Approximation of nondivergent type parabolic PDEs in finance

Maria do Rosário Grossinho¹

(joint work with Fernando F. Gonçalves¹)

¹CEMAPRE, ISEG, Technical University of Lisbon

June 25, 2013, Advanced Finance and Stochastics, Steklov Mathematical Institute

Outline

- Motivation
- ② Discretisation of a linear evolution equation in abstract spaces A general framework – classical results Euler implicit discretisation
- 3 Semi-discretisation in space of the PDE A particular framework – classical results The discrete framework Approximation results
- 4 Discretisation of the PDE in space and time

The problem

In this talk, we present the time and space FD approximation to the Cauchy problem for a linear parabolic PDE

$$\frac{\partial u}{\partial t} = Lu + f \text{ in } [0, T] \times \mathbb{R}^d, \quad u(0, x) = g(x) \text{ in } \mathbb{R}^d$$

where

 L is the second-order partial differential operator with real coefficients

$$L(t,x) = a^{ij}(t,x)\frac{\partial^2}{\partial x^i \partial x^j} + b^i(t,x)\frac{\partial}{\partial x^i} + c(t,x);$$

- f and g are real-valued given functions;
- $T \in (0, \infty)$ is a constant.

The coefficients a^{ij} and b^{i} , and the free data f and g are allowed to grow in the spatial variables.

Connection with the BS model

The equation we consider generalizes the multidimensional version of the Black-Scholes equation

$$\frac{\partial V}{\partial t} + \frac{1}{2} \rho^{ij} \sigma^i \sigma^j S^i S^j \frac{\partial^2 V}{\partial S^i \partial S^j} + (r - d^i) S^i \frac{\partial V}{\partial S^i} - rV = 0$$

- by dropping the assumption that ρ , σ , r, and d are constant and allowing their dependence of space and time;
- by considering the more general **nonhomogenous case**.

Possible applications to finance

Some very common types of options, with fixed exercise, are modeled by the multidimensional version of the B-S equation.

In general, they comprise the class of non path-dependent options written on multiple assets (e.g., basket options).

Stages of the study

The study is developed under the strong assumption that the PDE does not degenerate, in the following stages:

- (i) Discretisation of a linear evolution equation in abstract spaces (in which our problem will later be cast into)
- (ii) Semi-discretisation in space of the PDE
- (iii) Discretisation of the PDE in space and time

Outline

- 1 Motivation
- 2 Discretisation of a linear evolution equation in abstract spaces A general framework – classical results Euler implicit discretisation
- 3 Semi-discretisation in space of the PDE A particular framework – classical results The discrete framework Approximation results
- 4 Discretisation of the PDE in space and time

Gelfand triple

$$V \hookrightarrow H \equiv H^* \hookrightarrow V^*$$

with continuous and dense embeddings.

Evolution equation problem

$$\frac{\mathrm{d}u}{\mathrm{d}t} = A(t)u + f(t) \quad \text{in} \quad [0, T], \quad u(0) = g, \tag{Evol.Eq.}$$

where

- A(t) is a linear operator from V to V^* for every $t \in [0, T]$;
- $A(\cdot)v:[0,T]\to V^*$ is measurable for fixed $v\in V$;
- $f:[0,T] \to V^*$ is measurable and $g \in H$.

Assumption (Abstract setting - AS)

There exist constants $\lambda > 0$, K, M, and N such that:

Definition (Generalised solution)

 $u \in C([0, T]; H)$ is a **generalised solution** of (Evol.Eq.) on [0, T] if

1
$$u \in L^2([0, T]; V);$$

$$(u(t), v) = (g, v) + \int_0^t \langle A(s)u(s), v \rangle ds + \int_0^t \langle f(s), v \rangle ds,$$

$$\forall v \in V, \ \forall t \in [0, T].$$

Theorem (Existence-uniqueness)

lf

• Assumption AS is satisfied,

then the problem (Evol.Eq.) has a unique generalised solution on [0, T].

Moreover

$$\sup_{t \in [0,T]} \|u(t)\|_H^2 + \int_0^T \|u(t)\|_V^2 \mathrm{d}t \leq N \left(\|g\|_H^2 + \int_0^T \|f(t)\|_{V^*}^2 \mathrm{d}t \right),$$

where N is a constant.

Outline

- 1 Motivation
- 2 Discretisation of a linear evolution equation in abstract spaces A general framework – classical results Euler implicit discretisation
- 3 Semi-discretisation in space of the PDE A particular framework – classical results The discrete framework Approximation results
- 4 Discretisation of the PDE in space and time

Grid

- $T \in (0, \infty)$;
- n, a non-negative integer such that $k := T/n \in (0,1]$;
- the *n*-grid on [0, *T*]:

$$T_n = \{t \in [0, T] : t = jk, \quad j = 0, 1, \dots, n\};$$

• A_k , f_k , some discrete versions of A and f, respectively.

Discretised version of the problem (Evol.Eq.) – implicit scheme

$$\Delta^- v_{i+1} = A_{k,i+1} v_{i+1} + f_{k,i+1} \quad \text{for} \quad i = 0,1,\dots,n-1, \quad v_0 = g, \\ \qquad \qquad \qquad \text{(Time Discr.)}$$

where Δ^- is the backward finite difference quotient.

Assumption (Implicit discretisation - ID)

3
$$\sum_{j=0}^{n-1} \|f_{k,j+1}\|_{V^*}^2 k \le N$$
 and $\|g\|_H \le N$,

where λ , K, M, and N are the constants in Assumption AS.

Theorem (Existence-uniqueness)

lf

• Assumption ID is satisfied

then, for small k and for all $n \in \mathbb{N}$, there exists a unique vector v_0, v_1, \ldots, v_n in V satisfying the problem (TimeDiscr.).

Theorem (Stability)

lf

- Assumption ID is satisfied;
- $v_{k,j}$, with j = 0, 1, ..., n, is the unique solution to (TimeDiscr.);

then there exists a constant N independent of k such that

$$\max_{0 \le j \le n} \|v_{k,j}\|_H^2 \le N \left(\|g\|_H^2 + \sum_{j=1}^n \|f_{k,j}\|_{V^*}^2 k \right);$$

Assumption (Smoothness - S)

There exist a fixed number $\delta \in (0,1]$ and a constant C such that

$$\frac{1}{k}\int_{t_i}^{t_{i+1}}\|u(t_{i+1})-u(s)\|_V\mathrm{d}s\leq Ck^\delta,$$

for all i = 0, 1, ..., n - 1, where u is the solution to (Evol.Eq.).

Theorem (Convergence)

Suppose that

- Assumption AS is satisfied;
- Assumption ID is satisfied;
- Assumption S is satisfied;
- u(t) is the unique solution to (Evol.Eq.);
- $v_{k,j}$, j = 0, 1, ..., n, is the unique solution to (TimeDiscr.).

Then, for k small enough, there exists a constant N independent of k such that

$$\max_{0 \le j \le n} \|v_{k,j} - u(t_j)\|_H^2 \le N \left(k^{2\delta} + \sum_{j=1}^n \frac{1}{k} \|A_{k,j} u(t_j) k - \int_{t_{j-1}}^{t_j} A(s) u(t_j) ds \|_{V^*}^2 \right)$$

$$+\sum_{j=1}^n\frac{1}{k}\bigg\|f_{k,j}k-\int_{t_{j-1}}^{t_j}f(s)\mathrm{d}s\bigg\|_{V^*}^2\bigg);$$

An example

If A_k and f_k are specified by the integral averages

$$ar{A}_{k,j+1}z:=rac{1}{k}\int_{t}^{t_{j+1}}A(s)z\mathrm{d}s \quad ext{ and } \quad ar{f}_{k,t_{j+1}}:=rac{1}{k}\int_{t}^{t_{j+1}}f(s)\mathrm{d}s,$$

for all $z \in V$, $j = 0, 1, \ldots, n-1$, then Assumption ID is satisfied. Moreover,

$$\sum_{j=1}^{n} \frac{1}{k} \left\| \bar{A}_{k,j} u(t_j) k - \int_{t_{j-1}}^{t_j} A(s) u(t_j) ds \right\|_{V^*}^2$$

$$= \sum_{j=1}^{n} \frac{1}{k} \left\| \frac{1}{k} \int_{t_{j-1}}^{t_j} A(s) u(t_j) ds k - \int_{t_{j-1}}^{t_j} A(s) u(t_j) ds \right\|_{V^*}^2 = 0$$

and

$$\sum_{i=1}^{n} \frac{1}{k} \left\| \bar{f}_{k,j} k - \int_{t_{i-1}}^{t_{j}} f(s) ds \right\|_{V^{*}}^{2} = \sum_{i=1}^{n} \frac{1}{k} \left\| \frac{1}{k} \int_{t_{i-1}}^{t_{j}} f(s) ds k - \int_{t_{i-1}}^{t_{j}} f(s) ds \right\|_{V^{*}}^{2} = 0.$$

/48

Outline

- 1 Motivation
- 2 Discretisation of a linear evolution equation in abstract spaces A general framework – classical results Euler implicit discretisation
- 3 Semi-discretisation in space of the PDE
 A particular framework classical results
 The discrete framework
 Approximation results
- 4 Discretisation of the PDE in space and time

The PDE problem

$$\frac{\partial u}{\partial t} = Lu + f \text{ in } Q, \quad u(0,x) = g(x) \text{ in } \mathbb{R}^d,$$
 (PDE)

where

 L is the second-order partial differential operator with real coefficients

$$L(t,x) = a^{ij}(t,x)\frac{\partial^2}{\partial x^i \partial x^j} + b^i(t,x)\frac{\partial}{\partial x^i} + c(t,x);$$

- $Q = [0, T] \times \mathbb{R}^d$, with $T \in (0, \infty)$ a constant;
- f and g are real-valued given functions.

The coefficients a^{ij} and b^i , and the free data f and g are allowed to grow in the spatial variables.

The well-weighted Sobolev space $W^{m,2}(r,\rho)$

- The family of the so-called well-weighted Sobolev spaces was first introduced in [Purtukhia (1984)],
- and further generalised in [Gyöngy & Krylov (1990)].

Let r>0 and $\rho>0$ smooth functions in U, a domain in \mathbb{R}^d , and $m\geq 0$ an integer. The weighted Sobolev space $W^{m,2}(U;r,\rho)$ is the Banach space of locally integrable functions $v:U\to\mathbb{R}$ such that

- $D^{\alpha}v$ exists in the weak sense, for each multi-index α , with $|\alpha| \leq m$;
- $\|v\|_{W^{m,2}(U;r,\rho)} := \left(\sum_{|\alpha| \leq m} \int_U r^2 \left|\rho^{|\alpha|} D^{\alpha} v\right|^2 \mathrm{d}x\right)^{1/2} < \infty.$

Endowed with the inner product which generates the above norm $W^{m,2}(U;r,\rho)$ is a Hilbert space.

When $U = \mathbb{R}^d$ we simply write $W^{m,2}(r,\rho) := W^{m,2}(\mathbb{R}^d; r, \rho)$.

Assumption (Weights - W)

Let $m \ge 0$ be an integer, and $r, \rho > 0$ smooth functions on \mathbb{R}^d .

There exists a constant K such that

- **1** $|D^{\alpha}\rho| \leq K\rho^{1-|\alpha|}$, for all α such that $|\alpha| \leq m-1$ if $m \geq 2$;
- $|D^{\alpha}r| \leq K \frac{r}{\rho^{|\alpha|}}$, for all α such that $|\alpha| \leq m$.

Example

$$\rho(x) = (1 + |x|^2)^{\gamma}, \gamma \leq \frac{1}{2} \text{ and } r(x) = (1 + |x|^2)^{\beta}, \beta \in \mathbb{R}.$$

Assumption (PDE)

Let $r, \rho > 0$ be smooth functions on \mathbb{R}^d , and $m \geq 0$ an integer.

1 There exists a constant $\lambda > 0$ such that

$$\sum_{i,j=1}^{a} a^{ij}(t,x)\xi^{i}\xi^{j} \ge \lambda \rho^{2}(x)|\xi|^{2},$$

for all $t \geq 0$, $x \in \mathbb{R}^d$ and $\xi \in \mathbb{R}^d$;

- 2 The coefficients in L and their derivatives in x up to the order m are measurable functions in $[0,T] \times \mathbb{R}^d$ such that
 - $|D_x^{\alpha}a^{ij}| \leq K\rho^{2-|\alpha|} \quad \forall |\alpha| \leq m \vee 1$,
 - $|D_x^{\alpha}b^i| \leq K\rho^{1-|\alpha|} \quad \forall |\alpha| \leq m$,
 - $|D_x^{\alpha}c| \leq K \quad \forall |\alpha| \leq m$,

for any $t \in [0, T], x \in \mathbb{R}^d$, with K a constant;

3 $f \in L^2([0,T];W^{m-1,2}(r,\rho))$ and $g \in W^{m,2}(r,\rho)$.

Definition (Generalised solution)

 $u \in C([0,T];W^{0,2}(r,\rho))$ is a generalized solution to the problem (PDE) on [0,T] if

- **1** $u \in L^2([0, T]; W^{1,2}(r, \rho));$
- 2 For every $t \in [0, T]$,

$$(u(t),\varphi) = (g,\varphi) + \int_0^t \left\{ -(a^{ij}(s)D_{x^i}u(s), D_{x^j}\varphi) + (b^i(s)D_{x^i}u(s) - D_{x^j}a^{ij}(s)D_{x^i}u(s), \varphi) + (c(s)u(s),\varphi) + \langle f(s),\varphi \rangle \right\} ds$$

holds for all $\varphi \in C_0^{\infty}$.

The following existence-uniqueness result for the solution of the problem (PDE) can be obtained from the corresponding general result for an evolution equation by using the suitable triple of spaces.

Theorem (Existence-uniqueness)

Under

- Assumption W, with m + 1 in place of m;
- Assumption PDE;

the problem (PDE) admits a unique generalised solution u on [0, T]. Moreover

$$u \in C([0, T]; W^{m,2}(r, \rho)) \cap L^2([0, T]; W^{m+1,2}(r, \rho))$$

and, with N a constant,

$$\sup_{0 \le t \le T} \|u(t)\|_{W^{m,2}(r,\rho)}^2 + \int_0^T \|u(t)\|_{W^{m+1,2}(r,\rho)}^2 dt$$

 $\leq N\Big(\|g\|_{W^{m,2}(r,\rho)}^2 + \int_0^T \|f(t)\|_{W^{m-1,2}(r,\rho)}^2 \mathrm{d}t\Big).$

Outline

- 1 Motivation
- ② Discretisation of a linear evolution equation in abstract spaces A general framework – classical results Euler implicit discretisation
- 3 Semi-discretisation in space of the PDE A particular framework – classical results The discrete framework Approximation results
- 4 Discretisation of the PDE in space and time

h-grid on \mathbb{R}^d

$$Z_h^d = \Big\{ x \in \mathbb{R}^d : x = h \sum_{i=1}^d e_i n_i, \quad n_i = 0, \pm 1, \pm 2, \dots \Big\}.$$

with $h \in (0, 1]$.

Discrete operator

$$L_h(t,x) = a^{ij}(t,x)\partial_i^-\partial_i^+ + b^i(t,x)\partial_i^+ + c(t,x)$$

where ∂_i^- and ∂_i^+ are the backward and forward difference quotients in space, respectively.

Discrete problem

$$u_t = L_h u + f_h$$
 in $Q(h)$, $u(0,x) = g_h(x)$ in Z_h^d , (SpaceDiscr.)

where

- $Q(h) = [0, T] \times Z_h^d$;
- $f_h: Q(h) \to \mathbb{R}$;
- $g_h: Z_h^d \to \mathbb{R}$.

Discrete version of the weighted Sobolev space $W^{0,2}(r, ho)$

For functions $v: Z_h^d \to \mathbb{R}$, we define the space

$$I^{0,2}(r) = \{v : ||v||_{I^{0,2}(r)} < \infty\},\,$$

where the norm $||v||_{l^{0,2}(r)}$ is given by

$$||v||_{l^{0,2}(r)} = \left(\sum_{x \in Z_{\iota}^d} r^2(x)|v(x)|^2 h^d\right)^{1/2}.$$

We define, for any $v, w \in I^{0,2}(r)$, the inner product

$$(v,w)_{l^{0,2}(r)} = \sum_{x \in \mathbb{Z}^d} r^2(x)v(x)w(x)h^d,$$

which induces the norm.

The inner product space $I^{0,2}(r)$ has a good structure: it can be easily shown that it is complete, therefore a Hilbert space.

Discrete version of the weighted Sobolev space $W^{1,2}(r, ho)$

For functions $w: \mathbb{Z}_h^d \to \mathbb{R}$, we define also the space

$$I^{1,2}(r,\rho) = \{w : \|w\|_{I^{1,2}(r,\rho)} < \infty\},\,$$

with norm

$$||w||_{l^{1,2}(r,\rho)}^2 := ||w||_{l^{0,2}(r)}^2 + \sum_{i=1}^d ||\rho \partial_i^+ w||_{l^{0,2}(r)}^2.$$

We endow $I^{1,2}(r,\rho)$ with the inner product, inducing the norm,

$$(w,z)_{l^{1,2}(r,\rho)} = (w,z)_{l^{0,2}(r)} + \sum_{i=1}^{d} (\rho \partial_{i}^{+} w, \rho \partial_{i}^{+} z)_{l^{0,2}(r)},$$

for any functions $w,z\in I^{1,2}(r,
ho)$.

Assumption (Data - D)

- **1** $f_h \in L^2([0, T]; I^{0,2}(r));$
- 2 $g_h \in I^{0,2}(r)$;

where r > 0 is a smooth function on \mathbb{R}^d .

Definition (Generalised solution)

 $u \in C([0,T];I^{0,2}(r)) \cap L^2([0,T];I^{1,2}(r,\rho))$ is a generalized solution of the discrete problem (SpaceDiscr.) if, for every $t \in [0,T]$,

$$(u(t),\varphi) = (g_h,\varphi) + \int_0^t \left\{ -(a^{ij}(s)\partial_i^+ u(s), \partial_j^+ \varphi) + (b^i(s)\partial_i^+ u(s) - \partial_j^+ a^{ij}(s)\partial_i^+ u(s), \varphi) + (c(s)u(s),\varphi) + \langle f_h(s),\varphi \rangle \right\} ds$$

holds for all $\varphi \in I^{1,2}(r,\rho)$.

The following existence-uniqueness (and stability) result for the solution of the discrete problem (SpaceDiscr.) is obtained as a consequence of the corresponding general result for an evolution equation, by showing that the discrete framework we have set is a particular case of the general framework.

Theorem (Existence-uniqueness)

Under

- Assumption PDE;
- Assumption D;

the problem (SpaceDiscr.) has a unique generalised solution u in [0, T]. Moreover, for N a constant independent of h,

$$\begin{split} \sup_{0 \le t \le T} \|u(t)\|_{l^{0,2}(r)}^2 + \int_0^T \|u(t)\|_{l^{1,2}(r,\rho)}^2 \mathrm{d}t \\ & \le N \bigg(\|g_h(t)\|_{l^{0,2}(r)}^2 + \int_0^T \|f_h(t)\|_{l^{0,2}(r)}^2 \mathrm{d}t \bigg). \end{split}$$

Outline

- 1 Motivation
- ② Discretisation of a linear evolution equation in abstract spaces A general framework – classical results Euler implicit discretisation
- 3 Semi-discretisation in space of the PDE
 A particular framework classical results
 The discrete framework
 Approximation results
- 4 Discretisation of the PDE in space and time

- We first investigate the consistency of the discrete scheme, and prove that the difference quotients approximate the partial derivatives.
- The result is obtained by using a Sobolev inequality, and imposing that the weights ρ are bounded from below by a positive constant.
- In practice, the latter restriction amounts to assume that the weights ρ are increasing functions of |x|, which is precisely the case we are interested in.

Theorem (Consistency)

Let r>0 and $\rho>0$ be functions on ${\rm I\!R}^d$, and m an integer strictly greater than d/2. If

- Assumption W is satisfied;
- $\rho(x) \ge C$ on \mathbb{R}^d , with C > 0 a constant;
- $u(t) \in W^{m+2,2}(r,\rho)$, $v(t) \in W^{m+3,2}(r,\rho)$, for all $t \in [0,T]$;

then there exists a constant N independent of h such that, for all $t \in [0, T]$,

$$\sum_{x \in Z_h^d} r^2(x) |u_{x^i}(t,x) - \partial_i^+ u(t,x)|^2 \rho^2(x) h^d$$

$$\leq h^2 N ||u(t)||^2_{W^{m+2,2}(r,\rho)};$$

- Finally, owing to the stability and consistency properties of the discrete scheme, we prove the convergence of the discrete problem's solution to the PDE problem's solution, and compute a rate of convergence.
- The accuracy obtained is of order 1.
- Note that the way we set our discrete framework, in strong connection with the framework for problem (PDE), plays a crucial role in obtaining the convergence rate.

Theorem (Convergence)

Let r>0 and $\rho>0$ be functions on \mathbb{R}^d , and m an integer strictly greater than d/2. Suppose that

- Assumption W is satisfied;
- Assumption PDE is satisfied;
- Assumption D is satisfied;
- $\rho(x) \geq C$, with C > 0 a constant;
- u is the unique solution to (PDE);
- *u_h* is the unique solution to (SpaceDiscr.);
- $u \in L^2([0,T]; W^{m+3,2}(r,\rho)).$

Then

$$\sup_{0 \le t \le T} \|u(t) - u_h(t)\|_{l^{0,2}(r)}^2 + \int_0^T \|u(t) - u_h(t)\|_{l^{1,2}(r,\rho)}^2 dt$$

$$\leq h^2 N \int_0^T \|u(t)\|_{W^{m+3,2}(r,\rho)}^2 dt + N \left(\|g-g_h\|_{l^{0,2}(r)}^2 + \int_0^T \|f(t)-f_h(t)\|_{l^{0,2}(r)}^2 dt \right),$$

with N a constant independent of h.

Outline

- Motivation
- ② Discretisation of a linear evolution equation in abstract spaces A general framework – classical results Euler implicit discretisation
- 3 Semi-discretisation in space of the PDE A particular framework – classical results The discrete framework Approximation results
- 4 Discretisation of the PDE in space and time

The problem

We considered the Cauchy problem for a linear parabolic PDE

$$\frac{\partial u}{\partial t} = Lu + f$$
 in Q $u(0,x) = g(x)$ in \mathbb{R}^d (PDE)

where

 L is the second-order partial differential operator with real coefficients

$$L(t,x) = a^{ij}(t,x)\frac{\partial^2}{\partial x^i \partial x^j} + b^i(t,x)\frac{\partial}{\partial x^i} + c(t,x);$$

- $Q = [0, T] \times \mathbb{R}^d$ with $T \in (0, \infty)$ is a constant;
- f and g are real-valued given functions;

and allowed the growth, in the spatial variables, of the coefficients a^{ij} and b^i , and the free data f and g.

Space-discretised problem

We obtained problem (PDE) FD discretisation in space

$$u_t = L_h u + f_h$$
 in $Q(h)$, $u(0,x) = g_h(x)$ in Z_h^d , (SpaceDiscr.)

where

- $Q(h) = [0, T] \times Z_h^d$;
- $L_h(t,x) = a^{ij}(t,x)\partial_j^-\partial_i^+ + b^i(t,x)\partial_i^+ + c(t,x)$, with ∂_i^- and ∂_i^+ respectively the backward and forward difference quotients in space.
- $f_h: Q(h) \to \mathbb{R}$;
- $g_h: Z_h^d \to \mathbb{R}$.

Fully discretised problem

We consider now the time-discretization of the problem (SpaceDiscr.), by using the implicit FD scheme

$$\Delta^- v_{i+1} = L_{hk,i+1} v_{i+1} + f_{hk,i+1}$$
 for $i = 0, 1, \dots, n-1, v_0 = g_h$, (Fully Discr.)

where Δ^- and Δ^+ are the backward and the forward difference quotients in time, respectively.

- The existence-uniqueness results for the problems PDE and (SpaceDiscr.) were proved by showing that the frameworks they were set in are particular cases of the general framework for an evolution equation.
- Therefore, under the hypotheses for the existence and uniqueness of the generalised solutions to problems (PDE), (TimeDiscr.), and (SpaceDiscr.), the problem (FullyDiscr.) has a unique generalised solution.
- It remains only to determine the rate of convergence when the discretisation is considered both in space and time.

Theorem (Convergence)

Let r>0 and $\rho>0$ be functions on ${\rm I\!R}^d$, and m an integer strictly greater than d/2. Suppose that

- Assumption ID is satisfied;
- Assumption W is satisfied;
- Assumption PDE is satisfied;
- Assumption D is satisfied;
- $\rho(x) \geq C$, with C > 0 a constant.

Let

- u be the unique solution to (PDE);
- u_h be the unique solution to (SpaceDiscr.);
- $v_{hk,j}$, j = 0, 1, ..., n, be the unique solution to (FullyDiscr.).

Assume further that

- u satisfies Assumption S;
- $u \in L^2([0, T]; W^{m+3,2}(r, \rho)).$

Theorem (cont.)

Then

$$\begin{split} \max_{0 \leq j \leq n} & \| v_{hk,j} - u(t_j) \|_{l^{0,2}(r)}^2 + \sum_{0 \leq j \leq n} \| v_{hk,j} - u(t_j) \|_{l^{1,2}(r,\rho)}^2 k \\ \leq & N \left(k^{2\delta} + h^2 \int_0^T \| u(t) \|_{W^{m+3,2}(r,\rho)}^2 \mathrm{d}t \right) \\ & + N \left(\sum_{1 \leq j \leq n} \frac{1}{k} \left\| L_{hk,j} u_h(t_j) k - \int_{t_j}^{t_{j+1}} L_h(s) u_h(t_j) \mathrm{d}s \right\|_{l^{0,2}(r)}^2 \\ & + \sum_{1 \leq j \leq n} \frac{1}{k} \left\| f_{hk,j} k - \int_{t_j}^{t_{j+1}} f_h(s) \mathrm{d}s \right\|_{l^{0,2}(r)}^2 \\ & + \| g - g_h \|_{l^{0,2}(r)}^2 + \int_0^T \| f(t) - f_h(t) \|_{l^{0,2}(r)}^2 \mathrm{d}t \right), \end{split}$$

with N a constant independent of h and k.

References

- Evans, L. C., 1998: Partial Differential Equations. Graduate Studies in Mathematics 19, American Mathematical Society, U.S.A.
- Gonçalves, F. F., 2007: Numerical approximation of partial differential equations arising in financial option pricing. Ph.D. Thesis, University of Edinburgh, U.K.
- Gonçalves, F. F, and M. R. Grossinho, 2012: Spatial approximation of parabolic PDEs of nondivergent type with unbounded coefficients (preprint; submitted).
- Gonçalves, F. F., M. R. Grossinho, and E. Morais, 2012: Discretisation of abstract linear evolution equations of parabolic type. *Advances in Difference Equations*, 2012-14, 1-29.

- Gyöngy, I., and N. V. Krylov, 1990: Stochastic partial differential equations with unbounded coefficients and applications I. *Stochastics*, 32, 53–91.
- Lions, J.-L., and E. Magenes, 1968: *Problèmes aux Limites Non Homogènes et Applications*, Vol. 1 and 2 (in French). Dunod, Gauthier-Villars, Paris, France.
- Purtukhia, O. G., 1984: On the equations of filtering of multi-dimensional diffusion processes (unbounded coefficients) (in Russian). Thesis, Lomonosov University, Moscow.