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Тогда система (2) примет вид

u̇x=10(ũy −ux),

˙̃uy =28.01ux− ũy − 10uxuz,

u̇z =10uxũy −
8

3
uz.

(3)

Делая в (3) замену ux(t)=x(t)/10, ũy(t)= y(t)/10 и uz(t)= z(t)/10, получим систему Ло-
ренца. Поскольку все решения системы (1) ограничены

|x(t)| 6 RL, |y(t)| 6 RL, |z(t)| 6 RL,

где RL≈ 74.4 [4, с. 185], то из введенной замены следует, абсолютная величина напряже-
ния не превысит величины 7.44 В, что предусматривается документацией [3]. Значение E
можно выбрать равным 1.5 В.

Точность представленной модели определяется погрешностями реальных емкостей и со-
противлений, а также частотными характеристиками интеграторов и умножителей.
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Показывается отсутствие периодических решений в динамической системе Лоренца при
некотором соотношении ее параметров.
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Рассмотрим систему дифференциальных уравнений Лоренца

ẋ=σ(y−x),

ẏ= rx− y−xz,

ż=xy− bz,

(1)

где σ, r и b – некоторые положительные числа, параметры системы [1].
Докажем, что если b= 2σ, то в системе (1) нет периодических решений (исключая,

конечно, положения равновесия).
Сделаем замену

z = u+
x2

b
, (2)

где u – некоторая функция от t. Продифференцируем (2), получим

ż = u̇+
2x

b
ẋ. (3)

В левую часть выражения (3) подставим правую часть третьего уравнения системы (1), а
в правую часть (3) – правую часть первого уравнения системы (1), учитывая, что b=2σ.
Получим

−bz = u̇− x2. (4)

Вместо z в (4) подставим выражение (2), откуда имеем уравнение

u̇ = −bu,

решением которого является функция

u(t) = u0e
−bt, (5)

где u0 – произвольная постоянная.
Теперь во второе уравнение системы (1) подставим вместо z выражение (2). При этом

выразим y из первого уравнения системы (1). Получим

y = x+
ẋ

σ
, (6)

и

ẏ = rx− y − x

(
u+

x2

2σ

)
. (7)

Подставив (5) и (6) в (7), имеем

ẍ+ (σ + 1)ẋ− σ(r − 1)x+
x3

2
= −σu0e−btx. (8)

Рассмотрим неавтономный случай, когда u0 ̸=0 в уравнении (8). Предположим, что в
этом случае уравнение (8) имеет периодическое решение с периодом T. Так как произ-
водная периодической функции с периодом T есть периодическая функция с периодом T,
то левая часть уравнения (8) является периодической функцией с периодом T. Однако
правая часть уравнения (8) непериодична, т. к. e−bt не является периодической функцией.
Получили противоречие.

Таким образом, при u0 ̸=0 уравнение (8) не имеет периодических решений.
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Рассмотрим теперь случай, когда u0=0. Имеем автономное уравнение второго порядка

ẍ+ (σ + 1)ẋ− σ(r − 1)x+
x3

2
= 0,

у которого по критерию Бендиксона [2, с. 142-143] нет периодических решений, что и дока-
зывает их отсутствие в системе Лоренца при b=2σ.

Заметим, что в этом случае параметр r может принимать любые значения. Тогда при
достаточно больших его значениях в системе Лоренца также будут отсутствовать периоди-
ческие решения, что кажется весьма неочевидным, поскольку параметр r пропорционален
разности температур между нижним и верхним слоем жидкости при свободной конвекции.
При увеличении градиента температуры в слое должны возникнуть в жидкости конвектив-
ные валы, а здесь жидкость со временем приходит в стационарное состояние (ламинарный
режим). Скорее всего, это объясняется тем, что система Лоренца достаточно грубо описыва-
ет данный процесс, хотя при других соотношениях между σ и b ( r принимает достаточно
большое значение) в системе (1) наблюдается устойчивый предельный цикл [3, с. 291-294].
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Предлагаемый метод построения разностных схем основан на минимизации функци-
онала невязки, заданного в пространстве специальных многомерных сплайнов произ-
вольной степени. Эффективность метода показана на примере простейшего уравнения
Лапласа.

Работа продолжает исследования [1–5]. Краевая задача для простейшего уравнения Ла-
пласа utt+uξξ =0 с непрерывно сопряженными граничными условиями

u(0, ξ)=ϕ0(ξ), u(1, ξ)=ϕ1(ξ), ξ∈[0, 1], u(t, 0)=ρ0(t), u(t, 1)=ρ1(t), t∈ [0, 1],

распадается на сумму двух задач с непрерывно сопряженными граничными условиями
u1(0, ξ)=ϕ10(ξ), u

1(1, ξ)=ϕ11(ξ), ξ∈[0, 1], u1(t, 0)=ρ10(t), u
1(t, 1)=ρ11(t), t∈ [0, 1],
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