Equivariant cohomology and syzygies

Matthias Franz

University of Western Ontario

Moscow, June 2013

(mostly joint work with Chris Allday and Volker Puppe)

Equivariant cohomology

 $T=(S^1)^r$ compact torus, X smooth T-manifold, $\dim H^*(X)<\infty$.

 $A = H^*(BT) = \mathbb{R}[t_1, \dots, t_r]$ with $\deg(t_i) = 2$.

Equivariant cohomology: $H_T^*(X) = H^*(\Omega_T^*(X))$

Cartan model: $\Omega_T^*(X) = \Omega^*(X)^T \otimes A$ with twisted differential,

$$d(\gamma \otimes f) = d\gamma \otimes f + \sum_{i=1}^{r} \iota_{\xi_i} \gamma \otimes t_i f.$$

Here ξ_1, \ldots, ξ_r are generating vector fields.

 $H_T^*(X)$ is a f. g. A-module (even an A-algebra), and $\Omega_T^*(X)$ is a dg-A module (even a dg-A algebra).

Two exact sequences

Chang–Skjelbred sequence (1974): $H_T^*(X)$ free $/A \implies$

$$0 \to H_T^*(X) \to H_T^*(X^T) \to H_T^{*+1}(X_1, X^T)$$

is exact, where $X_1 = \text{union of orbits of dimension} \leq 1$.

This is an efficient way to compute $H_T^*(X)$, in particular if X^T is finite and X_1 a union of 2-spheres ("GKM method" 1998).

Two exact sequences

Chang–Skjelbred sequence (1974): $H_T^*(X)$ free $/A \implies$

$$0 \to H_T^*(X) \to H_T^*(X^T) \to H_T^{*+1}(X_1, X^T)$$

is exact, where $X_1 = \text{union of orbits of dimension} \leq 1$.

This is an efficient way to compute $H_T^*(X)$, in particular if X^T is finite and X_1 a union of 2-spheres ("GKM method" 1998).

Atiyah–Bredon sequence (1974): $H_T^*(X)$ free $/A \implies$

$$0 \to H_T^*(X) \to H_T^*(X_0) \to H_T^{*+1}(X_1, X_0) \to H_T^{*+2}(X_2, X_1) \to \\ \cdots \to H_T^{*+r-1}(X_{r-1}, X_{r-2}) \to H_T^{*+r}(X_r, X_{r-1}) \to 0$$

is exact, where X_i = union of orbits of dimension $\leq i$.

Two exact sequences

Chang–Skjelbred sequence (1974): $H_T^*(X)$ free $/A \implies$

$$0 \rightarrow H_T^*(X) \rightarrow H_T^*(X^T) \rightarrow H_T^{*+1}(X_1, X^T)$$

is exact, where $X_1 = \text{union of orbits of dimension} \leq 1$.

This is an efficient way to compute $H_T^*(X)$, in particular if X^T is finite and X_1 a union of 2-spheres ("GKM method" 1998).

Atiyah–Bredon sequence (1974): $H_T^*(X)$ free $/A \implies$

$$0 \to H_T^*(X) \to H_T^*(X_0) \to H_T^{*+1}(X_1, X_0) \to H_T^{*+2}(X_2, X_1) \to \\ \cdots \to H_T^{*+r-1}(X_{r-1}, X_{r-2}) \to H_T^{*+r}(X_r, X_{r-1}) \to 0$$

is exact, where X_i = union of orbits of dimension $\leq i$.

The CS / GKM method only uses a small part of this sequence!

Equivariant homology

(cf. Jones, Brylinski, Edidin-Graham, ...)

Defined via the A-dual of the Cartan model:

$$H_*^T(X) = H_*(\operatorname{\mathsf{Hom}}_A(\Omega_T^*(X), A))$$

This is not the homology of the Borel construction!

Universal coefficient theorem:

$$E_2 = \operatorname{Ext}_A^*(H_*^T(X), A) \Rightarrow H_T^*(X)$$

Poincaré duality: X compact orientable \Longrightarrow

$$H_T^*(X) \xrightarrow{\cap o_T} H_*^T(X)$$
 iso of A-modules

where o_T is the equivariant lift of the orientation.

The cohomology of the AB sequence

 $H^*(AB^*(X)) =$ cohomology of the complex of A-modules

$$H_T^*(X_0) o H_T^{*+1}(X_1, X_0) o H_T^{*+2}(X_2, X_1) o \\ \cdots o H_T^{*+r-1}(X_{r-1}, X_{r-2}) o H_T^{*+r}(X_r, X_{r-1})$$

The cohomology of the AB sequence

 $H^*(AB^*(X)) =$ cohomology of the complex of A-modules

$$H_T^*(X_0) o H_T^{*+1}(X_1, X_0) o H_T^{*+2}(X_2, X_1) o \\ \cdots o H_T^{*+r-1}(X_{r-1}, X_{r-2}) o H_T^{*+r}(X_r, X_{r-1})$$

Theorem

$$H^{i}(AB^{*}(X)) = \operatorname{Ext}_{A}^{i}(H_{*}^{T}(X), A)$$
 for any $i \geq 0$

Syzygies

M f. g. A-module

$$M$$
 j -th syzygy: $\exists F_1, \ldots, F_j$ f. g. free A -modules such that
$$0 \to M \to F_1 \to \cdots \to F_j \quad \text{exact.}$$

Syzygies interpolate between torsion-freeness and freeness:

```
first syzygy = torsion-free second syzygy = reflexive \vdots r-th syzygy = free (r+1)-st syzygy = free \vdots
```

Partial exactness

Theorem

Let $j \ge 0$. The AB sequence is exact at all positions $i \le j-2$ $\iff H_T^*(X)$ is a j-th syzygy.

This includes Atiyah–Bredon's result and its converse.

Corollary

The CS sequence is exact \iff $H_T^*(X)$ is reflexive

Partial exactness

Theorem

Let $j \ge 0$. The AB sequence is exact at all positions $i \le j-2$ $\iff H_T^*(X)$ is a j-th syzygy.

This includes Atiyah–Bredon's result and its converse.

Corollary

The CS sequence is exact \iff $H_T^*(X)$ is reflexive

Example

 X_P toric manifold, $x \neq y \in X^T$ = vertices of P, $Y = X_P \setminus \{x,y\}$ Then $H_T^*(Y)$ is a syzygy of order exactly dim Q-1, where Q is the supporting face of v and v'

Consequences for Poincaré duality spaces

Corollary

The CS sequence is exact ← the equivariant Poincaré pairing

$$H_T^*(X) \times H_T^*(X) \to A, \quad (\alpha, \beta) \mapsto \langle \alpha \cup \beta, o_T \rangle$$

is perfect.

This answers a point raised by Guillemin–Ginzburg–Karshon.

Consequences for Poincaré duality spaces

Corollary

The CS sequence is exact ← the equivariant Poincaré pairing

$$H_T^*(X) \times H_T^*(X) \to A, \quad (\alpha, \beta) \mapsto \langle \alpha \cup \beta, o_T \rangle$$

is perfect.

This answers a point raised by Guillemin–Ginzburg–Karshon.

Corollary

If $H_T^*(X)$ is a syzygy of order $\geq r/2$, then it is free over R.

In other words:

 $r \le 2$: $H_T^*(X)$ torsion-free \Rightarrow free (Allday 1985)

 $r \leq 4$: $H_T^*(X)$ reflexive \Rightarrow free etc.

A geometric criterion for syzygies

Assumption

T-action on X effective with connected isotropy groups (enough: locally effective action on locally orientable T-orbifold)

 $X_{r-1} = \text{union of } X^K \text{ for some "characteristic circles" } K \subset T.$

T-action is *regular* if codim $X^K = 2$ for all such K.

Otherwise one can blow up the X^K to get a regular T-mf \tilde{X} .

Note: In general, \tilde{X} is an orbifold, even if X is a manifold.

Proposition

$$H_T^*(X)$$
 j-th syzygy $\iff H_T^*(\tilde{X})$ j-th syzygy

So enough to consider regular T-actions.

A geometric criterion for syzygies: regular actions

T acts regularly $\Rightarrow X/T$ is a manifold with corners For a face P of X/T, consider the complex

$$B^{i}(P) = \bigoplus_{\substack{Q \subset P \\ \text{rank } Q = i}} H_{*}(Q)$$

where rank Q = dimension of T-orbits over interior of Q. The differential is induced by the inclusions of facets.

A geometric criterion for syzygies: regular actions

T acts regularly $\Rightarrow X/T$ is a manifold with corners For a face P of X/T, consider the complex

$$B^{i}(P) = \bigoplus_{\substack{Q \subset P \\ \mathsf{rank} \ Q = i}} H_{*}(Q)$$

where rank Q = dimension of T-orbits over interior of Q. The differential is induced by the inclusions of facets.

Theorem

$$H_T^*(X)$$
 j-th syzygy \iff $H^i(B^*(P)) = 0$ for all P and all $i > \max(\operatorname{rank} P - j, 0)$

This generalizes criteria for torsion-freeness and freeness due to Barthel–Brasselet–Fieseler–Kaup (2002), Masuda–Panov (2006), Masuda (2006), Goertsches–Rollenske (2011).

A special case

Additional assumption

X compact orientable and dim X = 2r

(toric manifolds, quasi-toric manifolds, torus manifolds, ...)

Corollary

 $H_T^*(X)$ torsion-free $\iff H_T^*(X)$ free

A special case

Additional assumption

X compact orientable and dim X = 2r

(toric manifolds, quasi-toric manifolds, torus manifolds, ...)

Corollary

 $H_T^*(X)$ torsion-free $\iff H_T^*(X)$ free

This is not true for dim X > 2r.

Intersections of quadrics

Take $\lambda_1, \ldots, \lambda_r \in \mathbb{C}$ such that 0 is in their convex hull, but not on any line segment joining two λ_i 's.

Define the compact orientable mf $X\subset \mathbb{C}^{r+2}$ by

$$\sum_{i=1}^{r} \lambda_i |z_i|^2 + u^2 + v^2 = 0,$$

$$\sum_{i=1}^{r} |z_i|^2 + |u|^2 + |v|^2 = 1.$$

dim X = 2r + 1, $T = (S^1)^r$ acts by rotating the z_i 's.

Proposition

 $H_T^*(X)$ is torsion-free, but not reflexive (hence not free).

The proof uses the geometric criterion and recent results of Gómez Gutiérrez and López de Medrano.

References

C. Allday, M. Franz, V. Puppe Equivariant cohomology, syzygies and orbit structure arXiv:1111.0957, to appear in *Trans. AMS*

M. Franz

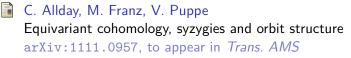
A geometric criterion for syzygies in equivariant cohomology arXiv:1205.4462

🗎 C. Allday, M. Franz, V. Puppe

Equivariant Poincaré–Alexander–Lefschetz duality and the Cohen–Macaulay property

arXiv:1303.1146

References



M. Franz

A geometric criterion for syzygies in equivariant cohomology arXiv:1205.4462

🔋 C. Allday, M. Franz, V. Puppe

Equivariant Poincaré–Alexander–Lefschetz duality and the Cohen–Macaulay property

arXiv:1303.1146

Thanks.