The Development of NonGaussian Component Analysis

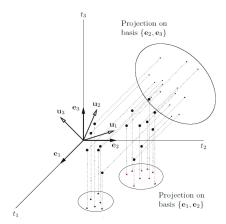
Elmar Diederichs²

joint work with Anatoli Juditsky³ and Vladimir Spokoiny¹

 1 Weierstrass-Institute and Humbolt University, Berlin 2 Moscow Institute for Physics and Technology, Moscow 3 U. Joseph Fourier, Grenoble

International Workshop on Statistical Learning Moscow, 26.-27.05.2013

Structural Analysis



Design of Unsupervised Feature Extraction

Data $X_1, \ldots, X_n \in \mathbb{R}^d$ i.i.d., d large. For simplicity let $\boldsymbol{E}[X_i] = 0$ for all i.

Problem: most of all random projections $\mathbf{X}^{\top}\omega$ are almost approximately normal

Approach: Gaussian component of the data is entropy-maximizing and hence uninformative (noise). Project the data on the non-Gaussian components.

Requirements for an acceptable statistical method:

- i) No apriori knowledge about the data density is used.
- ii) No dependency on the magnitude of second moments of Gaussian and non-Gaussian components as found e.g. in PCA or unrealistic assumptions on the data density as found e.g. in ICA.

The Semi-Parametric Model

Semiparametric structural assumption:

$$\rho(x) = \phi_{\mu=0,\Sigma}(x)q(Tx) \tag{1}$$

This links pure Gaussian Analysis (PCA) and pure NonGaussian Analysis (ICA).

 $q:\mathbb{R}^m \to \mathbb{R}$ smooth nonlinear function, $m \leq d$

 $T: \mathbb{R}^d \to \mathbb{R}^m$ linear operator with $\mathcal{I} = Ker(T)^{\perp}$.

 \mathcal{I} : linear target subspace of the non-Gaussian components.

goal: Estimate a projector without estimating the model parameter.

interpretation: (1) lead to the stationary data model $X = Z + \zeta$ where ζ represents independent Gaussian noise components and Z the signal.

Recovery of Target Space

Lemma

Assume that $\rho(x)$ follows the semiparametric assumption with E[X] = 0. Then for $\psi(x) \in \mathcal{C}^1(\mathbb{R}^d, \mathbb{R})$ and

$$\beta(\psi) \stackrel{\text{def}}{=} \boldsymbol{E} \big[\nabla \psi(\mathbf{x}) \big] \tag{2}$$

there is $\beta \in \mathcal{I}$ such that there is a uniform error bound

$$\|\beta(\psi) - \beta\|_2 \le \left\| \Sigma^{-1} \mathbf{E} [x \psi(x)] \right\|_2 \tag{3}$$

of $dist(\beta(\psi), \mathcal{I})$. Moreover if $\mathbf{E}[x\psi(x)] = 0$, then $\beta(\psi) \in \mathcal{I}$.

Unsupervised Feature Extraction Using Projections

- 1) linear approach: $\psi(x) = \sum_{\ell}^{L} c_{\ell} h_{\ell}(x)$
- 2) test functions: $h_{\ell}(x) \stackrel{\text{def}}{=} h(\omega_{\ell}^{\top} x) e^{-\lambda ||x||^2/2}$
- 3) define:

$$\gamma_{\ell} \stackrel{\text{def}}{=} \boldsymbol{E}[Xh_{\ell}(X)], \quad \eta_{\ell} \stackrel{\text{def}}{=} \boldsymbol{E}[\nabla h_{\ell}(X)],$$

and let $\widehat{\gamma}_\ell$ and $\widehat{\eta}_\ell$ be their "empirical counterparts" that can be computed, such that for a set A of probability at least $1-\epsilon$ it holds $\max_{|c|_1 \leq 1} \sum_\ell |\widehat{\eta}_\ell - \eta_\ell|_2 \leq \delta_N$ and $\max_{|c|_1 \leq 1} \sum_\ell |\widehat{\gamma}_\ell - \gamma_\ell|_2 \leq \nu_N$, .

Lemma

Let h be bounded and continuously differentiable. For a fixed constant C = C(h), it holds

$$\boldsymbol{E} \sup_{\boldsymbol{\omega} \in \boldsymbol{\mathcal{B}}_d} \left| \widehat{\gamma}_{\boldsymbol{\omega}} - \gamma_{\boldsymbol{\omega}} \right|^2 + \left| \widehat{\eta}_{\boldsymbol{\omega}} - \eta_{\boldsymbol{\omega}} \right|^2 \leq C N^{-1/2} \sqrt{d}$$

NonGaussian Component Analysis

Approach of Blanchard et al.(JMLR, 2007):

Consider $\psi(x) = h(x) - \alpha^T x$ and select α s.t.

$$\boldsymbol{E}[X\psi(X)] = \boldsymbol{E}[Xh(X)] - \boldsymbol{E}XX^{T}\alpha = 0.$$

in order to suppress the noise when estimating elements from $\mathcal{I}.$

Then $\beta(\psi) \stackrel{\text{def}}{=} \boldsymbol{E}[\nabla \psi(x)]$ leads to:

$$\widehat{\beta}_{\ell} = \widehat{\eta}_{\ell} - \widehat{\Sigma}^{-1} \widehat{\gamma}_{\ell}.$$

drawbacks: requires to compute and study $\widehat{\Sigma}^{-1}$, m cannot be estimated.

Sparse NonGaussian Component Analysis

Approach of Diederichs et al. (IEEE Trans. Inf. Theo, 2009):

Set $\psi(x) = \sum_{\ell}^{L} c_{\ell} h_{\ell}(x)$ and consider the convex projection problem

$$\widehat{c} = \operatorname{arg\,min}_{c} \left\{ \|\xi - \sum_{\ell} c_{\ell} \widehat{\eta}_{\ell}\|_{2} \mid \sum_{\ell} c_{\ell} \widehat{\gamma}_{\ell} = 0, \ \|c\|_{1} \leq 1 \right\}$$

and define $\widehat{\beta}_\ell = \sum_\ell \widehat{c}_\ell \widehat{\eta}_\ell$. Then under some regularity conditions there is $\mathcal{C} \stackrel{\text{def}}{=} \{ \|c\|_1 \leq 1, \sum_\ell c_\ell \widehat{\gamma}_\ell \}$

$$\|(\mathbf{1}_d - \Pi^*)\widehat{\beta}\|_2 \leq \sqrt{d}C(d, N^{-1/2})(1 + \|\Sigma^{-1}\|_2)$$

drawbacks: choice of informative probe vector ξ , m cannot be estimated

Both approaches require the solution of the Reduced Rank Regression problem: given m, recover \mathcal{I} or the projector $\Pi_{\mathcal{I}}$ from $\widehat{\beta}_1, \dots, \widehat{\beta}_L$.

Dimension Reduction Step: the RRR problem

Suppose to be given the vectors $\widehat{eta}_1,\dots,\widehat{eta}_L$ such that

$$\|(\mathbf{1}_d - \Pi_{\mathcal{I}})\widehat{\beta}_{\ell}\| \leq \epsilon$$

where $\Pi_{\mathcal{I}}$ is a projector on a m-dimensional subspace.

PCA solution:

$$\widehat{\mathcal{I}} = \underset{\dim(\mathcal{I}) = m}{\arg\min} \sum_{\ell} \| (\mathbf{1}_d - \Pi_{\mathcal{I}}) \widehat{\beta}_{\ell} \|^2 = \langle \text{first } m \text{ eigenvectors of } \sum_{\ell} \widehat{\beta}_{\ell} \widehat{\beta}_{\ell}^T \, \rangle.$$

Requires that $\lambda_m(\sum_{\ell} \beta_{\ell} \beta_{\ell}^T) \geq L\epsilon^2$. Works poorly if most of the $\widehat{\beta}_{\ell}$'s are non-informative.

Rounding Ellipsoid: (see Yu.Nesterov, 2004) Define the convex set

$$\mathcal{S} := \{\widehat{\beta}_1, -\widehat{\beta}_1, \widehat{\beta}_2, -\widehat{\beta}_2, \ldots\}.$$

For $\mathcal S$ a centered ellipsoid $\mathcal E$ of minimum volume that encloses $\mathcal S$ always exists and recovering $\mathcal I$ from the principal axis of $\mathcal E$ comes with the accuracy

$$\|\Pi_{\mathcal{I}} - \Pi_{\widehat{\mathcal{T}}}\|_2^2 \leq C(\lambda_m, \epsilon^2) d\sqrt{d}.$$

Numerical Illustration of Progress

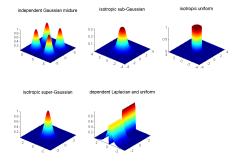


Figure : (A) NonGaussian test densities: 2 d independent Gaussian mixtures, (B) 2 d isotropic super-Gaussian, (C) 2 d isotropic uniform and (D) dependent 1 d Laplacian with additive 1 d uniform with N = 1000 respectively.

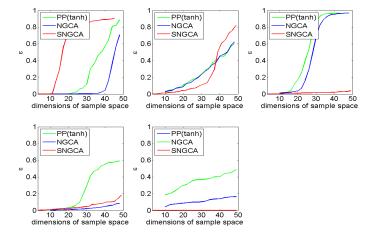
Frror Measure

The closeness of the subspace $\,\mathcal{I}\,$ and its estimate $\,\widehat{\mathcal{I}}\,$ can be measured by the error function

$$\mathcal{E}(\widehat{\mathcal{I}},\mathcal{I}) = \frac{1}{m} \sum_{i=1}^{m} \|(\mathbf{1}_d - \Pi)v_i\|_2^2$$
 (4)

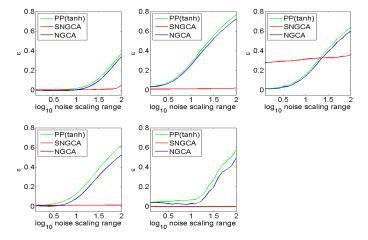
where Π denotes the orthogonal projection onto $\widehat{\mathcal{I}}$, $\{v_i\}_{i=1}^m$ is an orthonormal basis of $\widehat{\mathcal{I}}$ and I denotes the identity matrix.

Estimation Error for Increasing Dimensionality



Structural Analysis using SDP

Comparison of Methods Cont'd: Noise



Structural Analysis using SDP

Design of Semidefinite Structural Analysis

first step of approach of Juditsky et al. (JML, 2012): Choose randomly a family of directions $\{\omega_\ell\}$, $\ell=1,\ldots,L$ and compute

$$\widehat{\gamma}_{\ell} \stackrel{\text{def}}{=} \mathbf{E}_{N}[Xh_{\ell}(X)], \qquad \widehat{\eta}_{\ell} \stackrel{\text{def}}{=} \mathbf{E}_{N}[\nabla h_{\ell}(X)]$$

second step: avoid any probe vectors and the RRR problem by solving the semidefinite problem

$$\Pi^* = \min_{\Gamma} \max_{c} \left\{ \left\| (I - \Pi)Uc \right\|_2^2 \middle| \begin{array}{c} \Pi \text{ is a projector on a} \\ m\text{-dimensional subspace of } \mathbb{R}^d \end{array} \right\}. \tag{5}$$

$$c \in \mathbb{R}^L, \ Gc = 0$$

where $U = [\eta_1, ..., \eta_L] \in \mathbb{R}^{d \times L}$, $G = [\gamma_1, ..., \gamma_L] \in \mathbb{R}^{d \times L}$ and Π^* is the Euclidean projector on \mathcal{I} .

Design of Semiparametric Structural Analysis cont'd

third step: structural adaptation idea (Hristache, Juditsky, Polzehl and Spokoiny, 2003):

use the estimated projector $\widehat{\Pi}_{k-1}$ as a prior information for the directional sampling to improve the quality of estimation at iteration k of SD-NGCA.

This leads to a sequential procedure: alternate two steps

- a) sample some directions $\,\omega_{\ell}\,$ from the space spanned by the $\,m$ principal directions of $\,\widehat{\Pi}_{k-1}\,$
- b) estimate the structure $\widehat{\Pi}_k$

This ensures that a certain fraction of $\widehat{\gamma}_{\ell}$ and $\widehat{\eta}_{\ell}$ is informative.

Relaxation of the hard problem in SD-NGCA

idea: drop constraints to get convexity and solve an approximating problem

i) Use:
$$\|(I - \Pi)\widehat{U}c\|_2^2 = \operatorname{Tr}\left[\widehat{U}(I - \Pi)\widehat{U}cc^T\right]$$
.

- ii) **Linearization**: positive semidefinite matrix $X = cc^T$ with rankX = 1 as "new variable".
- iii) Set $|X|_1 \stackrel{\text{def}}{=} \sum_{i,j=1}^L |X_{ij}|$ and transform $\|\widehat{G}c\|_2 \le \delta$ into $\operatorname{Tr}[\widehat{G}X\widehat{G}] \le \varrho^2$.
- iv) **Drop** the non-convex constraints rankX = 1 and $rank\Pi = m$.

Then we arrive at the relaxed and constrained saddle point problem:

$$\min_{P} \max_{X} \left\{ \operatorname{Tr} \left[\widehat{U}(I - P) \widehat{U}X \right] \middle| \begin{array}{c} 0 \leq P \leq I, \ \operatorname{Tr}[P] = m, \\ X \succeq 0, \ |X|_{1} \leq 1, \ \operatorname{Tr}[\widehat{G}X\widehat{G}] \leq \varrho^{2} \end{array} \right\}. \tag{6}$$

where $|X|_1 := \sum_{ij} |X_{ij}|$. We call P - defined as above - a subprojector.

Accuracy of the estimated projector

Lemma

Let \hat{P} be an optimal solution of the relaxed SDP and assume that

- i) Π^* on \mathcal{I} is a convex combination of rank-one matrices Ucc^TU^T
- ii) c satisfies Gc = 0 and $||c||_1 \le 1$.

Then it holds of $\widehat{\Pi}$, spanned by the first m eigenvectors of \widehat{P} , with probability $\geq (1 - \epsilon)$;

$$\begin{aligned} & \left\| (\mathbf{1}_{d} - \widehat{\boldsymbol{\Pi}}) U \boldsymbol{c} \right\|_{2} & \leq & C_{1} \sqrt{m+1} ((\varrho + \nu_{N}) \lambda_{\min}^{-1}(\boldsymbol{\Sigma}) + 2\delta_{N}) \\ & \operatorname{Tr}[(\mathbf{1}_{d} - \widehat{\boldsymbol{\Pi}}) \boldsymbol{\Pi}^{*}] & \leq & C_{2} \left[(\varrho + \nu_{N}) \lambda_{\min}^{-1}(\boldsymbol{\Sigma}) + 2\delta_{N} \right]^{2} \\ & \left\| \widehat{\boldsymbol{\Pi}} - \boldsymbol{\Pi}^{*} \right\|_{Frob}^{2} & \leq & C_{3} (m+1) \left[(\varrho + \nu_{N}) \lambda_{\min}^{-1}(\boldsymbol{\Sigma}) + 2\delta_{N} \right]^{2} \end{aligned}$$

where $C_i = C_i(h)$ with i = 1, 2, 3 does not depend on d or L.

Linear Constraints

Observe that $\hat{G}^T \hat{G} = \Gamma \Lambda \Gamma^T$ and X are symmetric and positive. Hence:

$$Tr(\widehat{G}^T\widehat{G}X) = 0 \quad \Rightarrow \quad X = QZQ^T$$
 (7)

where $Z \in \mathcal{S}^{L-d}$ and $Q \in \mathcal{S}^{L \times (L-d)}$ is a submatrix of columns of Γ corresponding to the vanishing eigenvalues of $\widehat{G}^T \widehat{G}$.

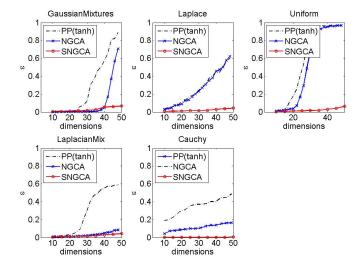
Let $V = \widehat{G}Q$. Than we get a regularized and hence unconstrained convex reformulation of the relaxed problem:

$$\min_{\Pi,W} \left[\max_{Z \in \mathcal{Z},Y} \operatorname{Tr}[V^{T}(I - \Pi_{\widehat{\mathcal{I}}})VZ] + \operatorname{Tr}[W(QZQ^{T} - Y)] \right]$$
(8)

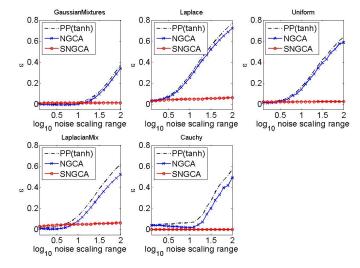
where $Z \in \mathcal{Z}$ and $\mathcal{Z} := \{Z \in \mathcal{S}_{L-d} \mid Z \succeq 0, \textit{Tr}(Z) \leq 1\}.$

The latter problem can be solved using a gradient-type method with complexity $\mathcal{O}(d \log d)$ and $\mathcal{O}(k^{-1})$ iterations (Nesterov 2007).

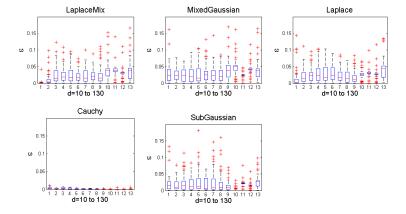
Estimation Error for Increasing Dimensionality



Comparison of Methods Cont'd: Noise



Numerical Performance



Structural Analysis using SDP

Final Slide

Thank you for your attention!

Dual Extrapolation Algorithm:

Consider the linear matrix game

$$\min_{x \in \mathcal{A}} \max_{y \in \mathcal{B}} \langle x, Ay \rangle + \langle a, x \rangle + \langle b, y \rangle.$$
(9)

with $\mathcal{A} \subset \mathbb{E}^n$ and $\mathcal{B} \subset \mathbb{E}^m$ be closed and convex sets.

motivation: size $L^2 \sim 10^6$ of the variable X rules out the possibility of using state-of-the-art interior point methods

idea: use a subgradient method to get low complexity

Scheme of Dual Extrapolation Algorithm

- a) vector field of descend-ascend directions: $F(z) = (-A^T y a, Ax + b)$
- b) z = (x, y), $z_k, z_k^+ \in \mathcal{A} \times \mathcal{B}$ and $s_k \in E^*$ at the k-th iteration
- c) minimizer of a distance-generating function over $\mathcal{A} \times \mathcal{B}$: \overline{z}

update:

$$\begin{array}{rcl} z_{k+1} & = & T(\overline{z}, s_k), \\ z_{k+1}^+ & = & T(z_{k+1}, \lambda_k F(z_{k+1})), \\ s_{k+1} & = & s_k + \lambda_k F(z_{k+1}^+) \end{array}$$

where $\lambda_k > 0$ is the current (adaptively chosen) stepsize.

approximate solution:

$$\widehat{z}_{k+1} = \frac{1}{k+1} \sum_{i=1}^{k+1} z_i^+.$$

Choice of Prox-Transform

- a) distance-generating function $d(z) = d_x(x) + d_y(y)$: α -strongly convex and differentiable on $\mathcal{A} \times \mathcal{B}$
- b) **prox-function** V on $A \times B$ in $z_0 = (x_0, y_0)$:

$$V(z_0,z)\stackrel{\mathsf{def}}{=} d(z) - d(z_0) - \langle \nabla d(z_0), z - z_0 \rangle.$$

c) prox-transform $T(z_0, s)$ of $s = (s_x, s_y)$

$$T(z_0,s) \stackrel{\text{def}}{=} \arg\min_{z \in \mathcal{A} \times \mathcal{B}} [\langle s, z - z_0 \rangle - V(z_0,z)].$$

Structural Analysis using SDP