Empirical Entropy, Minimax Regret and Minimax Risk

Alexandre Tsybakov, Laboratoire de Statistique, CREST-ENSAE joint work with Karthik Sridharan and Alexander Rakhlin

Moscow, June 26, 2013

Goal

Understand the relationship between minimax rates for the problems of learning and estimation.

Problem I: Estimation

Model:

$$Y_i = f(X_i) + \xi_i$$

where ξ_i satisfy $\mathbb{E}(\xi_i|X_i)=0$ and $f\in\mathcal{F}$.

- ullet \mathcal{X} is any set and $\mathcal{Y}\subseteq\mathbb{R}$
- ullet ${\cal F}$ is a class of functions from ${\cal X}$ to ${\cal Y}$
- $D_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ i.i.d. from P_{XY} on $\mathcal{X} \times \mathcal{Y}$

Fix marginal P_X and conditional distribution of $\xi = Y - f(X)$ given X

Minimax risk:

$$W_n(\mathcal{F}) = \inf_{\hat{f}} \sup_{f \in \mathcal{F}} \mathbb{E}_f \|\hat{f} - f\|^2$$

where the norm is $L_2(P_X)$

Problem II: Statistical Learning

Model: any distribution P_{XY}

Expected loss of *f*:

$$L(f) = \mathbb{E}_{XY}[(f(X) - Y)^2]$$

Minimax Regret:

$$V_n(\mathcal{F}) = \inf_{\hat{f}} \sup_{P_{XY} \in \mathcal{P}} \left\{ \mathbb{E}L(\hat{f}) - \inf_{f \in \mathcal{F}} L(f) \right\}$$

Statistical Learning and Oracle Inequalities

Minimization of L(f) over all measurable functions yields

$$\eta(x) = \mathbb{E}_{XY}[Y|X=x]$$

and

$$\mathbb{E}L(\hat{f}) - \inf_{f \in \mathcal{F}} L(f) = \mathbb{E}\|\hat{f} - \eta\|^2 - \inf_{f \in \mathcal{F}} \|f - \eta\|^2$$

Hence, minimax regret can be written as

$$V_n(\mathcal{F}) = \inf_{\hat{f}} \sup_{P_{XY} \in \mathcal{P}} \left\{ \mathbb{E} \|\hat{f} - \eta\|^2 - \inf_{f \in \mathcal{F}} \|f - \eta\|^2 \right\}$$

Upper bounds are known as exact oracle inequalities.

Well-Specified vs Misspecified Models

Once again,

$$V_n(\mathcal{F}) = \inf_{\hat{f}} \sup_{P_{XY} \in \mathcal{P}} \left\{ \mathbb{E} \|\hat{f} - \eta\|^2 - \inf_{f \in \mathcal{F}} \|f - \eta\|^2 \right\}$$

and

$$W_n(\mathcal{F}) = \inf_{\hat{f}} \sup_{f \in \mathcal{F}} \mathbb{E}_f \|\hat{f} - f\|^2$$

Clearly,

$$W_n(\mathcal{F}) \leq V_n(\mathcal{F})$$

Question

Is there a gap in the rates?

What is known: well-specified model

The behavior of minimax risk $W_n(\mathcal{F})$ has been analyzed to a great extent in the past 30 years. Entropic conditions on \mathcal{F} go back to (Ibragimov and Khasminskii 1980), (Birgé, 1983), (Le Cam 1973, 1986), (Van de Geer 1990), (Birgé and Massart 1994), (Yang and Barron 1999), ...

What is known: misspecified model

The precise behavior of $V_n(\mathcal{F})$ is known for aggregation problem $(T_n, 03)$:

- Finite class $\mathcal{F} = \{f_1, \dots, f_M\}$: $\frac{\log(M)}{n}$
- Convex hull of a finite class conv $(\{f_1, \ldots, f_M\})$:

$$\frac{M}{n} \wedge \sqrt{\frac{\log(1+M/\sqrt{n})}{n}}$$

- Linear combinations: $\frac{M}{n}$
- Sparse convex combinations up to logs (Lounici 08):

$$\frac{s\log(eM/s)}{n}\wedge\sqrt{\frac{\log M}{n}}$$

(Rigollet and T. 2011) [fixed design]

What is known: upper bounds

• For VC-classes \mathcal{F} that are convex (Lee et al. 1998):

$$V_n(\mathcal{F}) = O\left(\frac{\log n}{n}\right)$$

or with $L^* = 0$ (Vapnik and Chervonenkis 1981):

$$V_n(\mathcal{F}) = O\left(\frac{1}{n}\right)$$

Empirical distance on the sample S:

$$d_{S}(f,g) = \left(\frac{1}{n} \sum_{(x,y) \in S} (f(x) - g(x))^{2}\right)^{1/2}$$

For VC-classes the empirical covering numbers satisfy:

$$\mathcal{N}(\mathcal{F}, \epsilon, d_{\mathcal{S}}) = O(\epsilon^{-\nu})$$

What is known: upper bounds

• For convex classes \mathcal{F} with entropy condition $\log \mathcal{N}(\mathcal{F}, \epsilon, d_S) = O(\epsilon^{-p})$:

$$V_n(\mathcal{F}) = O\left(n^{-\frac{2}{2+p}}\right) \;, \;\;\; p \in (0,2)$$
 (Mendelson, Koltchinskii...)

Example:
$$p = d/\beta$$
 (dimension/smoothness) $\longrightarrow n^{-\frac{2\beta}{2\beta+d}}$

- Without the convexity assumption, Koltchinskii 2011 obtained non-sharp oracle inequalities for ERM. Case p > 2?
- There seems to be a gap between sharp and non-sharp inequalities for ERM.

What methods are used for the misspecified case?

- empirical risk minimization
- penalized ERM
- mixtures (e.g. exponential weights)
- ...

Interestingly

- Selectors are known to be suboptimal even for finite class.
- ERM fails for non-convex cases.

Assumption

Bounded noise and \mathcal{F} is a class of bounded functions.

- ullet For simplicity, we will work with $\mathcal{Y} = [0, 1]$.
- Random design
- ullet Will have $\log(1/\delta)$ dependence on confidence δ

Proposed method called the aggregation-of-leaders procedure:

- split sample into three equal parts
- ullet use first to construct empirical cover of ${\mathcal F}$
- use second to find empirical minimizers over the resulting partitions
- use third to aggregate empirical minimizers

Split sample $D_{3n} = S \cup S' \cup S''$. Define empirical distance on the X-part of S:

$$d_{S}(f,g) = \left(\frac{1}{n} \sum_{(x,y) \in S} (f(x) - g(x))^{2}\right)^{1/2}$$

Fix $\epsilon > 0$ and let $N = \mathcal{N}_2(\mathcal{F}, \epsilon, d_S)$ Fix some cover centers c_1, \ldots, c_N and define partition

$$\hat{\mathcal{F}}_{i}^{\mathcal{S}}(\epsilon) = \hat{\mathcal{F}}_{i}^{\mathcal{S}} = \left\{ f \in \mathcal{F} : i \in \arg\min_{j \in \{1, \dots, N\}} d_{\mathcal{S}}(f, c_{j}) \right\}$$

Find ERM's

$$\hat{f}_i^{S,S'} \in \arg\min_{f \in \hat{\mathcal{F}}_i^S} \frac{1}{n} \sum_{(x,y) \in S'} (f(x) - y)^2$$

for each $i \in \{1, ..., N\}$ and using S'' define an aggregate

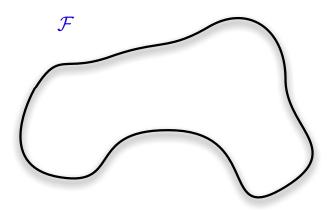
$$\hat{f} = \sum_{i=1}^{N} p_i \hat{f}_i^{S,S'}$$

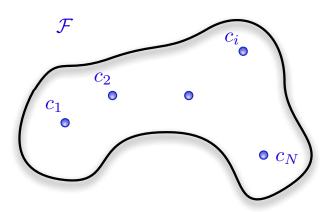
High-probability aggregation result

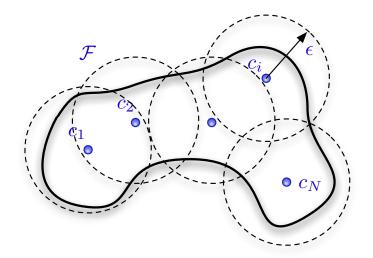
From (Audibert 2007, Lecué and Mendelson 2008, Lecué and Rigollet 2012):

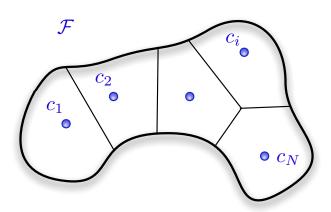
$$L(\hat{f}) \leq \inf_{i=1,\dots,N} L(\hat{f}_i^{S,S'}) + C \frac{\log(N/\delta)}{n}$$

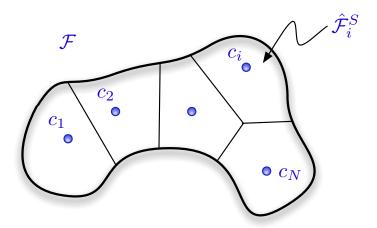
with probability at least $1 - \delta$ over the sample S''.

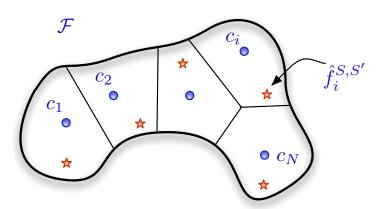


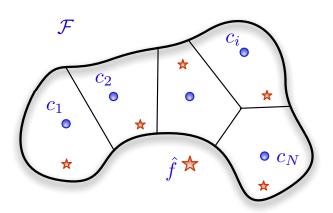


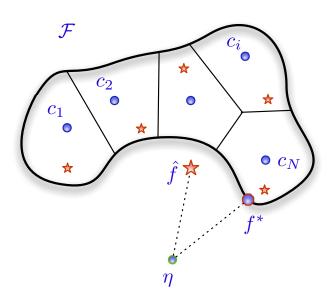












Main Result

In the case of polynomial growth $O(\epsilon^{-p})$ of empirical entropy $\log \mathcal{N}_2(\mathcal{F}, \epsilon, d_S)$,

- For misspecified models (sharp oracle inequalities), the rates obtained by the proposed method with $\epsilon=n^{-\frac{1}{2+\rho}}$ are
 - $V_n(\mathcal{F}) = O\left(n^{-\frac{2}{2+p}}\right)$ for $p \in (0,2]$
 - $V_n(\mathcal{F}) = O(n^{-1/p})$ for $p \in (2, \infty)$
 - For well-specified models, the same method attains the rate $W_n(\mathcal{F}) = O\left(n^{-\frac{2}{2+\rho}}\right)$ for all $\rho > 0$.

For polynomial growth $\left(\frac{1}{\epsilon}\right)^{\mathsf{v}}$ of covering numbers $\mathcal{N}_2(\mathcal{F},\epsilon,d_S)$ method attains

- $ullet V_n(\mathcal{F}) = O\left(rac{v\log(n/v)}{n}
 ight)$ rates for VC subgraph classes
- $O\left(\frac{s \log(eM/s)}{n} \wedge \sqrt{\frac{\log(1+M/\sqrt{n})}{n}}\right)$ for s-sparse convex aggregation.

Main Result

In the case of polynomial growth $O(\epsilon^{-p})$ of empirical entropy $\log \mathcal{N}_2(\mathcal{F}, \epsilon, d_S)$,

- For misspecified models (sharp oracle inequalities), the rates obtained by the proposed method with $\epsilon=n^{-\frac{1}{2+\rho}}$ are
 - $V_n(\mathcal{F}) = O\left(n^{-\frac{2}{2+p}}\right)$ for $p \in (0,2]$
 - $V_n(\mathcal{F}) = O(n^{-1/p})$ for $p \in (2, \infty)$
- For well-specified models, the same method attains the rate $W_n(\mathcal{F}) = O\left(n^{-\frac{2}{2+p}}\right)$ for all p > 0.

For polynomial growth $\left(\frac{1}{\epsilon}\right)^{\nu}$ of covering numbers $\mathcal{N}_2(\mathcal{F}, \epsilon, d_S)$, method attains

- $V_n(\mathcal{F}) = O\left(\frac{v \log(n/v)}{n}\right)$ rates for VC subgraph classes
- $O\left(\frac{s\log(eM/s)}{n} \wedge \sqrt{\frac{\log(1+M/\sqrt{n})}{n}}\right)$ for s-sparse convex aggregation.

Main Result

In the case of polynomial growth $O(\epsilon^{-p})$ of empirical entropy $\log \mathcal{N}_2(\mathcal{F}, \epsilon, d_S)$,

- For misspecified models (sharp oracle inequalities), the rates obtained by the proposed method with $\epsilon=n^{-\frac{1}{2+\rho}}$ are
 - $V_n(\mathcal{F}) = O\left(n^{-\frac{2}{2+p}}\right)$ for $p \in (0,2]$
 - $V_n(\mathcal{F}) = O(n^{-1/p})$ for $p \in (2, \infty)$
- For well-specified models, the same method attains the rate $W_n(\mathcal{F}) = O\left(n^{-\frac{2}{2+p}}\right)$ for all p > 0.

For polynomial growth $\left(\frac{1}{\epsilon}\right)^{\nu}$ of covering numbers $\mathcal{N}_2(\mathcal{F}, \epsilon, d_S)$, method attains

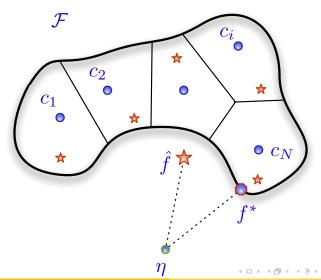
- ullet $V_n(\mathcal{F}) = O\left(rac{v \log(n/v)}{n}
 ight)$ rates for VC subgraph classes
- $O\left(\frac{s \log(eM/s)}{n} \wedge \sqrt{\frac{\log(1+M/\sqrt{n})}{n}}\right)$ for s-sparse convex aggregation.

Lower Bounds

- Lower bounds of $n^{-\frac{2}{2+p}}$ in the well-specified case are obtained in e.g. (Yang & Barron 1999)
- There exists a VC-subgraph class $\mathcal F$ with VC dimension v such that

$$W_n(\mathcal{F}) \geq C \frac{v \log(n/v)}{n}$$

Remark: On importance of ERM in partitions



Aggregation step:

$$L(\hat{f}) \leq \inf_{j} L(\hat{f}_{j}^{S,S'}) + C \frac{\log(N/\delta)}{n}$$

with probability at least $1 - \delta$ over the sample S''.

$$L(\hat{f}) - \inf_{j} L(\hat{f}_{j}^{S,S'}) = \|\hat{f} - \eta\|^{2} - \inf_{j} \|\hat{f}_{j}^{S,S'} - \eta\|^{2}$$

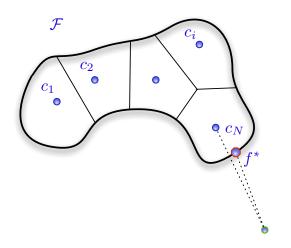
Skeleton aggregation: aggregate elements c_i of ϵ -net.

$$L(\hat{f}) \leq \inf_{j} L(c_{j}) + C \frac{\log(N/\delta)}{n}$$

with probability at least $1 - \delta$ over the sample S''.

$$L(\hat{f}) - \inf_{j} L(c_{j}) = \|\hat{f} - \eta\|^{2} - \inf_{j} \|c_{j} - \eta\|^{2}$$

Skeleton aggregation



However $(a + \epsilon)^2 - a^2 = O(\epsilon)$ and balancing $\epsilon = \frac{\log \mathcal{N}(\mathcal{F}, \epsilon, d_S)}{n}$ yields a wrong rate.

Remark: On importance of ERM in partitions

This does not happen for well-specified models! (e.g. (Birgé 1983), (Yang and Barron 1999)): a = 0 and $(a + \epsilon)^2 - a^2 = \epsilon^2$.

The minimax rate arises from

$$\epsilon^2 = \frac{\log \mathcal{N}(\mathcal{F}, \epsilon, d_S)}{n}.$$

Emerging Picture: misspecified case

Regime	our \hat{f}	Skeleton agg.	ERM
(Finite) $ \mathcal{F} = M$	$\frac{\log M}{n}$	$\frac{\log M}{n}$	$\sqrt{\frac{\log M}{n}}$
("parametric") $VC(\mathcal{F}) = d$	$\frac{d \log(n/d)}{n}$	$\sqrt{\frac{d\log(n/d)}{n}}$	$\sqrt{\frac{d}{n}}$
$\log \mathcal{N}_2(\mathcal{F}, \epsilon) = \epsilon^{-p},$		_	·
$p \in (0,2]$	$n^{-\frac{2}{2+p}}$	$\gg n^{-\frac{1}{p+1}} \vee n^{-\frac{1}{2}}$	$n^{-\frac{1}{2}}$
$ ho\in(2,\infty)$	$n^{-\frac{1}{p}}$	$n^{-\frac{1}{p+1}}$	$n^{-\frac{1}{p}}$

Discussion

- For finite class \mathcal{F} aggregation-of-leaders and skeleton aggregation achieve the optimal excess risk rate $\frac{\log M}{n}$. Global ERM has a suboptimal rate.
- For very massive \mathcal{F} , when the empirical entropy is ϵ^{-p} with $p \geq 2$ both ERM and aggregation-of-leaders have the rate $n^{-1/p}$. Skeleton aggregation is suboptimal.
- For all other cases: aggregation-of-leaders is optimal, both ERM and skeleton aggregation are suboptimal.
- Unless \mathcal{F} is finite, skeleton aggregation does not improve upon ERM in the misspecified case.
- Well-specified case. Aggregation-of-leaders and skeleton aggregation achieve the optimal rate for the minimax risk. The global ERM is, in general, suboptimal.

Including the approximation error when p > 2

Theorem

Let $\mathcal{Y}=[0,1]$, $\mathcal{F}\subseteq\{f:0\leq f\leq 1\}$, and $\log\mathcal{N}_2(\mathcal{F},\rho)\leq A\rho^{-p}$, $\forall\,\rho>0$, with p>2. Consider an aggregation-of-leaders estimator \hat{f} with the covering radius $\epsilon=n^{-\frac{1}{2+p}}$. For any joint distribution P_{XY} :

$$\mathbb{E}\|\hat{f} - \eta\|^2 - \inf_{f \in \mathcal{F}} \|f - \eta\|^2 \le C_p \bar{\psi}_{n,p}(\Delta)$$

where $\Delta^2 = \inf_{f \in \mathcal{F}} \|f - \eta\|^2$, $C_p > 0$ is a constant depending only on p and A, and

$$\bar{\psi}_{n,p}(\Delta) = \begin{cases} n^{-\frac{2}{2+p}} & \text{if } \Delta^2 \leq n^{-2/(2+p)}, \\ \Delta^2 & \text{if } n^{-2/(2+p)} \leq \Delta^2 \leq n^{-1/p}, \\ n^{-1/p} & \text{if } \Delta^2 \geq n^{-1/p}. \end{cases}$$

Linking Statistical Learning and Estimation

Introduce the class of Δ -misspecified models

$$\mathcal{P}_{\Delta}(\mathcal{F}) = \left\{ P_{XY} \in \mathcal{P} : \inf_{f \in \mathcal{F}} \|f - \eta\| \le \Delta \right\}, \quad \Delta \ge 0,$$

and define the Δ -misspecified regret as

$$V_n^{\Delta}(\mathcal{F}) = \inf_{\hat{f}} \sup_{P_{XY} \in \mathcal{P}_{\Delta}(\mathcal{F})} \left\{ \mathbb{E} \|\hat{f} - \eta\|^2 - \inf_{f \in \mathcal{F}} \|f - \eta\|^2 \right\}.$$

- $V_n^{\Delta}(\mathcal{F})$ measures the minimax regret for statistical estimation problem with approximation error $\leq \Delta$.
- By definition, $V_n^{\Delta}(\mathcal{F}) = W_n(\mathcal{F})$ when $\Delta = 0$ and $V_n^{\Delta}(\mathcal{F}) = V_n(\mathcal{F})$ when $\Delta = 1$ (the diameter of \mathcal{F}).
- Case p > 2. By the above theorem, Δ -misspecified regret admits the bound $V_n^{\Delta}(\mathcal{F}) \leq C_p \bar{\psi}_{n,p}(\Delta)$.
- Smooth transition between learning and estimation rates.

Contributions

- Rates of estimation and learning match for $p \le 2$
- Single algorithm obtains optimal rates in both well-specified and misspecified cases, for all regimes
- Adaptation: prior knowledge of well-specified vs misspecified model is not needed
- Optimal rates of aggregation
- ERM over partitions step is crucial: skeleton aggregation fails in misspecified case.

Theorem

Let $\mathcal{Y}=[0,1]$ and $0\leq f\leq 1$ for all $f\in\mathcal{F}$. Let $r^*=r^*(\mathcal{G})$ denote a localization radius of $\mathcal{G}=\{(f-g)^2:f,g\in\mathcal{F}\}$. Consider an aggregation-of-leaders estimator \hat{f} . Then $\exists \ C>0$ such that for any $\delta>0$, with probability at least $1-\delta$,

$$L(\hat{f}) \leq \inf_{f \in \mathcal{F}} L(f) + C\left(\frac{\log(\mathcal{N}_2(\mathcal{F}, \epsilon, d_S)/\delta)}{n} + \Xi(n, \epsilon, S')\right),$$

$$\Xi(n,\epsilon,S') = \gamma \sqrt{r^*} + \frac{1}{\sqrt{n}} \int_0^{C\gamma} \sqrt{\log \mathcal{N}_2(\mathcal{F},\rho,d_{S'})} \, d\rho$$

with
$$\gamma = \sqrt{\epsilon^2 + r^* + \beta}$$
 and $\beta = (\log(1/\delta) + \log\log n)/n$.