Existence of an endogenously complete equilibrium driven by a diffusion

Dmitry Kramkov

Carnegie Mellon University

June 24–28, 2013 Advanced Finance and Stochastics Moscow

Outline

Radner equilibrium

Arrow-Debreu equilibrium

Backward Martingale Representation

Technicalities with intermediate utilities

Bibliography

- K. Existence and uniqueness of Arrow-Debreu equilibria with consumptions in L₊⁰. arXiv:1304.3284v2, May 2013. URL http://arxiv.org/abs/1304.3284v2.
- K. Existence of endogenously complete equilibrium driven by diffusion. arxiv:1304.3516v1, April 2013. URL http://arxiv.org/abs/1304.3516v1.

Introduction

Three basic topics in Asset Pricing Theory are

- 1. Arbitrage,
- 2. Single-agent optimality,
- 3. Equilibrium;

see, e.g., the books by Karatzas and Shreve (1998), Duffie (2001), and Dana and Jeanblanc (2003).

- ► For the first two topics a general mathematical theory is available.
- The situation with equilibrium is more involved.
- Equilibrium becomes the main modeling tool as soon as we leave "small" agent's framework, e.g., in market's micro-structure theory.

Economic agents

The uncertainty is modeled by $(\Omega, \mathcal{F}_1, \mathbf{F} = (\mathcal{F}_t)_{t \in [0,1]}, \mathbb{P})$. There are M agents. They choose cumulative consumption processes

$$C_t = \int_0^t \xi_s ds + \Xi 1_{\{t=1\}}, \ t \in [0,1].$$

▶ The expected utility of *m*th agent has the form:

$$\mathbb{U}^m(C) \triangleq \mathbb{E}[\int_0^1 u^m(t,\xi_t)dt + U^m(\Xi)],$$

where $u^m = u^m(t, c)$ and $U^m = U^m(c)$ are Inada-type utility functions for intermediate and terminal consumptions.

▶ The income process of *m*th agent is given by

$$I_t^m = \int_0^t \lambda_s^m ds + \Lambda^m 1_{\{t=1\}}, \ t \in [0,1],$$

where

$$\lambda^m \geq 0, \ \Lambda^m \geq 0, \ \text{and} \ \mathbb{P}[I_1^m > 0] > 0.$$

Financial market

The financial market consists of a zero-coupon bond and J stocks.

- ▶ The bond pays the notional N = 1 at maturity t = 1.
- ► The stocks pay the cash dividend

$$D_t = \int_0^t \theta_u du + \Theta 1_{\{t=1\}}.$$

By a (B, S)-market we call an optional process $B = (B_t) > 0$ of bond's prices and a J-dimensional semimartingale $S = (S_t)$ having the terminal values

$$B_1=1$$
 and $S_1=\int_0^1rac{ heta_u}{B_u}du+\Theta=\int_0^1rac{1}{B_t}dD_t.$

Here S is the discounted value of the buy-and-hold strategy.

Radner equilibrium

Inputs:

- ▶ M agents with utility functions $u_m = u_m(t, c)$ and $U_m = U_m(c)$ and income processes $I^m = (I_t^m)$.
- ▶ Zero-coupon bond with terminal value 1 and J stocks with the dividend process $D = (D_t)$.

Definition

Radner equilibrium is a (B, S)-market where the agents' optimal consumption processes $\widehat{C}^m = (\widehat{C}_t^m)$, satisfy the clearing condition:

$$\sum_{m=1}^{M} \widehat{C}_{t}^{m} = \sum_{m=1}^{M} I_{t}^{m}, \ t \in [0, 1].$$
 (1)

Question

Does a Radner equilibrium exist? Is it unique? Is it stable? etc.

Existence of Radner equilibrium

Similar to optimal investment there are two approaches:

Direct (PDE): a coupled system of nonlinear HJB equations.

Dual (martingale): static problem + martingale representation.

Second approach is usually more powerful.

Not clear how to formulate the static problem for general (incomplete) case.

Idea: look for a *complete* Radner equilibrium (that is, with a *complete* (B, S)-market). In this case,

Complete static equilibrium = Arrow-Debreu equilibrium.

Arrow-Debreu equilibrium

Definition

A pair $(P,(\widehat{C}^m))$, consisting of an optional consumption price process P>0 and consumptions (\widehat{C}^m) is an Arrow-Debreu equilibrium if the clearing condition (1) holds and

$$|\mathbb{U}^m(\widehat{C}^m)| + \mathbb{E}[\int_0^1 P_t dl_t^m] < \infty,$$

the consumption process \widehat{C}^m satisfies the *budget constraint*:

$$\mathbb{E}\left[\int_0^1 P_t d\widehat{C}_t^m\right] = \mathbb{E}\left[\int_0^1 P_t dI_t^m\right],$$

and $\mathbb{U}^m(\widehat{C}^m) \geq \mathbb{U}^m(C)$ for every consumption process C satisfying same budget constraint.

Assumptions

► The utility functions $u_m = u_m(t, c)$ and $U_m = U_m(c)$, w.r.t. c, are strictly increasing, strictly concave, and

$$\lim_{c \to 0} u_m'(t,c) = \lim_{c \to 0} U_m'(c) = \infty,$$
$$\lim_{c \to \infty} u_m'(t,c) = \lim_{c \to \infty} U_m'(c) = 0$$

▶ The individual incomes are non-zero:

$$I_1^m = \int_0^1 \lambda_t^m dt + \Lambda^m \neq 0$$

and the total incomes are strictly positive:

$$\lambda_t \triangleq \sum_m \lambda_t^m > 0$$
 and $\Lambda \triangleq \sum_m \Lambda^m > 0$.

Existence of Arrow-Debreu equilibria

The following theorem is an improvement over Dana (1993).

Suppose that Assumption holds. Then an Arrow-Debreu equilibrium exists if and only if there are consumption processes

$$C_t^m = \int_0^t \xi_s^m ds + \Xi^m 1_{\{t=1\}}.$$

which satisfy the clearing condition (1) and such that

$$\mathbb{E}\left[\int_0^1 |u_m(t,\xi_t^m)|dt + |U_m(\Xi^m)|\right] < \infty$$

and

$$\mathbb{E}\left[\int_0^1 u_m'(t,\xi_t^m)\lambda_t dt + U_m'(\Xi^m)\Lambda\right] < \infty.$$

Aggregate utility functions

Denote by Σ^M the simplex in \mathbb{R}^M :

$$\Sigma^M \triangleq \{ w \in [0, \infty)^M : \sum_{m=1}^M w^m = 1 \}.$$

For a weight $w \in \operatorname{int} \Sigma^M$ define the aggregate utility functions:

$$U(c; w) \triangleq \sup \{ \sum_{m=1}^{M} w^{m} U^{m}(c^{m}) : c^{m} \geq 0, c^{1} + \dots + c^{M} = c \},$$

$$u(t, c; w) \triangleq \sup \{ \sum_{m=1}^{M} w^{m} u^{m}(t, c^{m}) : c^{m} \geq 0, c^{1} + \dots + c^{M} = c \}.$$

Pareto optimal consumptions

For a weight $w \in \operatorname{int} \Sigma^M$ define the Pareto optimal consumption processes

$$C_t^m(w) \triangleq \int_0^t \pi_s^m(w) ds + \Pi^m(w) 1_{\{t=1\}},$$

where

$$w^{m}U'_{m}(\Pi^{m}(w)) = U_{c}(\Lambda; w),$$

$$w^{m}u^{m}_{c}(t, \pi^{m}_{t}(w)) = u_{c}(t, \lambda_{t}; w).$$

Note that $(C^m(w))$ satisfy the clearing condition (1).

Structure of Arrow-Debreu equilibria

Theorem

Suppose that Assumption holds and let $(P,(\widehat{C}^m))$ be an Arrow-Debreu equilibrium. Then there there is $w \in \operatorname{int} \Sigma^M$ such that

$$P_t = \operatorname{const} \left(u_c(t, \lambda_t; w) \mathbf{1}_{\{t < 1\}} + U_c(\Lambda; w) \mathbf{1}_{\{t = 1\}} \right),$$

$$\widehat{C}^m = C^m(w), \quad m = 1, \dots, M,$$

Existence of Radner equilibria

It remains to verify the *endogenous* completeness of the (B, S)-market implied by the Arrow-Debreu equilibrium:

▶ The (!) martingale measure Q for stocks' prices is given by

$$\frac{d\mathbb{Q}}{d\mathbb{P}} = \operatorname{const} P_1 = \operatorname{const} U_c(\Lambda; w).$$

► The bond price process:

$$B_t = Y_t/P_t$$
, where $Y_t \triangleq \mathbb{E}[P_1|\mathcal{F}_t]$.

▶ The discounted process of buy and hold strategy for stocks:

$$S_t = \mathbb{E}_{\mathbb{Q}}[\psi|\mathcal{F}_t],$$

where

$$\psi \triangleq \int_0^1 \frac{\theta_u}{B_u} du + \Theta.$$

Martingale Integral Representation

 $(\Omega, \mathcal{F}_1, \mathbf{F} = (\mathcal{F}_t)_{t \in [0,1]}, \mathbb{P})$: a complete filtered probability space.

Q: an equivalent probability measure.

 $S = (S_t^j)$: *J*-dimensional martingale under \mathbb{Q} .

We want to know whether any local martingale $M=(M_t)$ under \mathbb{Q} admits an integral representation with respect to S, that is,

$$M_t=M_0+\int_0^t H_u dS_u, \quad t\in [0,1],$$

for some predictable S-integrable process $H = (H_t^j)$.

- Completeness in Mathematical Finance.
- ▶ Jacod's Theorem (2nd FTAP): the integral representation holds iff ℚ is the only martingale measure for *S*.
- Easy to verify if S is given in terms of local characteristics ("forward" description).

Backward Martingale Representation

Inputs: random variables $\zeta > 0$ and $\psi = (\psi^j)$

▶ The density of the martingale measure ℚ is defined by

$$\frac{d\mathbb{Q}}{d\mathbb{P}} = \operatorname{const} \zeta.$$

 $\blacktriangleright \psi$ is the terminal value for S:

$$S_t \triangleq \mathbb{E}^{\mathbb{Q}}[\psi|\mathcal{F}_t], \quad t \in [0,1].$$

Problem

Determine (easily verifiable) conditions on ζ and ψ so that the martingale representation property holds under \mathbb{Q} and S.

Diffusion framework

The random variables $\psi = S_1$ and $\zeta = \operatorname{const} \frac{d\mathbb{Q}}{d\mathbb{P}}$ are given by

$$\begin{split} \zeta &\triangleq G(X_1)e^{\int_0^1\beta(t,X_t)dt},\\ \psi^j &\triangleq F^j(X_1)e^{\int_0^1\alpha^j(t,X_t)dt} + \int_0^1f^j(t,X_t)e^{\int_0^t\alpha^j(s,X_s)ds}dt\\ &+ \int_0^1\frac{g^j(t,X_t)}{Y_t}e^{\int_0^t(\alpha^j(s,X_s)+\beta(s,X_s))ds}dt, \quad j=1,\ldots,J, \end{split}$$

where $Y_t \triangleq \mathbb{E}[\zeta | \mathcal{F}_t]$ and

- ▶ F^j , $G: \mathbb{R}^d \to \mathbb{R}$ and f^j , g^j , α^j , $\beta: [0,1] \times \mathbb{R}^d \to \mathbb{R}$ are deterministic functions;
- $X = (X_t^i)$ is a *d*-dimensional diffusion:

$$X_t = X_0 + \int_0^t b(s, X_s) ds + \int_0^t \sigma(s, X_s) dW_s, \quad t \in [0, 1],$$

with drift and volatility functions $b^i, \sigma^{ij}: [0,1] \times \mathbb{R}^d \to \mathbb{R}$.

Assumptions on functions

1. The functions $F^j = F^j(x)$ and G = G(x) are weakly differentiable and have exponential growth:

$$|\nabla F^j| + |\nabla G| \le Ne^{N|x|}$$
.

- 2. The Jacobian matrix $\left(\frac{\partial F^j}{\partial x^i}\right)$ has rank d almost surely under the Lebesgue measure on \mathbb{R}^d .
- 3. The maps $t \mapsto e^{-N|\cdot|}f^j(t,\cdot) \triangleq \left(e^{-N|x|}f^j(t,x)\right)_{x \in \mathbb{R}^d},$ $t \mapsto e^{-N|\cdot|}g^j(t,\cdot)$ and $t \mapsto \alpha^j(t,\cdot), \ t \mapsto \beta(t,\cdot)$ of [0,1] to \mathbf{L}_{∞} are analytic on (0,1) and Hölder continuous on [0,1].
- ▶ Careful with item 3: stronger than pointwise analyticity! For instance, $f(t,x) = \sin(te^x)$ will not work. Sometimes is overlooked in the literature.

Assumptions on the diffusion X

- 1. The map $t\mapsto b^i(t,\cdot)$ of [0,1] to \mathbf{L}_{∞} is analytic on (0,1) and Hölder continuous on [0,1].
- 2. The map $t \mapsto \sigma^{ij}(t,\cdot)$ of [0,1] to ${\bf C}$ is analytic on (0,1) and Hölder continuous on [0,1]. Moreover, $\sigma=\sigma(t,x)$ is uniformly continuous with respect to x:

$$|\sigma(t,x)-\sigma(t,y)|\leq \omega(|x-y|).$$

for some strictly increasing function $\omega=(\omega(\epsilon))_{\epsilon>0}$ such that $\omega(\epsilon)\to 0$ as $\epsilon\downarrow 0$, and has a bounded inverse:

$$|\sigma^{-1}(t,x)| \leq N$$
 (uniform ellipticity for $\sigma\sigma^*$).

▶ Counter-example on *t*-analyticity condition in $\sigma = \sigma(t, x)$.

Backward Martingale Representation

Theorem (K. Predoiu (2012))

Assume that $\mathbb{F}=\mathbb{F}^X$. Under the conditions above the martingale representation property holds for the probability measure \mathbb{Q} with the density

$$\frac{d\mathbb{Q}}{d\mathbb{P}} \triangleq \frac{\zeta}{\mathbb{E}[\zeta]},$$

and the Q-martingale

$$S_t \triangleq \mathbb{E}^{\mathbb{Q}}[\psi|\mathcal{F}_t], \quad t \in [0,1].$$

Comparison with the literature

Assumptions on functions: In Anderson and Raimondo (2008), Hugonnier, Malamud, and Trubowitz (2012), and Riedel and Herzberg (2012)

- ► The Jacobian matrix $\left(\frac{\partial F^j}{\partial x^i}\right)$ needs to have full rank only on some open set (counter-example in our setting).
- ▶ The "small letter" functions, that is, the functions of (t, x) should be (t, x)-analytic (for maps?).

Assumptions on diffusion X:

- ▶ In Anderson and Raimondo(2008) X is a Brownian motion.
- ▶ In Hugonnier, Malamud, and Trubowitz (2012) the diffusion coefficients b = b(t, x) and $\sigma = \sigma(t, x)$ are either analytic with respect to (t, x) or the transitional probability is \mathbb{C}^7 .

Elements of the proof

Parabolic PDEs:

- Evolution equations in L_p spaces (maximal regularity, analyticity theorem by Kato and Tanabe).
- Elliptic equations in Sobolev spaces (sectoriality property).
- ▶ Interpolation theory (\mathbf{W}_{p}^{1} is the midpoint of \mathbf{L}_{p} and \mathbf{W}_{p}^{2} in complex interpolation).

Stochastic Analysis:

► Krylov's variant of Ito's formula (instead of \mathbb{C}^2 we can have \mathbb{W}_p^2 with $p \ge d$ under the uniform ellipticity condition).

Back to existence of Radner equilibria

A delicate point is to show that for every $w \in \operatorname{int} \mathbf{S}^M$ there is a function f = f(t, x) such that

$$f(t, X_t) = u_c(t, \lambda_t; w),$$

and the map $t\mapsto e^{-N|\cdot|}f(t,\cdot)\triangleq \left(e^{-N|x|}f(t,x)\right)_{x\in\mathbb{R}^d}$ of [0,1] to \mathbf{L}_{∞} is analytic on (0,1) and Hölder continuous on [0,1]. Here,

- \triangleright (λ_t) is the total income rate process,
- \triangleright u(t, c; w) is the w-weighted sup-convolution w.r.t. c:

$$u(t,c;w) \triangleq \sup\{\sum_{m=1}^{M} w^{m}u^{m}(t,c^{m}): c^{m} \geq 0, c^{1}+\cdots+c^{M}=c\}.$$

Assumption on income

The total income process has the form:

$$\lambda_t = e^{h_1(t,X_t) + h_2(X_t)}, \ t \in [0,1],$$

where

- ▶ $t \mapsto h_1(t, \cdot)$ is a Hölder continuous map of [0, 1] to $\mathbf{L}_{\infty}(\mathbb{R}^d)$ whose restriction on (0, 1) is analytic;
- ▶ the function $h_2 = h_2(x)$ has a linear growth: for some $N \ge 0$,

$$|h_2(x)| \leq N(1+|x|), \ x \in \mathbb{R}^d.$$

Assumption on intermediate utility

The function $u^m(t,\cdot)$ is of Inada type. The derivatives u^m_{ct} and u^m_{cc} exist and $u^m_{cc} < 0$. There are a constant N > 0 such that

$$|u^m(t,e^y)| \le e^{N(1+|y|)},$$

and an open set $V\subset (0,\infty)^2$ containing $(0,1)\times\{1\}$ such that

$$(t,s)\mapsto (g(t,se^y))_{y\in\mathbb{R}},$$

is a bounded analytic map of V to $\mathbf{L}_{\infty}(\mathbb{R}^{d+1})$, where g=g(t,c) stands for u_{cc}^m/u_c^m , cu_{cc}^m/u_c^m , and $u_c^m/(cu_{cc}^m)$.

Example

$$u^{m}(t,c) = e^{-\nu^{m}t} \frac{c^{1-a^{m}}-1}{1-a^{m}},$$

where $v^m \in \mathbb{R}$ is an impatience and $a^m > 0$ is a risk-aversion.

Summary

- Necessary and sufficient conditions are given for the existence of Arrow-Debreu equilibria.
- ▶ In an economy driven by a diffusion X we gave new conditions for the existence of *endogenously* complete Radner equilibrium (the stocks are pre-fixed by their dividends).
- The construction of complete Radner equilibria =
 Arrow-Debreu (easy) + Backward Martingale Representation (hard).
- ▶ The diffusion coefficients of X have only minimal x-regularity. However, they are t-analytic (a counter-example for σ).
- ► Technicalities with intermediate utilities: t-analyticity is for maps to L[∞].