On a connection between superhedging prices and the dual problem in utility maximization

Alexander Gushchin

Steklov Mathematical Institute

June 28, 2013

Motivation

Motivation

Motivation

Stochastic basis $(\Omega, \mathscr{F}, (\mathscr{F}_t)_{0 \le t \le T}, P)$

S is a semimartingale satisfying the (NFLVR)

$$\mathscr{X} = \{X = 1 + H \cdot S \ge 0 : H \text{ is predictable and } S\text{-integrable}\}$$

is the set of all nonegative wealth processes of an investor with initial wealth $oldsymbol{1}$

Stochastic basis $(\Omega, \mathscr{F}, (\mathscr{F}_t)_{0 \le t \le T}, \mathsf{P})$ S is a semimartingale satisfying the (NFLVR)

$$\mathscr{X} = \{X = 1 + H \cdot S \ge 0 : H \text{ is predictable and } S\text{-integrable}\}$$

is the set of all nonegative wealth processes of an investor with initial wealth 1

Stochastic basis $(\Omega, \mathscr{F}, (\mathscr{F}_t)_{0 \le t \le T}, P)$ S is a semimartingale satisfying the (NFLVR)

$$\mathscr{X} = \{X = 1 + H \cdot S \ge 0 \colon H \text{ is predictable and } S\text{-integrable}\}$$

is the set of all nonegative wealth processes of an investor with initial wealth $\boldsymbol{1}$

Stochastic basis $(\Omega, \mathscr{F}, (\mathscr{F}_t)_{0 \le t \le T}, P)$ S is a semimartingale satisfying the (NFLVR)

$$\mathscr{X} = \{X = 1 + H \cdot S \ge 0 \colon H \text{ is predictable and } S\text{-integrable}\}$$

is the set of all nonegative wealth processes of an investor with initial wealth ${\bf 1}$

Utility function

In this paper we always assume that a utility function U is as follows:

 $U \colon \mathbb{R} \to [-\infty, +\infty)$ is a concave function, $U(x) \equiv -\infty$ on $(-\infty, 0)$ and $U(x) \in \mathbb{R}$ on $(0, \infty)$, and U is strictly increasing or $(0, \infty)$. No other assumptions on U are imposed. As usual, introduce the conjugate V of U defined by

$$V(y) = \sup_{x>0} [U(x) - xy], \quad y \in \mathbb{R}$$

Utility function

In this paper we always assume that a utility function $\it U$ is as follows:

 $U \colon \mathbb{R} \to [-\infty, +\infty)$ is a concave function, $U(x) \equiv -\infty$ on $(-\infty, 0)$ and $U(x) \in \mathbb{R}$ on $(0, \infty)$, and U is strictly increasing on $(0, \infty)$. No other assumptions on U are imposed. As usual, introduce the conjugate V of U defined by

$$V(y) = \sup_{x>0} [U(x) - xy], \quad y \in \mathbb{R}.$$

Utility maximization problem

The problem of maximizing the expected utility of terminal wealth is to maximize $EU(X_T)$ over $X \in \mathcal{X}(x)$. The value function is defined by

$$u(x) = \sup_{X \in \mathscr{X}(x)} \mathsf{E}U(X_T).$$

Dual value function

As a concave increasing function, u can be represented as

$$u(x) = \min_{y \geqslant 0} [v(y) + xy], \quad x > 0,$$

where v(y), $y \ge 0$, is a convex decreasing function,

$$v(y) = \sup_{x>0} [u(x) - xy], \quad y \geqslant 0.$$

Characterization of the dual value function

Kramkov and Schachermayer (1999) proved that v is a solution of the following dual optimization problem:

$$v(y) = \inf_{Y \in \mathscr{Y}} \mathsf{E} V(yY_T), \quad y \ge 0.$$

where \mathscr{Y} is the class of supermartingale deflators, i.e. nonnegative supermartingales Y with $Y_0=1$ such that XY is a supermartingale for every $X\in\mathscr{X}$.

The first step of the proof

Put

$$\mathscr{A} = \{X_T \colon X \in \mathscr{X}\},\$$

$$\mathscr{D} = \{ \eta \in L^0_+ \colon \mathsf{E} \eta \xi \le 1 \ \forall \xi \in \mathscr{A} \}.$$

Evidently,

$$\mathscr{D} \supseteq \{Y_T \colon Y \in \mathscr{Y}\}.$$

The first step of the proof is to show that

$$v(y) = \inf_{\eta \in \mathscr{D}} \mathsf{E}V(y\eta), \quad y \ge 0$$

The first step of the proof

Put

$$\mathscr{A} = \{X_T \colon X \in \mathscr{X}\},\$$

$$\mathscr{D} = \{ \eta \in L^0_+ \colon \mathsf{E} \eta \xi \le 1 \ \forall \xi \in \mathscr{A} \}.$$

Evidently,

$$\mathscr{D} \supseteq \{Y_T \colon Y \in \mathscr{Y}\}.$$

The first step of the proof is to show that

$$v(y) = \inf_{\eta \in \mathscr{D}} \mathsf{E} V(y\eta), \quad y \ge 0.$$

The second step of the proof

The second step of the proof is to show that the above equality remains true if one replaces \mathscr{D} by a smaller set $\{Y_T \colon Y \in \mathscr{Y}\}.$

An analysis of the proof shows that this statement is based on the following representation for the superhedging price proved in Delbaen and Schachermayer (1998): for any nonnegative random variable B (interpreted as a contingent claim),

$$\pi(B) = \sup_{Q \in \mathcal{M}_{\sigma}^e} \mathsf{E}_Q B,$$

where \mathcal{M}_{σ}^{e} is the set of all equivalent (to P) probability measures such that S is a σ -martingale with respect to Q, and $\pi(B)$ is the superhedging price of B:

$$\pi(B) = \inf\{x > 0 \colon \exists X \in \mathscr{X}(x) \text{ such that } B \le X_T\}$$
$$= \inf\{x > 0 \colon \exists \xi \in \mathscr{A} \text{ such that } B \le x\xi\}$$

(here and below inf $\varnothing = +\infty$)

The second step of the proof

The second step of the proof is to show that the above equality remains true if one replaces $\mathscr D$ by a smaller set $\{Y_T\colon Y\in\mathscr Y\}$. An analysis of the proof shows that this statement is based on the following representation for the superhedging price proved in Delbaen and Schachermayer (1998): for any nonnegative random variable B (interpreted as a contingent claim),

$$\pi(B) = \sup_{Q \in \mathscr{M}_{\sigma}^{e}} \mathsf{E}_{Q}B,$$

where \mathcal{M}_{σ}^{e} is the set of all equivalent (to P) probability measures such that S is a σ -martingale with respect to Q, and $\pi(B)$ is the superhedging price of B:

$$\pi(B) = \inf\{x > 0 \colon \exists X \in \mathscr{X}(x) \text{ such that } B \le X_T\}$$
$$= \inf\{x > 0 \colon \exists \xi \in \mathscr{A} \text{ such that } B \le x\xi\}$$

(here and below inf $\emptyset = +\infty$).

Motivation

Market model

Let $(\Omega, \mathscr{F}, \mathsf{P})$ be a probability space. Denote by L^0 the space of all (equivalence classes of) real-valued random variables. L^0 is equipped with the convergence in probability, and bar means the closure with respect to this convergence. L^0_+ is the cone in L^0 consisting of nonnegative random variables.

We consider an abstract market model described as a quadruple $(\Omega, \mathcal{F}, \mathsf{P}, \mathcal{A})$, where \mathcal{A} is a convex subset of L^0_+ . It is assumed also that \mathcal{A} contains a random variable ξ such that $\mathsf{P}(\xi \geq \varkappa) = 1$ for some $\varkappa > 0$. \mathcal{A} is interpreted as the set of terminal wealths of an investor corresponding to all her strategies with initial wealth 1. If the initial wealth is $\varkappa > 0$, then the corresponding set of terminal wealths is $\varkappa \mathcal{A}$.

Market model

Let $(\Omega, \mathscr{F}, \mathsf{P})$ be a probability space. Denote by L^0 the space of all (equivalence classes of) real-valued random variables. L^0 is equipped with the convergence in probability, and bar means the closure with respect to this convergence. L^0_+ is the cone in L^0 consisting of nonnegative random variables.

We consider an abstract market model described as a quadruple $(\Omega, \mathscr{F}, \mathsf{P}, \mathscr{A})$. where \mathscr{A} is a convex subset of L^0_+ . It is assumed also that \mathscr{A} contains a random variable ξ such that $\mathsf{P}(\xi \geq \varkappa) = 1$ for some $\varkappa > 0$. \mathscr{A} is interpreted as the set of terminal wealths of an investor corresponding to all her strategies with initial wealth 1. If the initial wealth is $\varkappa > 0$, then the corresponding set of terminal wealths is $\varkappa \mathscr{A}$.

Superhedging prices

Put

$$\mathscr{A}_0 = \left(\mathscr{A} - L_+^0\right) \cap L_+^0, \qquad \mathscr{C} = \overline{\mathscr{A}_0}.$$

Let $B \in L^0_+$. A possible definition of the superhedging price of B is

$$\pi(B) = \inf\{x > 0 : \text{ there is a } \xi \in \mathscr{A} \text{ such that } B \le x\xi\}$$

= $\inf\{x > 0 : B \in x\mathscr{A}_0\}.$

Since we do not assume any kind of closedness of \mathscr{A} here, an alternative (and more natural) definition of the superhedging price is

$$\pi_*(B) = \inf\{x > 0 \colon B \in x\mathscr{C}\}.$$

Obviously, $\pi_*(B) \leq \pi(B)$ for all $B \in L^0_+$.

Superhedging prices

Put

$$\mathscr{A}_0 = (\mathscr{A} - L_+^0) \cap L_+^0, \qquad \mathscr{C} = \overline{\mathscr{A}_0}.$$

Let $B \in L^0_+$. A possible definition of the superhedging price of B is

$$\pi(B) = \inf\{x > 0 : \text{ there is a } \xi \in \mathscr{A} \text{ such that } B \le x\xi\}$$

= $\inf\{x > 0 : B \in x\mathscr{A}_0\}.$

Since we do not assume any kind of closedness of \mathscr{A} here, an alternative (and more natural) definition of the superhedging price is

$$\pi_*(B) = \inf\{x > 0 \colon B \in x\mathscr{C}\}.$$

Obviously, $\pi_*(B) \leq \pi(B)$ for all $B \in L^0_+$.

Superhedging prices

Put

$$\mathscr{A}_0 = (\mathscr{A} - L_+^0) \cap L_+^0, \qquad \mathscr{C} = \overline{\mathscr{A}_0}.$$

Let $B \in L^0_+$. A possible definition of the superhedging price of B is

$$\pi(B) = \inf\{x > 0 : \text{ there is a } \xi \in \mathscr{A} \text{ such that } B \le x\xi\}$$

= $\inf\{x > 0 : B \in x\mathscr{A}_0\}.$

Since we do not assume any kind of closedness of $\mathscr A$ here, an alternative (and more natural) definition of the superhedging price is

$$\pi_*(B) = \inf\{x > 0 \colon B \in x\mathscr{C}\}.$$

Obviously, $\pi_*(B) \leq \pi(B)$ for all $B \in L^0_+$.

When two definitions coincide

It is easy to check that

$$\pi(B)=\pi_*(B) \text{ for all } B\in L^0_+ \qquad \Longleftrightarrow \qquad \mathscr{C}\subseteq \bigcap_{\lambda>1}(\lambda\mathscr{A}_0).$$

Polar description

Put

$$\mathscr{D} = \{ \eta \in L^0_+ \colon \mathsf{E} \eta \xi \le 1 \text{ for all } \xi \in \mathscr{A} \}.$$

Since \mathscr{D} is bounded in P-probability and closed in L^0 , every element in \mathscr{D} is majorized by a maximal element of this set.

By the bipolar theorem by Brannath and Schachermayer (1999)

$$\pi_*(B) = \sup_{\eta \in \mathscr{D}} \mathsf{E} \eta B$$

Polar description

Put

$$\mathscr{D} = \{ \eta \in L^0_+ \colon \mathsf{E} \eta \xi \le 1 \text{ for all } \xi \in \mathscr{A} \}.$$

Since \mathscr{D} is bounded in P-probability and closed in L^0 , every element in \mathscr{D} is majorized by a maximal element of this set. By the bipolar theorem by Brannath and Schachermayer (1999).

$$\pi_*(B) = \sup_{\eta \in \mathscr{D}} \mathsf{E} \eta B.$$

Utility naximization problem

Let U be a utility function as above. For a probability measure $Q \ll P$ define the value function $u_Q(x)$, x > 0, in the utility maximization problem relative to Q:

$$u_{\mathsf{Q}}(x) = \sup_{\xi \in x \mathscr{A}} \mathsf{E}_{\mathsf{Q}} U(\xi).$$

Dual problem

The dual minimization problem is defined by

$$v_{\mathsf{Q}}(y) = \inf_{\eta \in \mathscr{D}} \mathsf{E}_{\mathsf{Q}} V\Big(\frac{y\eta}{d\mathsf{Q}/d\mathsf{P}} \Big).$$

Dual relations

As is shown in Kramkov and Schachermayer (1999), see also Gushchin (2011), the following dual relations hold:

$$u_{Q}(x) = \min_{y \ge 0} [v_{Q}(y) + xy], \quad x > 0,$$

$$v_{\mathsf{Q}}(y) = \sup_{x>0} [u_{\mathsf{Q}}(x) - xy], \quad y \ge 0.$$

Superhedging prices and maximal elements

Let \mathscr{W} be a nonempty convex subset of \mathscr{D} . Then

$$\pi_*(B) = \sup_{\eta \in \mathscr{W}} \mathsf{E} \eta B$$

for all $B \in L^0_+$ if and only if $\overline{\mathcal{W}}$ contains all maximal elements from \mathcal{D} .

Superhedging prices and maximal elements

Let \mathcal{W} be a nonempty convex subset of \mathcal{D} . Then

$$\pi_*(B) = \sup_{\eta \in \mathscr{W}} \mathsf{E} \eta B$$

for all $B \in L^0_+$ if and only if $\overline{\mathscr{W}}$ contains all maximal elements from \mathscr{D} .

Theorem

Let \mathcal{W} be a nonempty convex subset of \mathcal{D} .

(i) Assume that for a given utility function U, for all $Q \ll P$ and $y \ge 0$,

$$v_{\mathsf{Q}}(y) = \inf_{\eta \in \mathscr{W}} \mathsf{E}_{\mathsf{Q}} V \Big(\frac{y\eta}{d\mathsf{Q}/d\mathsf{P}} \Big).$$

Then

$$\pi_*(B) = \sup_{\eta \in \mathscr{W}} \mathsf{E} \eta B \quad \text{for every } B \in L^0_+.$$
 (1)

(ii) Let (1) be satisfied. Then

$$v_{Q}(y) = \inf_{\eta \in \overline{\mathcal{W}}} E_{Q} V\left(\frac{y\eta}{dQ/dP}\right)$$

for all $Q \ll P$ and $y \ge 0$, and for every utility function U described above.

Theorem

Let W be a nonempty convex subset of \mathcal{D} .

(i) Assume that for a given utility function U, for all $Q \ll P$ and $y \ge 0$,

$$v_{\mathsf{Q}}(y) = \inf_{\eta \in \mathscr{W}} \mathsf{E}_{\mathsf{Q}} V\Big(\frac{y\eta}{d\mathsf{Q}/d\mathsf{P}}\Big).$$

Then

$$\pi_*(B) = \sup_{\eta \in \mathscr{W}} \mathsf{E} \eta B \quad \text{for every } B \in L^0_+.$$
 (1)

(ii) Let (1) be satisfied. Then

$$v_{\mathsf{Q}}(y) = \inf_{\eta \in \overline{\mathscr{W}}} \mathsf{E}_{\mathsf{Q}} V \left(\frac{y\eta}{d\mathsf{Q}/d\mathsf{P}} \right)$$

for all $Q \ll P$ and $y \ge 0$, and for every utility function U described above.

Motivation Main result

Thank you!