Random symmetrizations of convex bodies

Youri Davydov

University Lille 1 (Joint work with David Coupier)

October 23, 2013

Steiner symmetrization

Let A be a convex body (i.e. a convex compact set with non empty interior) of \mathbb{R}^d . Let $u \in \mathbb{S}^{d-1}$ be a unit vector.

Definition

The Steiner symmetral S_uA of A with direction u is obtained as follows. For each straight line L parallel to u and s.t. $L \cap A \neq \emptyset$, shift the line segment $L \cap A$ along L until its midpoint is in u^{\perp} .

- S_uA is still a convex body.
- The Steiner symmetrization S_u conserves the volume and reduces the surface area:

" S_uA is more round than A in the isoperimetric sense."

State of the Art

• Steiner (1796 - 1863).

Let D be the unit (closed) ball and A be a convex body s.t. vol(A) = vol(D).

Theorem (Gross -1917)

There exists a sequence $(A_n)_{n\geq 1}$ of convex bodies, each obtained from A by finitely many successive Steiner symmetrizations, s.t. $A_n \to D$.

→ A direct proof of the Isoperimetric Inequality.

State of the Art: more recently...

- → Deterministic directions
 - Klain -2011.
 - Bianchi, Lutwak, Klain, Yang and Zhang -2011.
- → Random directions
 - Mani-Levitska -1986.
 - Volčič -2009.
 - Burchard and Fortier -2011.
- → Rate of convergence
 - Bourgain, Lindenstrauss and Milman -1989.
 - Klartag -2004.

State of the Art: Random Steiner symmetrizations

Theorem A (Mani-Levitska, 1986)

Let A be a convex body in \mathbb{R}^d , vol(A) = vol(D), D = B(0,1). Let $\{u_k\}$ be i.i.d. uniformly distributed directions. Then a.s.

$$d_H(S_nA,\,D)\to 0,$$

where d_H is Hausdorff distance.

Corollary. Solution of isoperimeter problem.

Minkowski symmetrization

Definition

The Minkowski symmetral B_uA of the convex body A with direction u is defined by:

$$B_uA=\frac{1}{2}(A+\pi_u(A))\;,$$

where π_u denotes the orthogonal reflection operator with respect to u^{\perp} .

- B_uA is still a convex body.
- Let f_A be the support function of A

$$f_A(\theta) = \sup_{x \in A} \langle x, \theta \rangle$$
, for any $\theta \in S^{d-1}$.

and $L(A) = \int_{\mathbb{S}^{d-1}} f_A d\sigma$ be the mean radius of A. Then,

$$L(B_uA)=L(A)$$
.

Rate of convergence for Minkowski

We set

$$B_nA = B_{U_n} \circ \ldots \circ B_{U_2} \circ B_{U_1}A$$
,

where $U_k \in \mathbb{S}^{d-1}$, $k \ge 1$ are independent random directions.

Theorem

Assume that, for any $k \ge 1$, the distribution v_k of U_k satisfies

$$\frac{d\nu_k}{d\sigma}(u) \le \alpha < \frac{d}{d-1}$$

for some $\alpha > 0$ and σ -a.e. $u \in \mathbb{S}^{d-1}$. Then, there exists a constant c > 0 s.t. with probability 1,

$$\exists n_0(\omega), \ \forall n \geq n_0, \ d_H(B_nA, L(A)D) \leq e^{-cn}$$
.

Contraction for Minkowski

Let h_A be the centered support function of A: $h_A = f_A - L(A)$.

Remark; $h_A \equiv 0 \Leftrightarrow A = L(A)D$.

Proposition

Let U be a random variable of \mathbb{S}^{d-1} with distribution σ . Then,

$$\mathbb{E}||h_{B_UA}||_2^2 \leq \frac{d-1}{d}||h_A||_2^2$$
.

It implies exponential rate of convergence for Minkowski:

- $\rightarrow \mathbb{E}||h_{B_nA}||_2 \searrow 0$ at rate exponential.
- \rightarrow Idem for $\mathbb{E}||h_{B_nA}||_{\infty}$ since h_{B_nA} is lipschitz.
- → Borel-Cantelli lemma.
- $\to d_H(B_nA, L(A)D) = \|f_{B_nA} f_{L(A)D}\|_{\infty} = \|f_{B_nA} L(A)\|_{\infty} = \|h_{B_nA}\|_{\infty}.$

Proof of contraction when d = 2

Writing $h_{B_uA} = \frac{1}{2}(h_A + h_{\pi_uA})$, we develop

$$\|h_{B_uA}\|_2^2 = \frac{1}{4}\|h_A\|_2^2 + \frac{1}{2}\langle h_A, h_{\pi_uA}\rangle + \frac{1}{4}\|h_{\pi_uA}\|_2^2 \ .$$

As σ is invariant under $v \mapsto \pi_u(v)$, $||h_{\pi_u A}||_2 = ||h_A||_2$.

Moreover, when d = 2, σ is also invariant under $u \mapsto \pi_u(v)$, so

$$\int_{\mathbb{S}^1} h_A(\pi_u v) d\sigma(u) = \int_{\mathbb{S}^1} h_A(u) d\sigma(u) = 0$$

and

$$\mathbb{E}\langle h_A, h_{\pi_U A}\rangle = \int_{\mathbb{S}^1} h_A(v) \bigg(\int_{\mathbb{S}^1} h_A(\pi_u v) d\sigma(u) \bigg) d\sigma(v) = 0.$$

Therefore $\mathbb{E}\|h_{B_uA}\|_2^2 = \frac{1}{2}\|h_A\|_2^2$.

But false when d > 2!!!

Proof of contraction when d > 2

We follow ideas of Klartag based on spherical harmonics. Let

 $S_k = \{P_{|\mathbb{S}^{d-1}}, P \text{ is a harmonic, homogeneous polynomial of degree } k\}$.

Using the orthogonal direct sum decomposition $L_2(\mathbb{S}^{d-1}) = \bigoplus_{k \geq 0} S_k$ we write,

$$h_A = \sum g_k$$
 and thus $h_{B_u A} = \sum B_u g_k$

where $B_u g_k = \frac{1}{2} (g_k + g_k \circ \pi_u) \in \mathcal{S}_k$.

The orthogonal projection Theorem leads to

$$\mathbb{E}||B_{u}g_{k}||_{2}^{2}=c(k)||g_{k}||_{2}^{2}$$

and Pythagoras' Theorem provides

$$\mathbb{E}||h_{B_uA}||_2^2 \leq \frac{d-1}{d}||h_A||_2^2$$

where $\frac{d-1}{d} = c(1) = \min c(k)$.

Rate of convergence for Steiner

We set

$$S_nA = S_{U_n} \circ \ldots \circ S_{U_2} \circ S_{U_1}A$$

where $U_k \in \mathbb{S}^{d-1}$, $k \ge 1$, are independent random directions, and A is s.t. vol(A) = vol(D).

Theorem

Assume that, for any $k \ge 1$, the distribution v_k of U_k satisfies

$$\frac{d\nu_k}{d\sigma}(u) \le \alpha < \frac{d}{d-1}$$

for some $\alpha > 0$ and σ -a.e. $u \in \mathbb{S}^{d-1}$. Then, there exist c, c' > 0 (depending on d, A and α) s.t. with probability 1,

$$\exists n_0(\omega), \ \forall n \geq n_0, \ d_H(S_nA, D) \leq ce^{-c'\sqrt{n}}$$
.

Comparison with other results

- The convergence occurs at rate $ce^{-c'\sqrt{n}}$ (as Klartag) and is almost sure (as Mani-Levitska, Volčič...).
- The first random integer n_0 satisfies

$$\mathbb{P}\big(n_0>n\big)\leq ce^{-c'\,\sqrt{n}}\;.$$

- The random directions U_k may be non identically distributed and their distributions v_k may avoid some open sets of \mathbb{S}^{d-1} (unlike Volčič).
- The independence hypothesis between random directions U_k can be slightly weakened.

Proof

The proof is based on 3 ingredients:

The only link between Steiner and Minkowki used here:

$$S_uA\subset B_uA$$
 .

- The exponential rate of convergence for Minkowki.
- A result of Bokowski and Heil (1986).
 Let ε > 0 and K ⊂ (1 + ε)D be a convex body having the same volume as D. Then,

$$L(K) \leq 1 + \left(1 - \frac{1}{d^2}\right)\varepsilon$$
.

Theorem of equivalence

We say that (u_k) **strongly** (S)-rounds the set A if for each k

$$S_{k,k+n}A \to r(A)D, \quad n \to \infty,$$

and **strongly** (M)-rounds A if for each k

$$B_{k,k+n}A \to L(A)D, \quad n \to \infty.$$

The sequence (u_k) is called (S)-unversal (respectively (M)-unversal) if it is strongly (S)-rounds (respectively strongly (M)-rounds) all sets A from \mathcal{K}^d .

Theorem

The sequence (u_k) is (S)-universal if and only if it is (M)-universal.

Convergence to a random limit

We set

$$BS_nA = B_{U_{2n}} \circ S_{U_{2n-1}} \circ \ldots \circ B_{U_2} \circ S_{U_1}A$$

where $U_k \in \mathbb{S}^{d-1}$, $k \ge 1$, are independent random directions, and A is s.t. vol(A) = vol(D).

From the inclusion $S_uA \subset B_uA$, it follows:

- $vol(A) = vol(S_uA) \le vol(B_uA)$.
- $L(S_uA) \leq L(B_uA) = L(A)$.

Proposition

There exists a random real number $\rho \in [1; L(A)]$ s.t. with probability 1,

$$BS_nA \longrightarrow \rho D$$
.

An idea: to use the contraction for Minkowski to prove exponential rate for the mixed symmetrization, and thus for Steiner...

References

[1] P. Mani-Levitska. Random Steiner symmetrizations. Studia Sci. Math. Hungar., 21(3-4):373378, 1986.

[2] B. Klartag. Rate of convergence of geometric symmetrizations. Geom. Funct. Anal., 14(6):13221338, 2004.

[3] D. Coupier and Yu. Davydov, Random symmetrizations of convex bodies,

Adv. Appl. Probab.

16 / 1

References

- [4] A. Volcic. Random Steiner symmetrizations of sets and functions. Calc. Var., 2012.
- [5] G. Bianchi, A. Burchard, P. Gronchi, and A. Volcic. Convergence in shape of steiner symmetrizations. arXiv:1206.2041v1.
- [6] G. Bianchi, D. A. Klain, E. Lutwak, D. Yang, and G. Zhang. A countable set of directions is sufficient for Steiner symmetrization. Adv. in Appl. Math., 47(4):869 873, 2011.
- [7] A. Burchard and M. Fortier.

 Convergence of random polarizations. arXiv:1104.4103v1.
- [8] D. A. Klain.

Steiner symmetrization using a finite set of directions.

Adv. in Appl. Math.,

48(2):340353, 2012.

