Nonlocal Artificial Boundary Conditions for external problems & near-wall turbulence modelling

Sergei Utyuzhnikov

University of Manchester

Outline Introduction to Calderón-Ryaben'kii's Potentials Artificial Boundary Conditions Near-wall Turbulence Modelling Summary

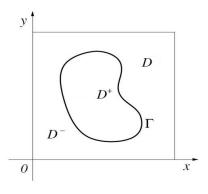
1 Introduction to Calderón-Ryaben'kii's Potentials

Outline Introduction to Calderón-Ryaben'kii's Potentials Artificial Boundary Conditions Near-wall Turbulence Modelling Summary

- 1 Introduction to Calderón-Ryaben'kii's Potentials
- 2 Artificial Boundary Conditions

- 1 Introduction to Calderón-Ryaben'kii's Potentials
- Artificial Boundary Conditions
- 3 Near-wall Turbulence Modelling

- Introduction to Calderón-Ryaben'kii's Potentials
- Artificial Boundary Conditions
- 3 Near-wall Turbulence Modelling
- Summary

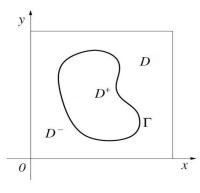


$$D:=D^+\cup\Gamma\cup D^-,$$
 where Γ is a Lipschitz boundary

Consider solution of a well-posed linear BVP:

$$LU = f,$$

 $U \in \Xi_D,$
 $D \subseteq \mathbb{R}^m, U \in \mathbb{R}^p, f \in \mathbb{R}^p.$



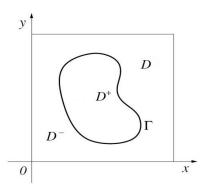
$$D:=D^+\cup\Gamma\cup D^-,$$
 where Γ is a Lipschitz boundary

Consider solution of a well-posed linear BVP:

$$LU = f,$$

 $U \in \Xi_D,$
 $D \subseteq \mathbb{R}^m, U \in \mathbb{R}^p, f \in \mathbb{R}^p.$

$$\Xi_D \subset H^s(D^+) \cap H^s_0(D^-), \ s > k-1/2,$$
 $f \in H^{s-k}_{loc}(D^+) \cap H^{s-k}_{loc}(D^-),$
 k is the order of operator L .



$$D:=D^+\cup\Gamma\cup D^-,$$
 where Γ is a Lipschitz boundary

Consider solution of a well-posed linear BVP:

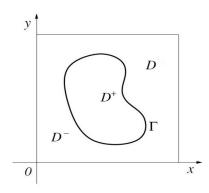
$$LU = f,$$

 $U \in \Xi_D,$
 $D \subset \mathbb{R}^m, U \in \mathbb{R}^p, f \in \mathbb{R}^p.$

$$\Xi_D \subset H^s(D^+) \cap H^s_0(D^-), \ s > k - 1/2,$$

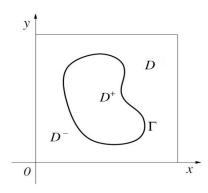
$$f \in H^{s-k}_{loc}(D^+) \cap H^{s-k}_{loc}(D^-),$$
 k is the order of operator L .

SU, Generalized Calderón-Ryabenkii's Potentials, IMA J.Appl.Math., 2009



$$LU = f,$$
 $U \in \Xi_D.$

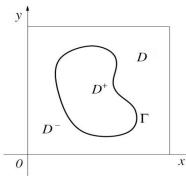
$$P_{D^+}V_{D^+} = V_{D^+} - \int_{D^+} G(\mathbf{x}, \mathbf{y}) LV(\mathbf{y}) d\mathbf{y},$$
 $V \in \Xi_D, \ \mathbf{x} \in D^+.$



$$LU = f,$$
 $U \in \Xi_D.$

$$P_{D^+}V_{D^+} = V_{D^+} - \int_{D^+} G(\mathbf{x}, \mathbf{y}) LV(\mathbf{y}) d\mathbf{y},$$
 $V \in \Xi_D, \ \mathbf{x} \in D^+.$

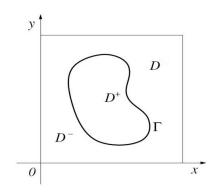
CR potential is a projection:



$$LU=f,$$
 $U\in\Xi_D.$ $P_{D^+}V_{D^+}=V_{D^+}-\int_{D^+}G(\mathbf{x},\mathbf{y})LV(\mathbf{y})d\mathbf{y},$ $V\in\Xi_D,\;\mathbf{x}\in D^+.$ CR potential is a projection:

en personal is a <u>projection</u>.

If supp
$$LV \subset D^+$$
, then $P_{D^+}V_{D^+} = V_{D^+} - V_{D^+} = 0_{D^+}$; if supp $LV \subset D^-$, then $P_{D^+}V_{D^+} = V_{D^+} - 0_{D^+} = V_{D^+}$.



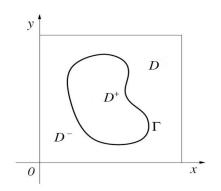
Consider
$$\operatorname{Tr}_{\Gamma}: H^s(D^+) \to H^{s-1/2}(\Gamma)$$

$$\operatorname{Tr}_{\Gamma} U_{D^{+}} \stackrel{def}{=} \lim_{\epsilon \to 0} \operatorname{Tr}_{\Gamma_{\epsilon}} U_{D^{+}},$$

where

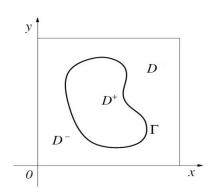
$$\operatorname{Tr}_{\Gamma_{\epsilon}} U_{D^{+}} \stackrel{\text{def}}{=} U_{D^{+}}(\mathbf{x}), \ \mathbf{x} \in \Gamma_{\epsilon},$$

 $\Gamma_{\epsilon} \subset D^{+}, \ \Gamma_{\epsilon} \to \Gamma \text{ if } \epsilon \to 0.$



Consider
$$\operatorname{Tr}_{\Gamma}^{+}:$$

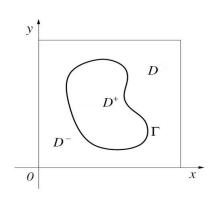
 $\Xi_{D^{+}} \to \Xi_{\Gamma} \subset \bigoplus_{0}^{k-1} H^{s-1/2-j}(\Gamma).$



Consider
$$\operatorname{Tr}_{\Gamma}^{+}$$
:
 $\Xi_{D^{+}} \to \Xi_{\Gamma} \subset \bigoplus_{0}^{k-1} H^{s-1/2-j}(\Gamma).$

Clear trace:
$$(\mathrm{Tr}_{\Gamma}^+, \Xi_{\Gamma})$$
 iff

$${
m Tr}_{\Gamma}^{+} V_{D^{+}} = {
m Tr}_{\Gamma}^{+} W_{D^{+}} \Rightarrow P_{D^{+}} V_{D^{+}} = P_{D^{+}} W_{D^{+}}, \ V, W \in \Xi_{D}.$$



Consider
$$\operatorname{Tr}_{\Gamma}^{+}$$
:
 $\Xi_{D^{+}} \to \Xi_{\Gamma} \subset \bigoplus_{0}^{k-1} H^{s-1/2-j}(\Gamma).$

Clear trace:
$$(\mathrm{Tr}_{\Gamma}^+, \Xi_{\Gamma})$$
 iff

$${
m Tr}_{\Gamma}^{+} V_{D^{+}} = {
m Tr}_{\Gamma}^{+} W_{D^{+}} \Rightarrow$$

 $P_{D^{+}} V_{D^{+}} = P_{D^{+}} W_{D^{+}},$
 $V, W \in \Xi_{D}.$

Then,
$$P_{D^+}U_{D^+} = P_{D^+\Gamma} \operatorname{Tr}_{\Gamma}^+ U_{D^+}$$

Consider BVP for second-order equation:

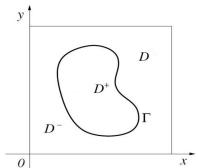
$$\begin{split} Lu &\equiv \nabla(p\nabla u) + qu = f, \\ u &\in \Xi_D, \\ \text{where } p \in C^1(D), q \in C(\overline{D}^0), f \in L^1_{loc}(D). \end{split}$$

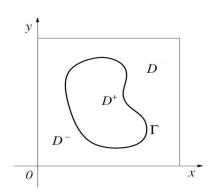
Consider BVP for second-order equation:

$$\begin{split} Lu &\equiv \nabla(p\nabla u) + qu = f, \\ u &\in \Xi_D, \\ \text{where } p \in C^1(D), q \in C(\overline{D}^0), f \in L^1_{loc}(D). \end{split}$$

Clear trace

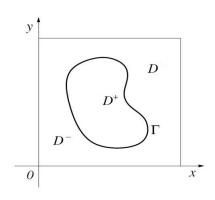
$$\operatorname{Tr}_{\Gamma}^{+} v = \begin{bmatrix} v \\ \frac{\partial v}{\partial n} \end{bmatrix}_{\Gamma}.$$





Generalised Green's formula:

$$P_{D^+}V_{D^+}=V_{D^+}-\int_{D^+}G(\mathbf{x},\mathbf{y})LV(\mathbf{y})d\mathbf{y},$$
 $V\in\Xi_D,\ \mathbf{x}\in D^+.$

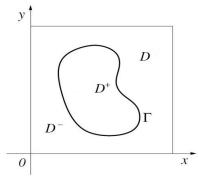


Generalised Green's formula:

$$P_{D^+}V_{D^+}=V_{D^+}-\int_{D^+}G(\mathbf{x},\mathbf{y})LV(\mathbf{y})d\mathbf{y},$$
 $V\in\Xi_D,\ \mathbf{x}\in D^+.$

Hence.

$$V_{D^+} = P_{D^+\Gamma} \operatorname{Tr}_{\Gamma}^+ V_{D^+} + G_{D^+} f_{D^+}.$$

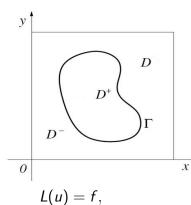


$$P_{D^{+}}(v_{D^{+}}) = L_{D^{+}}^{-1}(L(v) - \theta_{D^{+}}L(v)),$$

 $v \in \Xi_{D}.$

$$L(u) = f,$$

 $u \in \Xi_D,$
 $L(u) = 0 \Leftrightarrow u = 0.$



 $L(u) = 0 \Leftrightarrow u = 0.$

 $u \in \Xi_D$

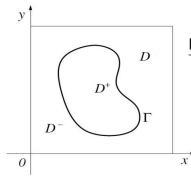
Nonlinear Potential:

$$P_{D^+}(v_{D^+}) = L_{D^+}^{-1}(L(v) - \theta_{D^+}L(v)),$$

 $v \in \Xi_D.$

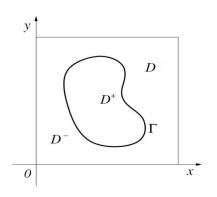
if supp
$$L(v) \subset D^+$$
, then $P_{D^+}(v_{D^+}) = 0_{D^+}$, if supp $L(v) \subset D^-$, then $P_{D^+}(v_{D^+}) = v_{D^+}$.

SU, J. Computat. & Appl. Math. (2010)



Nonlinear Green's Identity

$$P_{D^{+}\Gamma}\operatorname{Tr}_{\Gamma}^{+}(G_{D^{+}}(f)) = G_{D^{+}}(f - f_{D^{+}}).$$



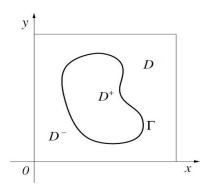
Consider BVP:

$$LU = f,$$

$$U \in \Xi_D.$$

Introduce

$$\begin{split} \xi_{\Gamma} &= \mathrm{Tr}_{\Gamma}^{-} \, V_{D^{-}}, \\ P_{D^{-}\Gamma} \xi_{\Gamma} &= P_{D^{-}} V_{D^{-}}, \\ V &\in \Xi_{D}. \end{split}$$



Consider BVP:

$$LU = f,$$

$$U \in \Xi_D.$$

Introduce

$$\begin{split} \xi_{\Gamma} &= \mathrm{Tr}_{\Gamma}^{-} \, V_{D^{-}}, \\ P_{D^{-}\Gamma} \xi_{\Gamma} &= P_{D^{-}} V_{D^{-}}, \\ V &\in \Xi_{D}. \end{split}$$

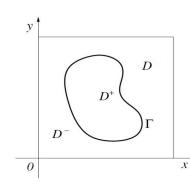
Boundary equation on Γ :

$$\xi_{\Gamma} = \operatorname{Tr}_{\Gamma}^{-} P_{D^{-}\Gamma} \xi_{\Gamma} + \operatorname{Tr}_{\Gamma}^{-} G_{D^{-}} f_{D^{-}}.$$

$$LU = f$$
 (supp $f \subset D^+$),
 $U \in \Xi_D$.

Artificial boundary condition:

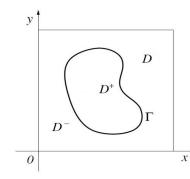
$$\xi_{\Gamma} = \operatorname{Tr}_{\Gamma}^{-} P_{D^{-\Gamma}} \xi_{\Gamma}.$$



$$LU = f$$
 (supp $f \subset D^+$),
 $U \in \Xi_D$.

Artificial boundary condition:

$$\xi_{\Gamma} = \operatorname{Tr}_{\Gamma}^{-} P_{D^{-}\Gamma} \xi_{\Gamma}.$$



Reduced BVP on D^+ :

$$L_{D^+}U_{D^+} = f_{D^+},$$

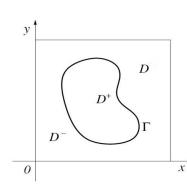
 $\mathrm{Tr}_{\Gamma}^+ U_{D^+} = \xi_{\Gamma}.$

$$LU = f$$
 (supp $f \subset D^+$),
 $U \in \Xi_D$.

Artificial boundary condition:

$$\xi_{\Gamma} = \operatorname{Tr}_{\Gamma}^{-} P_{D^{-}\Gamma} \xi_{\Gamma}.$$

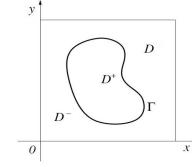
ABC:



$$LU = f$$
 (supp $f \subset D^+$),
 $U \in \Xi_D$.

Artificial boundary condition:

$$\xi_{\Gamma} = \operatorname{Tr}_{\Gamma}^{-} P_{D^{-}\Gamma} \xi_{\Gamma}.$$



ABC:

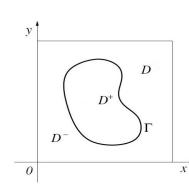
nonlocal

$$LU = f$$
 (supp $f \subset D^+$),
 $U \in \Xi_D$.

Artificial boundary condition:

$$\xi_{\Gamma} = \operatorname{Tr}_{\Gamma}^{-} P_{D^{-}\Gamma} \xi_{\Gamma}.$$

- nonlocal
- asymptotically exact



Nonstationary Problem

Consider IBVP in $D \times (0, T)$:

$$U_t = -LU + f,$$

$$U \in \Xi_D,$$

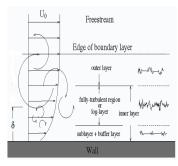
$$U(\mathbf{x}, 0) = 0.$$

Definition

$$P_{D^+}V_{D^+}(\mathbf{x},t) = V_{D^+} - \int_T \int_{D^+} G(\mathbf{x}|\mathbf{y},t| au) LV(\mathbf{y}, au) d\mathbf{y} d au.$$

SU, Adv. Appl. Math. (2009)

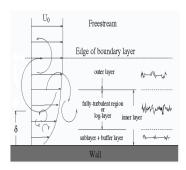
The turbulent boundary laver



©Fluent

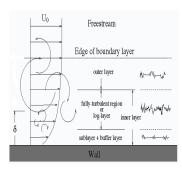
- near-wall sublayer significantly affects mean flow
- resolution of near-wall area requires up to 90% of CPU time
- standard approach: another solution is set at $y = \delta$ (wall functions)
- limited applications

The turbulent boundary layer



(c)Fluent

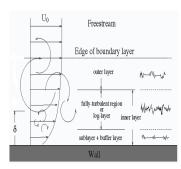
The turbulent boundary layer



(c)Fluent

• the b.c can be transferred from the wall to $y = \delta$

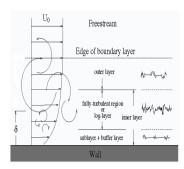
The turbulent boundary layer



© Fluent

- the b.c can be transferred from the wall to $y = \delta$
- the interface near-wall b.c. (INBC) is nonlocal

The turbulent boundary laver



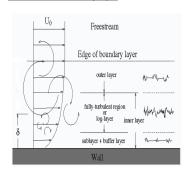
© Fluent

- the b.c can be transferred from the wall to $y = \delta$
- the interface near-wall b.c. (INBC) is nonlocal
- general formulation of b.c.

$$\frac{\partial u}{\partial n_{|\delta}} = u(\delta)S_{\delta}(1) + f_{\delta},$$

 S_{δ} is the Steklov-Poincaré operator

The turbulent boundary layer



© Fluent

- the b.c can be transferred from the wall to $y = \delta$
- the interface near-wall b.c. (INBC) is nonlocal
- general formulation of b.c.

$$\frac{\partial u}{\partial n|_{\delta}} = u(\delta)S_{\delta}(1) + f_{\delta},$$

 S_{δ} is the Steklov-Poincaré operator

SU, Computers & Fluids (2009)

Model 1D Equation

Consider equation

$$(\mu u_y)_y = R(y)$$

in $D = [0 \ y_e]$ with boundary condition at y = 0:

$$u(0) = u_0.$$

INBC is set at δ

$$0 < \delta < y_e, \ D^- := [0 \ \delta].$$

Consider

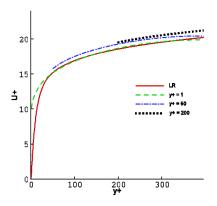
$$(\mu u_y)_y = R(y),$$

$$u(0) = u_0.$$

INBC at $y = \delta$:

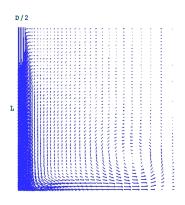
$$u(\delta) = u_0 + u'(\delta) \int_0^\delta \frac{\mu(\delta)}{\mu(y)} dy - \frac{1}{\mu(\delta)\delta} \int_0^\delta (\frac{\mu(\delta)}{\mu(y)} \int_y^\delta R(y') dy') dy.$$

Velocity Profile. Re = 395



Solid line is Reichardt's profile; $y^{+*} = u_{\tau} \delta/\nu = 1,50,200; u_{\tau}$ is friction velocity

Input data

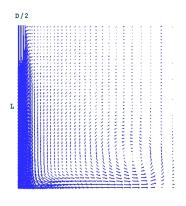


$$L/D = 2, 4, 6, 10, 14$$

Re = 23000, 70000.

SU, J. Appl. Numer. Math. (2008)

Input data



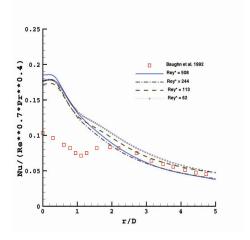
$$L/D = 2, 4, 6, 10, 14$$

Re = 23000, 70000.

SU, J. Appl. Numer. Math. (2008)

- INBC: locally 1D

- no free parameters

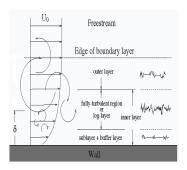


Local scaled Nusselt number (L/D=0.4, Re=70000). $Re_{\delta}\equiv \rho\sqrt{k^*\delta}/\mu_l=62, 113, 244, 508.$

Interface Near-wall Boundary Conditions Channel Flow. $k-\epsilon$ model Impinging Jet. $k-\epsilon$ model Channel Flow. Low Re $k-\epsilon$ (Chien) model 2D Model Equation Nonstationary Model Equation

Viscosity profile in the near-wall domain

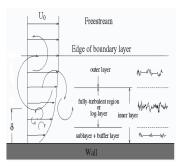
The turbulent boundary layer



(C) Fluent

Viscosity profile in the near-wall domain

The turbulent boundary layer

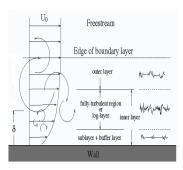


© Fluent

 Piece-wise linear profile (identical to AWFs)

Viscosity profile in the near-wall domain

The turbulent boundary layer

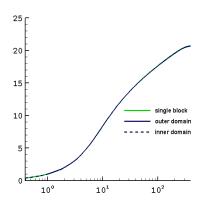


(c) Fluent

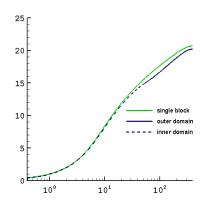
- Piece-wise linear profile (identical to AWFs)
- 2. Nonlinear approximation (Cabot-Moin, 1999):

$$\nu_t = \nu \kappa y^+ (1 - \exp(-y^+/A))^2$$

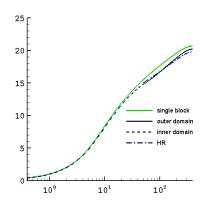
where
$$\kappa = 0.41$$
, $A = 19$.



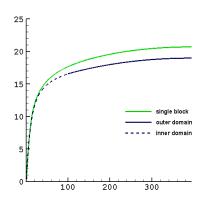
$$y^{+*} = u_{\tau}\delta/\nu = 1$$
; u_{τ} is friction velocity



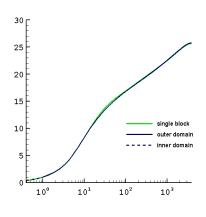
$$y^{+*} = u_{\tau} \delta / \nu = 50$$



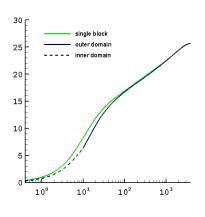
$$y^{+*} = u_{\tau} \delta / \nu = 50$$



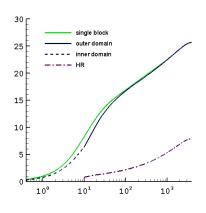
$$y^{+*} = u_\tau \delta/\nu = 100$$



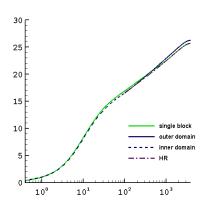
$$y^{+*} = u_{\tau}\delta/\nu = 1$$



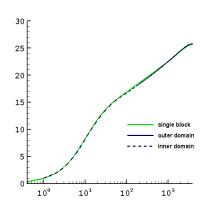
$$y^{+*} = u_{\tau} \delta / \nu = 10$$



$$y^{+*} = u_{\tau} \delta / \nu = 10$$



$$y^{+*} = u_\tau \delta/\nu = 100$$



$$y^{+*} = u_\tau \delta/\nu = 200$$

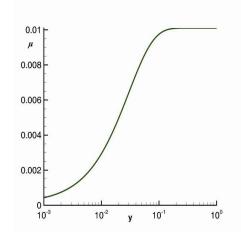
Consider BVP for second-order equation:

$$(\mu(y)u_y)_y + \alpha\mu(y)u_{xx} + \beta(y)u_y + \gamma(y)u = f(x, y),$$

 $l_y u(x, 0) = \alpha_w(x),$
 $u(0, y) = u_0(y),$
 $u(1, y) = u_1(y),$
 $u(x, 1) = u_s(x),$

where
$$\alpha > 0$$
, $\mu = (1 - \exp(-y/\epsilon) + \delta_0)/Re$, $\epsilon \ll 1, \delta_0 \ll 1, Re \gg 1$, $\beta = Cy^p > 0$, $p > 0$.

Profile of μ



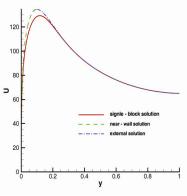
Consider BVP for second-order equation:

$$(\mu(y)u_y)_y + \alpha\mu(y)u_{xx} + \beta(y)u_y + \gamma(y)u = f(x, y),$$

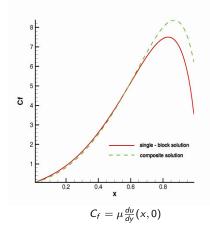
 $l_y u(x, 0) = \alpha_w(x),$
 $u(0, y) = u_0(y),$
 $u(1, y) = u_1(y),$
 $u(x, 1) = u_s(x),$

where
$$\alpha > 0$$
, $\mu = (1 - \exp(-y/\epsilon) + \delta_0)/Re$, $\epsilon \ll 1, \delta_0 \ll 1, Re \gg 1$, $\beta = Cy^p > 0$, $p > 0$.

1D INBCs. $\alpha = 1$, $\delta = 0.1$, $Re_{\delta} = 1.2 * 10^3$



Profile of u at x = 0.8



Consider BVP for second-order equation:

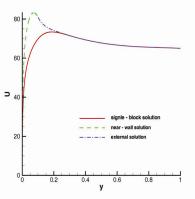
$$(\mu(y)u_y)_y + \alpha\mu(y)u_{xx} + \beta(y)u_y + \gamma(y)u = f(x, y),$$

 $l_y u(x, 0) = \alpha_w(x),$
 $u(0, y) = u_0(y),$
 $u(1, y) = u_1(y),$
 $u(x, 1) = u_s(x),$

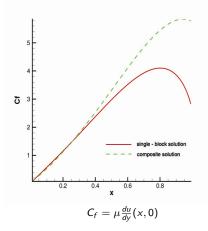
where
$$\alpha > 0$$
, $\mu = (1 - \exp(-y/\epsilon) + \delta_0)/Re$, $\epsilon \ll 1, \delta_0 \ll 1, Re \gg 1$, $\beta = Cy^p > 0$, $p > 0$.

Interface Near-wall Boundary Conditions Channel Flow. $k-\epsilon$ model Impinging Jet. $k-\epsilon$ model Channel Flow. Low Re $k-\epsilon$ (Chien) model 2D Model Equation Nonstationary Model Equation

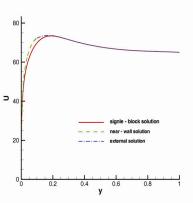
1D INBCs. $\alpha = 10, \ \delta = 0.1, \ Re_{\delta} = 0.7 * 10^3$



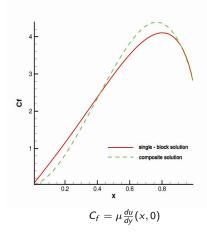
Profile of u at x = 0.8



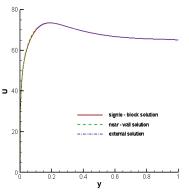
Nonlocal Boundary Conditions. $\alpha = 10, \ \delta = 0.1$



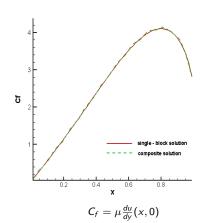
Profile of u at x = 0.8



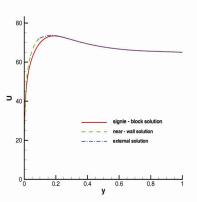
Nonlocal INBC. $\alpha = 10, \ \delta = 0.1$



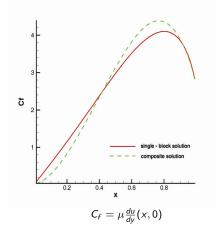
Profile of u at x = 0.8



INBC: $\frac{\partial u}{\partial n|\delta} = u(\delta)S_{\delta}(1) + f_{\delta}$. $\alpha = 10, \ \delta = 0.1$



Profile of u at x = 0.8



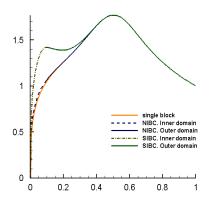
Consider BVP for second-order equation:

$$u_t = (\mu(y)u_y)_y + \beta(y)u_y + \gamma(y)u - f(y),$$

 $u(0, y) = u_0(y),$
 $u(1, y) = u_1(y),$

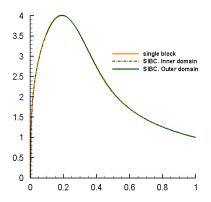
where
$$\alpha > 0$$
, $\mu = (1 - \exp(-y/\epsilon) + \delta_0)/Re$, $\epsilon \ll 1, \delta_0 \ll 1, Re \gg 1$, $\beta = Cy^p > 0$, $p > 0$.

Nonstationary IBCs



Non-stationary vs stationary IBCs. t=1

Nonstationary IBCs



Non-stationary vs stationary IBCs. t=10

Outline Introduction to Calderón-Ryaben'kii's Potentials Artificial Boundary Conditions Near-wall Turbulence Modelling Summary

Conclusion

The intermediate near-wall boundary conditions (INBC):

- The intermediate near-wall boundary conditions (INBC):
 - nonlocal

- The intermediate near-wall boundary conditions (INBC):
 - nonlocal
 - mesh independent

- The intermediate near-wall boundary conditions (INBC):
 - nonlocal
 - mesh independent
 - do not contain any free parameters

- The intermediate near-wall boundary conditions (INBC):
 - nonlocal
 - mesh independent
 - do not contain any free parameters
 - easy to implement

- The intermediate near-wall boundary conditions (INBC):
 - nonlocal
 - mesh independent
 - do not contain any free parameters
 - easy to implement
 - can be calculated in advance

- The intermediate near-wall boundary conditions (INBC):
 - nonlocal
 - mesh independent
 - do not contain any free parameters
 - easy to implement
 - can be calculated in advance
- Nonlocal INBC can be important for complex geometries

- The intermediate near-wall boundary conditions (INBC):
 - nonlocal
 - mesh independent
 - do not contain any free parameters
 - easy to implement
 - can be calculated in advance
- Nonlocal INBC can be important for complex geometries
- Nonstationary INBC have been obtained

Literature

- 1. Utyuzhnikov, S.V., "Generalized wall-functions and their application for simulation of turbulent flows", Int. J. Numerical Methods in Fluids, 2005, 47.
- 2. Utyuzhnikov, S.V., "Some new approaches to building and implementation of wall-functions for modeling of near-wall turbulent flows", Int. J. Computers & Fluids, 2005, 34.
- 3. Utyuzhnikov, S.V., "Robin-type wall functions and their numerical implementation", J. Appl. Numer. Math., 2008, 58.
- 4. Utyuzhnikov, S.V., "Domain decomposition for near-wall turbulent flows", Int. J. Computers & Fluids. 2009. 38.
- 5. Utyuzhnikov, S.V., "Generalized Calderon-Ryaben'kii's potentials", IMA J. of Appl. Math., 2009, 74.
- 6. Utyuzhnikov, S.V., "Active wave control and generalized surface potentials", J. Advances in Appl. Math., 2009, 43.
- 7. Utyuzhnikov, S.V., "Nonlinear Problem of Active Sound Control", J. of Comput. and Appl. Math., 2010, 234.