Russian Academy of Sciences,

Steklov Mathematical Institute

V. V. Kozlov

Euler-Jacobi-Lie theorem

2013

Tensor invariants

$$\dot{x}_i = v^i(x_1, \dots, x_n), \quad 1 \leqslant i \leqslant n,$$

 $M = \{x_1, \ldots, x_n\}$ is the phase space.

Functions (first integrals), vector fields (symmetry fields), differential k-forms (generating integral invariants).

 $v = (v^1, \dots, v^n)$ is a trivial invariant.

It is useful to know n-1 nontrivial tensor invariants.

Examples:

- 1° . $f_1, \ldots, f_{n-1} \Longrightarrow$ effective straightening out of the trajectories.
- 2°. Euler–Jacobi:

$$f_1,\ldots,f_{n-2} \ \ ext{and} \ \ \Omega=
ho(x)\,dx_1\wedge\cdots\wedge dx_n \ \ (ext{div}\,
ho v=0).$$
 $\dot{c}_1=\cdots=\dot{c}_{n-2}=0, \ \ \dot{arphi}_1=rac{\lambda_1}{\Phi}, \ \ \dot{arphi}_2=rac{\lambda_2}{\Phi};$ $\lambda_k= ext{const.} \ \ \Phi\colon D imes\mathbb{T}^2 o\mathbb{R}.$

Euler (n=2): the 1-form $i_v\Omega$ is closed, $=df,\,f$ is a first integral.

3°. S. Lie: $u_1 = v, u_2, \ldots, u_n$ generate a solvable Lie algebra (with respect to the bracket $[\cdot,\cdot]$).

An important example: $[u_i,u_j]=0$, the fields u_1,\ldots,u_n are unconstrained on M and linearly independent at each point. Then $M\simeq \mathbb{T}^k\times \mathbb{R}^{n-k}$, and there exist coordinates $\varphi_1,\ldots,\varphi_k \mod 2\pi$ and y_{k+1},\ldots,y_n such that

$$\dot{arphi}_j = \omega_j, \quad \dot{y}_s = l_s \quad (\omega, l = {
m const}).$$

A. Einstein (1917)

See: Ph. Frank and R. von Mises Die Differential- und Integralgleichungen der Mechanik und Physik. Braunschweig: Vieweg u, Sohn, 1930.

(From p. 90 of the Russian translation on.)

The main theorem

n-2 symmetry fields u_2, \ldots, u_{n-1} : $[u_1, u_j] = 0$, (here $u_1 = v$) u_1, \ldots, u_{n-1} are linearly independent (on an invariant subset). $L_v \Omega = 0$, where $L_v = i_v d + di_v$ is the Lie derivative

Teopeмa 1. Suppose that

- 1) $L_{u_s}\Omega=0, \ 1\leqslant s\leqslant n-1,$
- 2) u_1, \ldots, u_{n-1} generate a nilpotent Lie algebra.

Then the original system of differential equations is integrable in quadratures.

An algebra g is nilpotent if there exists a chain of ideals

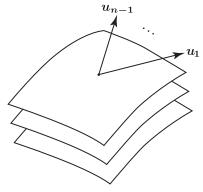
$$g = g_n \supset g_{n-1} \supset \cdots \supset g_0 = \{0\}$$

such that $[g,g_i] \subset g_{i-1}$.

If
$$[u_i, u_j] = \sum c_{ij}^k u_k$$
, then $c_{ij}^k = 0$ for $k \geqslant j$.

For n=2 we obtain Euler's result.

If n=3, then there is one symmetry field and $L_u\Omega=0$.



Leaves are locally level sets of a first integral. How can we find this integral?

Lemma 1. Let $d\Omega=0$ and let u_1,\ldots,u_m $(m\leqslant n)$ be a system of vector fields such that $L_{u_s}\Omega=0$ $(1\leqslant s\leqslant m)$. Then

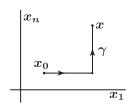
$$d(i_{u_m}\ldots i_{u_2}i_{u_1}\Omega)=\sum_{i< j}\pm i_{[u_i,u_j]}i_{u_p}\ldots i_{u_r}\Omega,$$

where p, \ldots, r is the subset of indices $1, \ldots, m$ distinct from i and j.

Corollary 1. If $[u_i, u_j] = \sum c_{ij}^k u_k$, where $c_{kj}^k = c_{ik}^k = 0$, then the differential form

$$i_{u_m} \dots i_{u_1} \Omega$$

is closed.



Corollary 2. If the fields u_1, \ldots, u_{n-1} generate a nilpotent algebra, then (locally)

$$i_{u_{n-1}}\dots i_{u_1}\Omega=df$$

 $and \ \ f \ is \ a \ first \ integral.$

If $H^1(M,\mathbb{R}) = 0$, then f is a single-valued function on the whole of M.

"The Euler-Jacobi-Lie theorem". Assume that the system has
1) k independent first integrals

$$f_1,\ldots,f_k,$$

2) n-k-2 independent symmetry fields

$$u_{k+1},\ldots,u_{n-2},$$

which together with $u_{n-1} = v$ generate a nilpotent algebra,

3) an invariant volume form Ω , such that

$$L_{u_j}f=0, \qquad L_{u_j}\Omega=0$$

 $for \ each \ j, \ k+1\leqslant j\leqslant n-2.$

Then the system is integrable in quadratures.

Remark. Here $0 \le k \le n-2$. For k=n-2 we obtain the Euler–Jacobi theorem; for k=0 we obtain Theorem 1.

Regular systems

Again, u_2, \ldots, u_{n-1} , $[u_1, u_j] = 0$ (where $u_1 = v$), $L_v \Omega = 0$, where Ω is a volume form on M. The fields $u_1, u_2, \ldots, u_{n-1}$ generate an (n-1)-dimensional Lie algebra g; let G be the corresponding group, an (n-1)-dimensional transformation group of M.

Theorem 3. Assume that M is closed and the symmetry group G does not preserve the n-form Ω . Then the original system has a nontrivial first integral.

 $\vartriangleleft L_{u_j}\Omega \neq 0$ for some $j \geqslant 2$. Then

$$L_{u_j}\Omega = \lambda\Omega, \qquad \lambda \colon M \to \mathbb{R}.$$
 (*)

 $L_v(\lambda\Omega) = \dot{\lambda}\Omega + \lambda L_v\Omega = \dot{\lambda}\Omega = L_vL_{u_j}\Omega = L_{u_j}L_v\Omega = 0$. Thus $\dot{\lambda} = 0$. If $\lambda \neq \text{const}$, then the proof is complete. Assume that $\lambda = \text{const}$. Then $d(i_{u_j}\Omega) = \lambda\Omega$ by (*). Stokes' formula shows that

$$0=\int_{\partial M}i_{u_j}\Omega=\int_Md(i_{u_j}\Omega)=\lambda\int_M\Omega.$$

Hence $\lambda = 0$, but then G preserves Ω .

n = 3

S. V. Bolotin, V. V. Kozlov // Rus. J. Math. Phys., 1995, v. 3, no. 3, p. 279–295.

Connected regular level sets of the function λ are 2-tori, and there exist coordinates $\Psi_1, \Psi_2 \pmod{2\pi}$ and I in a neighbouhood of these tori such that the original system takes the form

$$\dot{\Psi}_1 = \frac{\omega_1(I)}{\rho}, \quad \dot{\Psi}_2 = \frac{\omega_2(I)}{\rho}, \quad \dot{I} = 0,$$
 (**)

where $\rho(\Psi, I) > 0$ is a smooth function.

This is the Poincaré–Siegel–Kolmogorov theorem.

$$u = \omega_1/\omega_2$$
 gives the rotation numbers $\Omega = \rho \, dI \wedge d\Psi_1 \wedge d\Psi_2$.

Theorem 4. Assume that there exists a symmetry field not preserving Ω and let C be the set of critical values of $\lambda \colon M \to \mathbb{R}$. Then

- 1) $\nu = \omega_1/\omega_2$ is constant on each connected component D of the set of regular points $M \setminus \lambda^{-1}(C)$;
- 2) if $\nu|_D$ is irrational, then ω_1 and ω_2 are constant on D.

In other words, (**) is a degenerate system.

n = 3 (continued)

Let $\rho = \sum \rho_{p_1p_2}(I) e^{i(p_1\Psi_1 + p_2\Psi_2)}$ be the Fourier expansion of the density ρ .

Let $P = \{I : p_1\omega_1(I) + p_2\omega_2(I) = 0 \text{ for some integers } p_1 \text{ and } p_2 \text{ such that } p_1^2 + p_2^2 \neq 0, \ \rho_{p_1p_2}(I) \neq 0\}.$

Theorem 5. Assume that

- 1) $\omega_2 \neq 0$,
- $2) \,\, \frac{d}{dI} \bigg(\frac{\omega_1}{\omega_2} \bigg) \neq 0,$

on some interval $I_1 < I < I_2$, and

3) P is dense in (I_1, I_2) .

If u is a symmetry field of (**) in the domain $\mathbb{T}^2 \times (I_1, I_2)$, then $u = \mu(I)v$, where μ is a smooth function.

In other words, generically, all the symmetry fields are trivial.

Magnetohydrodynamics

$$\frac{\partial u}{\partial t} = \operatorname{rot}(v \times u), \quad v(x,t) \text{ is the velocity field,}$$

u(x,t) is the magnetic fueld,

$$rac{\partial
ho}{\partial t} + {
m div}(
ho v) = 0, \quad {
m div}\, u = 0.$$

Stationary "vortex" flows: $u \times v \neq 0$.

 $\dot{x} = v(x)$ gives the flow streamlines,

$$\Omega = \rho(x) dx_1 \wedge dx_2 \wedge dx_3$$
 is the mass 3-form.

 $w=u/\rho$ is a symmetry field (Prikl. Mat. Mech. 1983, v. 47, no. 2, p. 341–342; English transl. in J. Appl. Math. Mech.).

$$L_w\Omega = 0$$
 since $\operatorname{div}(\rho w) = 0$.

Theorem 6. Assume that the flow domain M is compact, simply connected, and bounded by a regular analytic surface, let v, u, ρ be analytic in M and $u \times v \neq 0$. Then the equation $\dot{x} = v(x)$ has a nonconstant analytic integral $f \colon M \to \mathbb{R}$ and almost all connected surfaces $B_c = \{x \colon f(x) = c\}$ (with a possible exception of finitely many) are diffeomorphic to a 2-torus (with conditionally periodic motion) or an annulus (with closed trajectories with the same period).

V. I. Arnold. Prikl. Mat. Mech. 1966, v. 30, no. 1, p. 183–185; English transl. in J. Appl. Math. Mech.

In the case of a non-simply connected domain trajectories of some particles can be dense in the whole flow domain.