in $(-\infty,0)$ and there exists $\hat{h} \in \mathbb{L}^1(\mathbb{R})$, such that the function $y \mapsto e^{\zeta y} h(y)$ is a **Fourier transform of** \hat{h} . Then the mirror image of h is given by

$$\mathbf{W}(h)(x) = \frac{1}{2\pi i} \int_{\gamma - i\infty}^{\gamma + i\infty} e^{zx} \int_{\mathbb{R}} \left(\frac{\psi'(z)}{\psi(z) - \psi(-\zeta - is)} - \frac{1}{z + \zeta + is} \right) \hat{h}(s) ds dz$$

Applications of WRP

 The Weak Reflection Principle allows us to compute the joint distribution of the process and its running maximum (minimum), through the marginal distribution of the process itself:

$$\mathbb{P}(X_{T} \leq K, \sup_{t \in [0,T]} X_{t} \leq U) = \mathbb{E}(\mathbf{W}^{+,U}(\mathbf{1}_{(-\infty,K)})(X_{T})),$$

where $\mathbf{W}^{+,U}\left(\mathbf{1}_{(-\infty,K)}\right)$ is the mirror image of the indicator function $\mathbf{1}_{(-\infty,K)}$, with respect to the barrier U.

 Static hedge of a up-and-out option with terminal payoff function h is given by a European-type option with payoff

$$G(X_T) = h(X_T) - \mathbf{W}^{+,U}(h)(X_T)$$

 The connection to PDE's and PIDE's yields potential applications in Physics and Biology.

Summary

- Weak Reflection Principle is an extension of the classical reflection principle for Brownian motion that can be applied to processes without any strong symmetries.
- The Weak Reflection Principle allows us to
 - control the (conditional) expectation of a function of the process,
 - at the first time when the process hits the barrier of a given domain,
 - by changing the function outside of this domain.
- Existing applications are in Finance, Computational Methods. Possibly, Physics, Biology, ...
- Further extensions:
 - Specific applications in Physics and Biology?
 - More general domains?
 - More general stochastic processes?

Non-existence result

• Bardos-Douady-Fursikov (2004) treat this problem for a general parabolic PDE, and prove the existence of approximate solutions g_{ε} , such that

$$\sup_{t\in[0,T]}\left|u^h(U,t)-u^{g_{\varepsilon}}(U,t)\right|<\varepsilon$$

- They show that an exact solution doesn't exist in general...
- Their proof is not constructive finding even an approximate solution is left as a separate problem.
- The example of non-existence relies heavily on the time-dependence of the coefficients in the corresponding PDE!

Naive numerical approximation

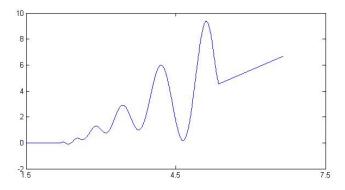


Figure : Payoff function g_{ε} as a result of the naive least-square optimization approach

Square root process revisited

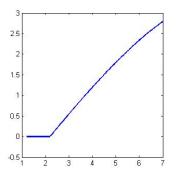


Figure : 2. Function g, for $\beta = -0.5$, U = 1.2, K = 0.5

Notice that there is a constant $K^* \geq U$, such that the support of g is exactly $[K^*, \infty]$.

Computation and extensions

$$g(S) = \frac{1}{\pi i} \int_{\varepsilon - \infty i}^{\varepsilon + \infty i} \frac{\psi^1(S, z) \psi^1(K, z)}{\psi^1_S(U, z) - \psi^2_S(U, z)} \frac{dz}{z},$$

- If $\sigma(S)$ is **piece-wise constant**, the fundamental solutions $\psi_1(S, z)$ and $\psi_2(S, z)$ can be easily computed as **linear combinations of exponentials**, on each sub-interval in S.
- This family of models is **sufficient for all practical purposes**.
- The proposed static hedge also succeeds in all models that arise by running the time-homogeneous diffusion on an independent continuous stochastic clock.
- One can obtain a semi-robust extension of this static hedging strategy.
 More precisely, a strategy that succeeds in all models, as long as the market implied volatility stays within given bounds (beliefs about implied volatility are fulfilled).

Computation and extensions

$$g(S) = \frac{1}{\pi i} \int_{\varepsilon - \infty i}^{\varepsilon + \infty i} \frac{\psi^{1}(S, z) \psi^{1}(K, z)}{\psi^{1}_{S}(U, z) - \psi^{2}_{S}(U, z)} \frac{dz}{z},$$

- If $\sigma(S)$ is **piece-wise constant**, the fundamental solutions $\psi_1(S, z)$ and $\psi_2(S, z)$ can be easily computed as **linear combinations of exponentials**, on each sub-interval in S.
- This family of models is sufficient for all practical purposes.
- The proposed static hedge also succeeds in all models that arise by running the time-homogeneous diffusion on an independent continuous stochastic clock.
- One can obtain a semi-robust extension of this static hedging strategy.
 More precisely, a strategy that succeeds in all models, as long as the market implied volatility stays within given bounds (beliefs about implied volatility are fulfilled).

Robust static hedge with beliefs on implied volatility

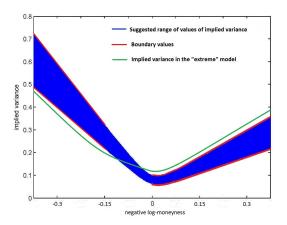


Figure: Range of possible values of (beliefs on) implied volatility (blue), and the extremal implied volatility produced by a diffusion model (green)

Short-Maturity Behavior and Single-Strike Hedge

- Key observation: when time-to-maturity is small, only the values of g around K^* matter!
- Thus, for small maturities, the approximation of the payoff function g with a scaled call payoff should perform well.
- We have:

$$\int_{K}^{U} \frac{dy}{\sigma(y)} = \int_{U}^{K^{*}} \frac{dy}{\sigma(y)}, \qquad \eta = \sqrt{\frac{\sigma(K)}{\sigma(K^{*})}}.$$

• Using the above, we can construct the **single-strike sub- and superreplicating strategies**: there exists $\delta > 0$, such that, whenever $S_t = U$,

$$[1 - \delta(T - t)] P_t(K) - \eta C_t(K^*) \le 0 \le [1 + \delta(T - t)] P_t(K) - \eta C_t(K^*)$$

Function g: properties and numerical computation

- There exists a constant $K^* \geq U$, such that the support of g is exactly $[K^*, \infty]$.
- Introduce the "signed geodesic distance":

$$Z(x) := \sqrt{2} \int_{U}^{x} \frac{dy}{\sigma(y)}$$

• Then K^* is a solution of the equation

$$Z(K^*) + Z(K) = 0$$

• The function g is "analytic with respect to the geodesic distance Z" in (K^*, ∞) :

$$g(x) = \sum_{k=1}^{\infty} c_k \left(Z(x) - Z(K^*) \right)^k,$$

and the exists an algorithm for computing c_k 's.

