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History of Developments

Problem: f∗
def
= min

x∈Q
f (x), where

Q is a closed convex set, f is a closed convex function.

First Primal Subgradient Method (N.Shor, B.Polyak (60’s)):
xt+1 = πQ (xt − at∇f (xt)) , t ≥ 0, where

πQ(x) is a Eucleaden projection of x onto Q,
∇f (xk) is arbitrary subgradient of f at xk ,
ak > 0 is a step size parameter.

NB: Euclidean framework is essential! (No monotonicity in f )

Convergence: Denote At =
t∑

k=0

ak . Then

1
At

t∑
k=0

ak f (xk)− f∗ ≤ 1
At

[
1
2‖x0 − x∗‖22 + 1

2

t∑
k=0

a2k‖∇f (xk)‖22
]

,

Conditions: at → 0, At →∞. Optimal: at = R
L
√
t+1
⇒ O(L

2R2

ε2
).
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First Dual Methods

1. Mirror Descent Method (Nemirovskii, Yudin, (70’s))

xt+1 = min
x∈Q

{
〈

t∑
k=0

ak∇f (xk), x〉+ d(x)

}
, t ≥ 0,

where d(x) ≥ 0 is a prox-function of Q:

d(x0) = 0 for some x0 ∈ Q,

It is strongly convex:
d(y) ≥ d(x) + 〈∇d(x), y − x〉+ 1

2‖y − x‖2, x , y ∈ Q.

The norm is arbitrary now!

Convergence:

1
At

t∑
k=0

ak f (xk)− f∗ ≤ 1
At

[
d(x∗) + 1

2

t∑
k=0

a2k‖∇f (xk)‖2∗
]

,

where ‖s‖∗ = max
x∈E
{〈s, x〉 : ‖x‖ ≤ 1}, s ∈ E ∗.
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Dual averaging (N.2003/2005/2009)

Small inconsistency:

In the main objects,
t∑

k=0

ak f (xk) and
t∑

k=0

ak∇f (xk),

new information enter with decreasing weights.

Method:

xt+1 = min
x∈Q

{
〈

t∑
k=0

ak∇f (xk), x〉+ γtd(x)

}
, t ≥ 0,

where the scaling coefficients {γt}t≥0 are positive.

Convergence:

1
At

t∑
k=0

ak f (xk)− f∗ ≤ 1
At

[
γtd(x∗) +

t∑
k=0

a2k
2γk
‖∇f (xk)‖2∗

]
.

Important case: at ≡ 1, γt = L
R

√
t + 1.

Then we get O
(
L2R2

ε2

)
complexity.
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Common drawback

All methods cannot generate a convergent sequence of test points.

Indeed, we can guarantee only lim
t→∞

1
At

t∑
k=0

ak f (xk) = f∗.

(Allows uncontrollable jumps of objective function.)

Possible treatments:

1. Consider the sequence of the record values f ∗t = min
0≤k≤t

f (xk).

But: we need to know values {f (xk)} (Not always possible!)

2. Consider the average points x̄t = 1
At

t∑
k=0

akxk .

But: the convergent minimizing sequence does not participate in
the minimization process. (Bad for some applications.)

Our goal: development of convergent subgradient methods.
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How do we prove the rate of convergence?

1. Euclidean distance. Use ‖xk − x∗‖22 as a Lyapunov function of
the primal process (PGM).

2. Dual potential. Define V (s) = max
x∈Q

[〈s, x〉 − d(x). Use

Ψ(s) = V (s)− 〈s, x∗〉
as Lyapunov function of the dual process (MDM).

3. Gap functions. Find the upper bounds for the growth of values

max
x∈Q

{
t∑

k=0

ak〈∇f (xk), x − xk〉 − γtd(x)

}
.

(Dual averaging.)

4. Estimate sequences (Fast GM). Maintain condition

At f (xt) ≤
t∑

k=0

ak [f (yk) + 〈∇f (yk), x − yk〉] + d(x)

for all x ∈ Q (Smooth minimization.)
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Relaxed estimate sequences

We are going to maintain the following condition:

At f (xt) ≤
t∑

k=0

ak [f (xk) + 〈∇f (xk), x − xk〉] + γtd(x) + Bt ,

for all x ∈ Q, where Bt ≥ 0.

With notation `t(x) =
t∑

k=0

ak [f (xk) + 〈∇f (xk), x − xk〉],

and ψ∗t = min
x∈Q

[`t(x) + γtd(x)], this is

At f (xt) ≤ ψ∗t + Bt .

NB: this condition includes only one sequence {xt}.

Yu. Nesterov Convergent Subgradient Methods 8/24



Relaxed estimate sequences

We are going to maintain the following condition:

At f (xt) ≤
t∑

k=0

ak [f (xk) + 〈∇f (xk), x − xk〉] + γtd(x) + Bt ,

for all x ∈ Q, where Bt ≥ 0.

With notation `t(x) =
t∑

k=0

ak [f (xk) + 〈∇f (xk), x − xk〉],

and ψ∗t = min
x∈Q

[`t(x) + γtd(x)], this is

At f (xt) ≤ ψ∗t + Bt .

NB: this condition includes only one sequence {xt}.

Yu. Nesterov Convergent Subgradient Methods 8/24



Relaxed estimate sequences

We are going to maintain the following condition:

At f (xt) ≤
t∑

k=0

ak [f (xk) + 〈∇f (xk), x − xk〉] + γtd(x) + Bt ,

for all x ∈ Q, where Bt ≥ 0.

With notation `t(x) =
t∑

k=0

ak [f (xk) + 〈∇f (xk), x − xk〉],

and ψ∗t = min
x∈Q

[`t(x) + γtd(x)], this is

At f (xt) ≤ ψ∗t + Bt .

NB: this condition includes only one sequence {xt}.

Yu. Nesterov Convergent Subgradient Methods 8/24



Relaxed estimate sequences

We are going to maintain the following condition:

At f (xt) ≤
t∑

k=0

ak [f (xk) + 〈∇f (xk), x − xk〉] + γtd(x) + Bt ,

for all x ∈ Q, where Bt ≥ 0.

With notation `t(x) =
t∑

k=0

ak [f (xk) + 〈∇f (xk), x − xk〉],

and ψ∗t = min
x∈Q

[`t(x) + γtd(x)], this is

At f (xt) ≤ ψ∗t + Bt .

NB: this condition includes only one sequence {xt}.

Yu. Nesterov Convergent Subgradient Methods 8/24



Relaxed estimate sequences

We are going to maintain the following condition:

At f (xt) ≤
t∑

k=0

ak [f (xk) + 〈∇f (xk), x − xk〉] + γtd(x) + Bt ,

for all x ∈ Q, where Bt ≥ 0.

With notation `t(x) =
t∑

k=0

ak [f (xk) + 〈∇f (xk), x − xk〉],

and ψ∗t = min
x∈Q

[`t(x) + γtd(x)], this is

At f (xt) ≤ ψ∗t + Bt .

NB: this condition includes only one sequence {xt}.

Yu. Nesterov Convergent Subgradient Methods 8/24



Consequences

Denote st = 1
At

t∑
k=0

ak∇f (xk).

For arbitrary bounded closed convex set C ⊆ Q, denote
ξC (s) = max

x
{〈s, x〉 : x ∈ C}, s ∈ E ∗.

Lemma. For any t ≥ 0 we have:

f (xt) + f ∗(st) + ξC (−st) ≤ 1
At

(Bt + γtDC ),

where DC = max
x
{d(x) : x ∈ C

⋂
Q} and

f ∗(s) = max
x∈E

[〈s, x〉 − f (x)].

Example 1: C = {x∗}. Then
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Example 2: separation

For arbitrary R > 0, denote

‖s‖∗R = max
x∈Q
{〈s, x∗ − x〉 : ‖x − x∗‖ ≤ R}, s ∈ E ∗.

Note that ‖s‖∗R ≥ 0 for any s ∈ E ∗.

In view of the first-order optimality condition, ∃g∗ ∈ ∂f (x∗) :

〈g∗, x − x∗〉 ≥ 0 for all x ∈ Q.

Therefore ‖g∗‖∗R = 0.

Thus, ‖s‖∗R measures the quality of hyperplane defined by s, trying
to separate the feasible set Q and {x ∈ E : f (x) ≤ f∗}.
Corollary. For any t ≥ 0 we have:

f (xt)− f∗ + ‖st‖∗R ≤
1
At

(Bt + γtGR),

where GR = max
x∈Q
{d(x) : ‖x − x∗‖ ≤ R}.
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Subgradient method with double averaging

1. Compute x+
t = arg min

x∈Q
{At〈st , x〉+ γtd(x)}.

2. Define τt = at+1

At+1
. Update xt+1 = (1− τt)xt + τtx

+
t .

τt ≡ 1, γt ≡ 1 ⇒ mirror descent method (1975).

τt ≡ 1 ⇒ primal-dual averaging scheme (2003).

x+
t = arg min

x∈Q
[`t(x) + γtd(x)]. It is easy to see that

xt = 1
At

[
a0x0 +

t−1∑
k=0

ak+1x+
k

]
, t ≥ 0 .

Additional averaging parameters make the primal sequence
more stable.

Yu. Nesterov Convergent Subgradient Methods 11/24



Subgradient method with double averaging

1. Compute x+
t = arg min

x∈Q
{At〈st , x〉+ γtd(x)}.

2. Define τt = at+1

At+1
. Update xt+1 = (1− τt)xt + τtx

+
t .

τt ≡ 1, γt ≡ 1 ⇒ mirror descent method (1975).

τt ≡ 1 ⇒ primal-dual averaging scheme (2003).

x+
t = arg min

x∈Q
[`t(x) + γtd(x)]. It is easy to see that

xt = 1
At

[
a0x0 +

t−1∑
k=0

ak+1x+
k

]
, t ≥ 0 .

Additional averaging parameters make the primal sequence
more stable.

Yu. Nesterov Convergent Subgradient Methods 11/24



Subgradient method with double averaging

1. Compute x+
t = arg min

x∈Q
{At〈st , x〉+ γtd(x)}.

2. Define τt = at+1

At+1
. Update xt+1 = (1− τt)xt + τtx

+
t .

τt ≡ 1, γt ≡ 1 ⇒ mirror descent method (1975).

τt ≡ 1 ⇒ primal-dual averaging scheme (2003).

x+
t = arg min

x∈Q
[`t(x) + γtd(x)]. It is easy to see that

xt = 1
At

[
a0x0 +

t−1∑
k=0

ak+1x+
k

]
, t ≥ 0 .

Additional averaging parameters make the primal sequence
more stable.

Yu. Nesterov Convergent Subgradient Methods 11/24



Subgradient method with double averaging

1. Compute x+
t = arg min

x∈Q
{At〈st , x〉+ γtd(x)}.

2. Define τt = at+1

At+1
. Update xt+1 = (1− τt)xt + τtx

+
t .

τt ≡ 1, γt ≡ 1 ⇒ mirror descent method (1975).

τt ≡ 1 ⇒ primal-dual averaging scheme (2003).

x+
t = arg min

x∈Q
[`t(x) + γtd(x)]. It is easy to see that

xt = 1
At

[
a0x0 +

t−1∑
k=0

ak+1x+
k

]
, t ≥ 0 .

Additional averaging parameters make the primal sequence
more stable.

Yu. Nesterov Convergent Subgradient Methods 11/24



Subgradient method with double averaging

1. Compute x+
t = arg min

x∈Q
{At〈st , x〉+ γtd(x)}.

2. Define τt = at+1

At+1
. Update xt+1 = (1− τt)xt + τtx

+
t .

τt ≡ 1, γt ≡ 1 ⇒ mirror descent method (1975).

τt ≡ 1 ⇒ primal-dual averaging scheme (2003).

x+
t = arg min

x∈Q
[`t(x) + γtd(x)].

It is easy to see that

xt = 1
At

[
a0x0 +

t−1∑
k=0

ak+1x+
k

]
, t ≥ 0 .

Additional averaging parameters make the primal sequence
more stable.

Yu. Nesterov Convergent Subgradient Methods 11/24



Subgradient method with double averaging

1. Compute x+
t = arg min

x∈Q
{At〈st , x〉+ γtd(x)}.

2. Define τt = at+1

At+1
. Update xt+1 = (1− τt)xt + τtx

+
t .

τt ≡ 1, γt ≡ 1 ⇒ mirror descent method (1975).

τt ≡ 1 ⇒ primal-dual averaging scheme (2003).

x+
t = arg min

x∈Q
[`t(x) + γtd(x)]. It is easy to see that

xt = 1
At

[
a0x0 +

t−1∑
k=0

ak+1x+
k

]
, t ≥ 0 .

Additional averaging parameters make the primal sequence
more stable.

Yu. Nesterov Convergent Subgradient Methods 11/24



Subgradient method with double averaging

1. Compute x+
t = arg min

x∈Q
{At〈st , x〉+ γtd(x)}.

2. Define τt = at+1

At+1
. Update xt+1 = (1− τt)xt + τtx

+
t .

τt ≡ 1, γt ≡ 1 ⇒ mirror descent method (1975).

τt ≡ 1 ⇒ primal-dual averaging scheme (2003).

x+
t = arg min

x∈Q
[`t(x) + γtd(x)]. It is easy to see that

xt = 1
At

[
a0x0 +

t−1∑
k=0

ak+1x+
k

]
, t ≥ 0 .

Additional averaging parameters make the primal sequence
more stable.

Yu. Nesterov Convergent Subgradient Methods 11/24



Convergence result

Theorem. Let sequence of parameters {γt}t≥0 be monotone:
γt+1 ≥ γt , t ≥ 0.

Then the estimate sequence condition holds with

Bt = 1
2

t∑
k=0

a2k
γk−1
‖∇f (xk)‖2∗,

where γ−1 = γ0. Moreover,

1
γt

At(f (xt)− f∗) + 1
2‖x

+
t − x∗‖2 ≤ d(x∗) + 1

γt
Bt .

.

Second statement ensures boundedness of the sequences.

Recall: st = 1
At

t∑
k=0

ak∇f (xk) ⇒ Convergence for points

involved in the model:

f (xt)− f ∗ ≤ 1
At

(
γtd(x∗) + 1

2

t∑
k=0

a2k
γk−1
‖∇f (xk)‖2∗

)
.
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Subgradient Method with Double Simple Averaging

1. Compute x+
t = arg min

x∈Q

{
〈

t∑
k=0

∇f (xk), x〉+ γtd(x)

}
.

2. Update xt+1 = t+1
t+2xt + 1

t+2x+
t .

Here, st = 1
t+1

t∑
k=0

∇f (xk) and xt = 1
t+1

(
x0 +

t−1∑
k=0

x+
k

)
.

Theorem. Let {γt}t≥0 be nondecreasing. For any t ≥ 0,

f (xt)− f∗ + ‖st‖∗R ≤
1

t+1

(
γtGR + 1

2

t∑
k=0

‖∇f (xk‖2∗
γk−1

)
,

where ‖s‖∗R = max
x∈Q
〈s, x − x∗〉, GR = max

x∈Q
{d(x) : ‖x − x∗‖ ≤ R}.

Corollary. Let ‖∇f (x)‖∗ ≤ L, γt →∞, and γt
t+1 → 0 . Then

lim
t→∞

f (xt) = f ∗, lim
t→∞

‖st‖∗R = 0.

Optimal choice: γt = L
√
t+1

G
1/2
R

⇒ f (xt)− f∗ + ‖st‖∗R ≤
2LG

1/2
R√

t+1
.
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Optimization problem with known minimax structure

Model: f (x) = f̂ (x) + max
u∈U
{〈Au, x〉 − φ̂(u)}, where

f̂ is a closed convex function on Q,

U is a closed convex set in E1,

φ̂(·) is a closed convex function on U.

Adjoint problem: f∗ = max
u∈U

{
−φ̂(u) + min

x∈Q
[〈Au, x〉+ f̂ (x)]

}
= −min

u∈U

{
φ̂(u) + f̂ ∗Q(−Au)

}
,

where f̂ ∗Q(s)
def
= max

x∈Q
[〈s, x〉 − f̂ (x)].

PD-problem: min
x∈Q, u∈U

{Φ(x , u)
def
= f (x) + φ̂(u) + f̂ ∗Q(−Au)} = 0.

Denote by u(x) = arg max
u∈U
{〈Au, x〉 − φ̂(u)}. Then

∇f (x)
def
= ∇f̂ (x) + Au(x) ∈ ∂f (x).
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Interpretation

Assume d(x) ≤ D for all x ∈ Q. Denote uk = u(xk).

Then
f (xk) + 〈∇f (xk), x − xk〉

= f̂ (xk) + 〈Auk , xk〉 − φ̂(uk) + 〈∇f̂ (xk) + Auk , x − xk〉
≤ f̂ (x) + 〈Auk , x〉 − φ̂(uk).

Denote ūt = 1
At

t∑
k=0

akuk ∈ U. Then

`t(x) ≤ At f̂ (x) + At〈Aūt , x〉 −
t∑

k=0

ak φ̂(uk)

≤ At [f̂ (x) + 〈At ūt , x〉 − φ̂(ūt)].
Therefore, ψ∗t = min

x∈Q
{`t(x) + γtd(x)} ≤ min

x∈Q
`t(x) + γtD

≤ At min
x∈Q

[f̂ (x) + 〈Aūt , x〉 − φ̂(ūt)] + γtD

= −At [φ̂(ūt) + f̂ ∗Q(−Aūt)] + γtD.

Thus, Φ(xt , ūt) ≤ 1
At

[γtD + Bt ]. NB: No computations of f̂Q !
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Therefore, ψ∗t = min

x∈Q
{`t(x) + γtd(x)} ≤ min

x∈Q
`t(x) + γtD

≤ At min
x∈Q
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Thus, Φ(xt , ūt) ≤ 1
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t∑

k=0

ak φ̂(uk)

≤ At [f̂ (x) + 〈At ūt , x〉 − φ̂(ūt)].
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At

[γtD + Bt ].

NB: No computations of f̂Q !

Yu. Nesterov Convergent Subgradient Methods 15/24



Interpretation

Assume d(x) ≤ D for all x ∈ Q. Denote uk = u(xk). Then
f (xk) + 〈∇f (xk), x − xk〉

= f̂ (xk) + 〈Auk , xk〉 − φ̂(uk) + 〈∇f̂ (xk) + Auk , x − xk〉
≤ f̂ (x) + 〈Auk , x〉 − φ̂(uk).

Denote ūt = 1
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Dual Lagrangian methods

Problem: f ∗ = min
x∈Q
{f0(x) : f (x) ≤ 0m}, where

convex set Q ⊂ E is closed convex set,

all functional components are closed convex functions.

Lagrangian dual problem:

max
λ≥0m

{
φ(λ)

def
= min

x∈Q
[f0(x) + 〈λ, f (x)〉]

}
def
= f∗.

Main assumption: Q, f0 and f are so simple, that φ(λ). Then

∇φ(λ) = f (x(λ)), x(λ) ∈ Arg min
x∈Q

[f0(x) + 〈λ, f (x)〉].

Dual problem: max
λ≥0m

φ(λ).

Prox-function: d(λ) = 1
2‖λ‖

2
2, λ0 = 0m.
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Analysis

Note that

φ(λt) + 〈∇φ(λt), λ− λt〉
= f0(x(λt)) + 〈λt , f (x(λt))〉+ 〈f (x(λt)), λ− λt〉

= f0(x(λt)) + 〈f (x(λt)), λ〉.

Denote xt = 1
At

t∑
k=0

akx(λk)). Then

f0(xt) + At
2γt
‖ (f (xt))+ ‖22 − φ(λt) ≤ 1

At
Bt ,

where (a)+ = max{a, 0}.

Boundedness of subgradients: ‖f (x)‖2 ≤ L, x ∈ Q.

NB: This is difficult to get by primal methods.
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Privacy-respecting taxation

Goal: bound pollution produced by industry.

Producer i : chooses production volume ui ∈ Ui ⊂ Rmi
+ , i = 1 . . . n.

Utility function: concave function φi (ui ), ui ∈ Ui .
NB: It is usually unknown to the coordination center.

Social goal:

max
{ui}ni=1

{
n∑

i=1
φi (ui ) :

n∑
i=1

Piui ≤ b, ui ∈ Ui , i = 1, . . . , n

}
, where

b ∈ Rm
+ is the upper limits on pollution,

Pi transforms the production ui into the generated pollution.

Coordination tool: taxes p ∈ Rm
+.

Reaction of producers: fi (p) = max
ui

[φi (ui )− 〈p,Piui 〉 : ui ∈ Ui ].
Denote by ui (p) its optimal solution. Then −Piui (p) ∈ ∂fi (p).
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Coordination problem

We assume that coordinator is solving the problem

min
p≥0

{
f (p)

def
= 〈b, p〉+

n∑
i=1

fi (p)

}
.

(It is dual to the socially optimal distribution.)

Gradient: ∇f (p) = b − v(p), v(p)
def
=

n∑
i=1

Piui (p).

Interpretation: −∇f (p) is the excessive pollution.

Optimality condition: 〈∇f (p∗), p − p∗〉 ≥ 0, p ∈ Rm
+.

Positive optimal tax ⇒ no excessive pollution.

Zero tax ⇒ excessive pollution is non-positive.

Main difficulty: utility functions of producers are hidden.
We can observe only the aggregated pollution v(p).
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Double Simple Averaging for Taxation

Prox-function: d(p) = 1
2

∑m
j=1

1
κj

(p(j))2, where

κj > 0 are scaling coefficients. (Hence, p[0] = p0 = 0.)

Denote s[t] = 1
t+1

t∑
k=0

∇f (p[k]) = b − 1
t+1

t∑
k=0

v(p[k]), and

S [t] = −(t + 1)s[t] =
t∑

k=0

(v(p[k])− b), the aggregated pollution.

1. Measure the total pollution volume v(p[k]), and update
aggregate excessive pollution S [t] = S [t − 1] + v(p[k])− b.

2. Compute the tax predictions p
(j)
+ [t] =

κj

γt

(
S (j)[t]

)
+

, j = 1, . . . ,m.

3. Define new vector of taxes p[t + 1] = t+1
t+2p[t] + 1

t+2p+[t].

Theorem. Let γt = O(
√

t). Then:

Taxes p[t] converge to the optimal solution of dual problem.

Historical averages of personal production 1
t+1

∑t
k=0 ui (p[k]),

converge to the socially optimal solution.
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Can we do this by another scheme?

1. Best value. p∗[t] = arg min
0≤k≤t

f (p[k]). No!

We cannot compute the objective function.

We need to stop the process and use a tax from the past.

2. Average value. p∗[t] = 1
t+1

t∑
k=0

p[k]. No!

We know the good taxes, but we never use them in the real
life.
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Numerical experiments: Test function

Problem: f (x) = max

{
|x (1)|, max

2≤i≤n
|x (i) − 2x (i−1)|

}
.

It is a homogeneous convex function of degree one.

Thus, f∗ = min
x∈Rn

f (x) = 0 and x∗ = 0n.

Condition number. Consider x̄ ∈ Rn:
x̄ (1) = 1, x̄ (i+1) = 2x̄ (i) + 1, i = 1, . . . , n − 1.

Then x̄ (i) = 2i+1 − 1, i = 1, . . . , n. Therefore f (x̄) = f (1n) = 1.

Thus, κ∞(f ) ≥ 2n+1 − 1.

Let us choose x0 = 1n. Then R
def
= ‖x0 − x∗‖2 =

√
n and

‖∇f (x)‖∗ ≤ L
def
=
√

5, x ∈ Rn.

We assume R and L be known for the methods.
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Numerical experiments: Results for ε = 2−6 = 0.0156

Dim. PGM SDA SA2 SA2(%) L2R2/ε2

10 51 204 9 254 586 0.29 204 800
20 102 405 65 536 1 587 0.39 409 600
40 204 805 131 072 4 094 0.50 819 200
80 409 616 262 144 6 655 0.41 1 638 400

160 819 209 524 288 16 484 0.50 3 276 800
320 1 638 409 1 048 576 35 184 0.54 6 553 600
640 3 276 807 2 097 152 73 390 0.56 13 107 200

1 280 6 553 612 4 194 304 143 475 0.55 26 214 400
2 560 13 107 205 8 388 608 309 681 0.59 52 428 800
5 120 26 214 405 16 777 216 579 893 0.55 104 857 600

10 240 52 428 810 33 554 432 1 181 849 0.56 209 715 200

NB: SA2 is a clear winner.
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Conclusion

We presented the first converging SGM.

It demonstrates a high practical efficiency.

It can be applied for real-life real-time adjustment.

Some questions are not clear:

Stochastic version.
Online optimization, etc.

Thank you for your attention!
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