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Q is a closed convex set, f is a closed convex function.

First Primal Subgradient Method (N.Shor, B.Polyak (60’s)):
Xer1 =7Q (Xe —arVf(xt)), t>0, where

m 7Q(x) is a Eucleaden projection of x onto Q,
m V{(xk) is arbitrary subgradient of f at x,
m a; > 0 is a step size parameter.

NB: Euclidean framework is essential! (No monotonicity in f)
t

Convergence: Denote Ay = > a,. Then

k=0
t t
n ijO af() = f < 4 3l — x5+ 3 kZO aVioa)l3],
g - 2 p2
Conditions: a; — 0, A; — co. Optimal: a; = - ’§+1 = O(Lef ).
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where d(x) > 0 is a prox-function of Q:
m d(xp) = 0 for some xp € Q,
m It is strongly convex:
d(y) > d(x) +(Vd(x),y —x) + 3lly = x[I, x,y € Q.
The norm is arbitrary now!

Convergence:
t t
i /;o af(x) — £ < 2 |d(x*) + 3 aniHVf(Xk)Hi :

where [|s|l. = max{(s,x) : ||x|| <1}, s € E*.
xeE
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Important case: a; =1, ¢ = £Vt + L.
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Dual averaging (N.2003/2005/2009)

Small inconsistency:
In the main objects, Z aif(xx) and E aVf(x),
k=0

new information enter with decreasmg welghts

Method: .
e = mig { (5 2900 2} £ 0
x€EQ | k=0
where the scaling coefficients {7 }+>0 are positive.
Convergence:
t t
A a0 - < 4 [dle) + 5 A IVrIE|

Important case: a; =1, v = % t+ 1.

Then we get O (Lze’f) complexity.
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Common drawback

All methods cannot generate a convergent sequence of test points.

t
Indeed, we can guarantee only lim & > a,f(x) = fi.
t—oo Mt

(Allows uncontrollable jumps of objectivg function.)

Possible treatments:

1. Consider the sequence of the record values f* = 0r<nkigt f(xk).
But: we need to know values {f(xx)} (Not always possible!)

t
2. Consider the average points x; = A% kz—:o AKX -
But: the convergent minimizing sequence does not participate in

the minimization process. (Bad for some applications.)

Our goal: development of convergent subgradient methods.
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XxXe
V(s) = V(s) — (s, x)
as Lyapunov function of the dual process (MDM).

3. Gap functions. Find the upper bounds for the growth of values

i { 35 (9100, x = 00— 3000
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(Dual averaging.)
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1. Euclidean distance. Use ||xx — x||3 as a Lyapunov function of

the primal process (PGM).
2. Dual potential. Define V(s) = mag[(s,x> — d(x). Use
XxXe
V(s) = V(s) — (s, x)
as Lyapunov function of the dual process (MDM).

3. Gap functions. Find the upper bounds for the growth of values
t
max { > ap(ViF(xk), x — xk) — fytd(x)}.
x€Q | k=0
(Dual averaging.)

4. Estimate sequences (Fast GM). Maintain condition
t
Aef(xe) < 32 alf(yi) + (VF(yi), x = yig] + d(x)
k=0
for all x € Q (Smooth minimization.)
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Relaxed estimate sequences

We are going to maintain the following condition:
Aif(x) < Z ar[f(xk) + (VF(xk), x — xk)] + ved(x) + B,
for all x € Q, where B; > 0.

t
With notation £:(x) = > ar[f(xk) + (VF(xk), x — xk)],
k=0
and ¢y = mig[gt(x) + 7:d(x)], this is
x€e
Acf(xt) < 9Pf + B

NB: this condition includes only one sequence {x;}.
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Lemma. For any t > 0 we have:
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Example 2: separation

For arbitrary R > 0, denote

Isllk = max{(s,x —x) : x —xll <R}, s€E”.

Note that ||s||z > 0 for any s € E*.

In view of the first-order optimality condition, 3g, € Of (x.) :
(gry x — x4y >0 for all x € Q.

Therefore || g«||r = 0.

Thus, ||s||% measures the quality of hyperplane defined by s, trying
to separate the feasible set Q and {x € E : f(x) < f.}.

Corollary. For any t > 0 we have:
f(xe) — fo 4 |lsellp < A%(Bt + 7t GRr),
where Gg = ma(i)({d(x) Clx = x| < R}
xe
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Subgradient method with double averaging
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Subgradient method with double averaging

1. Compute x;" = arg mig {At(st,x) + v:d(x)}.
PSS

2. Define 7+ = Ztt—fl. Update x; 11 = (1 — 7¢)x: + Texp
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Subgradient method with double averaging

1. Compute x;" = arg mig {At(st,x) + v:d(x)}.
PSS

At4+1

Acr Update x¢+1 = (1 — 7¢)x: + TtXt+.

2. Define 7+ =

mr=1,7%=1 = mirror descent method (1975).
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2. Define 7+ =

mr=1,7%=1 = mirror descent method (1975).
m7=1 = primal-dual averaging scheme (2003).
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Subgradient method with double averaging

1. Compute x;" = arg mig {At(st,x) + v:d(x)}.
PSS

At4+1

Acr Update x¢+1 = (1 — 7¢)x: + TtXt+.

2. Define 7+ =

mr=1,7%=1 = mirror descent method (1975).
m7=1 = primal-dual averaging scheme (2003).

m X = argminfle(x) + 7ed(x)]
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Subgradient method with double averaging

1. Compute x;" = arg mig {At(st,x) + v:d(x)}.
PSS

At4+1

Acr Update x¢+1 = (1 — 7¢)x: + TtXt+.

2. Define 7+ =

mr=1,7%=1 = mirror descent method (1975).

m7=1 = primal-dual averaging scheme (2003).

mx; =arg mig[ﬁt(x) + v¢d(x)]. It is easy to see that
X€

t—1

_ 1 S +
Xt =z, aoxo—i—Zakak , t>0.
k=0
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Subgradient method with double averaging

1. Compute x;" = arg mig {At(st,x) + v:d(x)}.
PSS

At4+1

Acr Update x¢+1 = (1 — 7¢)x: + TtXt+.

2. Define 7+ =

mr=1,7%=1 = mirror descent method (1975).

m7=1 = primal-dual averaging scheme (2003).

m x| =arg mig[ﬁt(x) + 79¢d(x)]. It is easy to see that
x€e

t—1

Xt:Ait aoxo—l—Zaka,j , t>0.
k=0
m Additional averaging parameters make the primal sequence

more stable.
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Convergence result

Theorem. Let sequence of parameters {~;}>0 be monotone:
Ye+1 = Ve, 2 0.
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Convergence result

Theorem. Let sequence of parameters {~;}>0 be monotone:
Ye+1 = Ve, 2 0.

Then the estimate sequence condition holds with

t 2
B: = %kzo e ||V ()12,

where v_, = 70.
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Convergence result

Theorem. Let sequence of parameters {~;}>0 be monotone:
Ye+1 = Ve, 2 0.

Then the estimate sequence condition holds with
t
Be=} % IV
where y_, = vo. Moreover,
S A(f(xe) = £) + 31167 — x|? < d(x) + 3 Be.
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Convergence result

Theorem. Let sequence of parameters {~;}>0 be monotone:
Ye+1 = Ve, 2 0.

Then the estimate sequence condition holds with
t
Be=} % IV
where y_, = vo. Moreover,
S A(f(xe) = £) + 31167 — x|? < d(x) + 3 Be.

m Second statement ensures boundedness of the sequences.
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Convergence result

Theorem. Let sequence of parameters {~;}>0 be monotone:
Ye+1 = Ve, 2 0.

Then the estimate sequence condition holds with
t
Be=} % IV
where y_, = vo. Moreover,
S A(f(xe) = £) + 31167 — x|? < d(x) + 3 Be.

m Second statement ensures boundedness of the sequences.

t
m Recall: s; = A% > akVi(xk)
k=0

Yu. Nesterov Convergent Subgradient Methods 12/24



Convergence result

Theorem. Let sequence of parameters {~;}>0 be monotone:
Ye+1 = Ve, 2 0.

Then the estimate sequence condition holds with
t
Be=} % IV
where y_, = vo. Moreover,
S A(f(xe) = £) + 31167 — x|? < d(x) + 3 Be.

m Second statement ensures boundedness of the sequences.

m Recall: s A Z axVf(xk) = Convergence for points

().
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involved in the modeI .

2

Floxe) — £ < L <%d(x*) +33y 5k
=0




Subgradient Method with Double Simple Averaging
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Subgradient Method with Double Simple Averaging

t
1. Compute x;" = argmin {( > Vi(xk), x) + 'ytd(x)}.

x€Q

2. Update x;41 = £lx, + Lyt
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Subgradient Method with Double Simple Averaging

t
1. Compute x;" = argmin {( > Vi(xk), x) + 'ytd(x)}.

x€Q

2. Update Xt+1 = t+2Xt + t+2Xj_.

t t—1
Here, sy = 747 > VF(x) and x: = o7 <x0 + 3 x,f)
k=0 k=0
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Subgradient Method with Double Simple Averaging

t
1. Compute x;" = argmin {( > Vi(xk), x) + 'ytd(x)}.

x€Q

2. Update x;41 = £lx, + Lyt

t t—1
Here, sy = 747 > VF(x) and x: = o7 <x0 + 3 x,f)
k=0 k=0

Theorem. Let {v;}:>0 be nondecreasing For any t>0,

V(x| 2
Fxe) — £+ el < 2 (fytcﬁ > Loftald
where ||s||% = mag(s,x Xs), Gr = max{d(x) IIx — x| < R}.
Xe
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Subgradient Method with Double Simple Averaging

NS

t
1. Compute x;" = argmin {( > Vi(xk), x) + 'ytd(x)}.
=0
2. Update Xt+1 = tiéxt + mX{i_
t t—1
Here, sy = 747 > VF(x) and x: = o7 <x0 + 3 x,f)
k=0 k=0

Theorem. Let {v;}:>0 be nondecreasing For any t>0,

V(x| 2
Fxe) — £+ el < 2 (fytcﬁ > Loftald
where ||s||% = mag(s,x Xs), Gr = max{d(x) IIx — x| < R}.
Xe

Corollary. Let |[VFf(x)|l« <L, |y — oo, and Z5 — 0|
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Subgradient Method with Double Simple Averaging

NS

t
1. Compute x;" = argmin {( > Vi(xk), x) + 'ytd(x)}.
=0
2. Update Xt+1 = tiéxt + mX{i_
t t—1
Here, sy = 747 > VF(x) and x: = o7 <x0 + 3 x,f)
k=0 k=0

Theorem. Let {v;}:>0 be nondecreasing For any t>0,

V(x| 2
Fxe) — £+ el < 2 (fytcﬁ > Loftald
where ||s||% = mag(s,x Xs), Gr = max{d(x) IIx — x| < R}.
Xe

Corollary. Let |[VF(x)|l« <L, |y — oo, and 5 — 0| Then

- _ fx ; o
Jim f() =", Jim sl =0
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Subgradient Method with Double Simple Averaging

t
1. Compute x;" = argmin {( > Vi(xk), x) + 'ytd(x)}.
=0

NS

2. Update x;411 =

t t—1
Here, sy = 747 > VF(x) and x: = o7 <x0 + 3 x,f)
k=0 k=0

Theorem. Let {v;}:>0 be nondecreasing For any t>0,

V(x| 2
Fxe) — £+ el < 2 (fytcﬁ > Loftald
where ||s||% = mag(s,x Xs), Gr = max{d(x) IIx — x| < R}.
Xe

Corollary. Let |[VF(x)|l« <L, |y — oo, and 5 — 0| Then

lim f(x:) = f* lim ||st||% = 0.
t—00 ( t) ’ t—}oo” t”R
Optimal choice: v; = LGV Ll
R
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Subgradient Method with Double Simple Averaging

t
1. Compute x;" = argmin {( > Vi(xk), x) + 'ytd(x)}.
=0

NS

2. Update x;411 =

t t—1
Here, sy = 747 > VF(x) and x: = o7 <x0 + 3 x,f)
k=0 k=0

Theorem. Let {v;}:>0 be nondecreasing For any t>0,

V(x| 2
Fxe) — £+ el < 2 (fytcﬁ > Loftald
where ||s||% = mag(s,x Xs), Gr = max{d(x) IIx — x| < R}.
Xe

Corollary. Let |[VF(x)|l« <L, |y — oo, and 5 — 0| Then

t|l>moo flxe) =17, ““30 Isellz = 0. )
1/2
Optimal choice: v; = va/t = f(xe) = fi + |5t < Q\L/f% :

R
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Optimization problem with known minimax structure
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Optimization problem with known minimax structure

Model: f(x) = 7(x) + max{ (Au, ) — d(u)},
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Optimization problem with known minimax structure

Model: 7(x) = 7(x) + Teag{(Au,x> — &(u)}, where

m f is a closed convex function on Q,
m U is a closed convex set in Eq,
m ¢(-) is a closed convex function on U.
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Optimization problem with known minimax structure

Model: 7(x) = 7(x) + Teag{(Au,x> — &(u)}, where

m f is a closed convex function on Q,
m U is a closed convex set in Eq,
m ¢(-) is a closed convex function on U.

U

— — min {qB(u) n ?5(—Au)},

uel

Adjoint problem: f, = max {—q@(u) + mig[(Au,x) + ?(x)]}
ue Xe
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Optimization problem with known minimax structure

Model: 7(x) = 7(x) + Teag{(Au,x> — &(u)}, where

m f is a closed convex function on Q,
m U is a closed convex set in Eq,
m ¢(-) is a closed convex function on U.

Adjoint problem: f, = max {—q@(u) + mig[(Au,x) + ?(x)]}
ue Xe

— — min {qB(u) n ?5(—Au)},

uel
where IA‘(’S(S) def max][(s, x) — f(x)].
xEQ
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Optimization problem with known minimax structure

Model: 7(x) = 7(x) + Teag{(Au,x> — &(u)}, where

m f is a closed convex function on Q,
m U is a closed convex set in Eq,
m ¢(-) is a closed convex function on U.

Adjoint problem: f, = max {—q@(u) + mig[(Au,x) + ?(x)]}
ue Xe

= —min {$(u) + 3(~Au)},
where IA‘(’S(S) def meaé([(s, x) — F(x)].
def

PD-problem: min {®(x,u) = f(x)+ <$(U) + %(*AU)} =0.
xEQ,uel
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Optimization problem with known minimax structure

Model: 7(x) = 7(x) + mal>J<{<Au x) — ¢(u)}, where
ue

m 7 is a closed convex function on Q

m U is a closed convex set in £

m ¢(-) is a closed convex function on U

Adjoint problem: f, = max

= —min {$(u) + 3(~Au)},

where fQ( s) def max[(s x) — (x)
d

I
PD-problem: gm {o(x, 1) ¥ £(x)
Xe

n Hu) + F(—Au)} =0
Denote by u(x) = arg meag{(Au x) — d(u

+
)}
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Optimization problem with known minimax structure

Model: 7(x) = 7(x) + Teag{(Au,x> — &(u)}, where

m f is a closed convex function on Q,
m U is a closed convex set in Eq,
m ¢(-) is a closed convex function on U.

Adjoint problem: f, = max {—q@(u) + mig[(Au,x) + ?(x)]}
ue Xe

— — min {qB(u) n ?5(—Au)},

uel

where fQ( s) def max[(s x) — F(x)].

PD-problem: _min  {&(x, ) CF(x) + d(u) + F5(—Au)} = 0.

XEQ, ue
Denote by u(x) = arg max{(Au,x> $(u)}. Then

def

VF(x) = VF(x)+ Au(x) € 8f(x).
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Interpretation

Assume d(x) < D for all x € Q. Denote ux = u(xx).
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Interpretation

Assume d(x) < D for all x € Q. Denote ux = u(xx). Then
f(xx) + (VF(xk),x — xx)
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Interpretation

Assume d(x) < D for all x € Q. Denote ux = u(xx). Then
f(xk) + (VF(xk), x — xk)
= F(xk) + (Aug, xi) — d(u) + (VF(x) + A, x — xi)
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Interpretation

Assume d(x) < D for all x € Q. Denote ux = u(xx). Then
f(xx) + ﬁVf(Xk),x — Xk)

= f(xx) + (Auk,§k> — o(uk) + <V1A‘A(xk) + Aug, x — xx)
< F(x) 4+ (Aug, x) — o(ug).
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Interpretation

Assume d(x) < D for all x € Q. Denote ux = u(xx). Then
f(xx) + ﬁVf(Xk),x — Xk)

= f(xx) + (Auk,§k> — o(uk) + <V1A‘A(xk) + Aug, x — xx)
< F(x) 4+ (Aug, x) — o(ug).

t
Denote 0y = A% > akux € U.
k=0
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Interpretation

Assume d(x) < D for all x € Q. Denote ux = u(xx). Then
R f(xx) + ﬁVf(Xk),x - Xk )
= (%) + (Auk, xi) — d(uk) + (VF (xk) + Auk, x — xk)
< F(x) + (Aug, x) — o(uk).
t
Denote 0y = A% > akux € U. Then
k=0

le(x) < Acf(x) + At(Alg, x) — éo ard(uy)
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Interpretation

Assume d(x) < D for all x € Q. Denote ux = u(xx). Then
R f(xx) + ﬁVf(Xk),x - Xk )
= (%) + (Auk, xi) — d(uk) + (VF (xk) + Auk, x — xk)
< F(x) + (Aug, x) — o(uk).
t
Denote 0y = A% > akux € U. Then
k=0

le(x) < Acf(x) + At(Alg, x) — ki ard(uy)
< AF(x) + (Aclie, x) — o(Te)].
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Interpretation

Assume d(x) < D for all x € Q. Denote ux = u(xx). Then
F(xi) + (VI (%), x = xi)
= f(xx) + (Au, Xie) — d(ui) + <Vf(xk) + Aug, x — X)
< F0x) + (Au, x) — Suk)-

Denote 0y = A Z axug € U. Then
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Interpretation

Assume d(x) < D for all x € Q. Denote ux = u(xx). Then
F(xi) + (VI (%), x = xi)
= f(xx) + (Au, Xie) — d(ui) + <Vf(xk) + Aug, x — X)
< F0x) + (Au, x) — Suk)-

Denote 0y = A Z axug € U. Then
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Interpretation

Assume d(x) < D for all x € Q. Denote ux = u(xx). Then
f(xx) + ﬁVf(Xk),x — Xk)

= f(xx) + (Auk, xi) — o(uk) + <V7A‘A(xk) + Aug, x — xx)
< F(x) 4+ (Aug, x) — o(ug).

t
Denote 0y = A% > akux € U. Then
k=0

(e(x) < AF(x) + AclATie x) — 3 aed(ue)

k

S At[f(X) + <AtL_lt7X> - ¢ L_lt) .

Therefore, ¢ = mig{ﬁt(x) +vd(x)} < m'Q
NS S

< A )r(nelg[?‘(x) + (A, x) — G(@0r)] + 7D

= —Ad(T:) + %(‘Aut)] +7:D.

15/24
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Interpretation

Assume d(x) < D for all x € Q. Denote ux = u(xx). Then
F(xi) + (VI (%), x = xi)
= f(xx) + (Au, Xie) — d(ui) + <Vf(xk) + Aug, x — X)
< F0x) + (Au, x) — Suk)-

Denote 0y = A Z axug € U. Then

< Atgweig[f(x) + (Alig, x) — (10¢)] +7:D
= —Ado(de) + ?*(—Aﬂt)] +7:D.
Thus, ®(x, 0) < ['ytD + By].
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Interpretation

Assume d(x) < D for all x € Q. Denote ux = u(xx). Then
F(xi) + (VI (%), x = xi)
= f(xx) + (Au, Xie) — d(ui) + <Vf(xk) + Aug, x — X)
< F0x) + (Au, x) — Suk)-

Denote 0y = A Z axug € U. Then

< A meig[f(X) + (A, x) — ¢(Te)] + 7D
= —Add(a) + ?*(—Aﬂt)] +7¢D.
Thus, ®(x, 0) < ['ytD + B¢]. NB: No computations of fg!
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Dual Lagrangian methods
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Dual Lagrangian methods

Problem: f* = mig{fo(x) : f(x) <0},
S
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Dual Lagrangian methods

Problem: f* = mig{fo(x) . f(x) <0m}, where
xe

m convex set Q C E is closed convex set,

m all functional components are closed convex functions.
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Dual Lagrangian methods

Problem: f* = mig{fo(x) . f(x) <0m}, where
xe

m convex set Q C E is closed convex set,

m all functional components are closed convex functions.
Lagrangian dual problem:

max {w) L minff () + (1 f(x)>]}

def
= f.
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Dual Lagrangian methods

Problem: f* = mig{fo(x) . f(x) <0m}, where
xe

m convex set Q C E is closed convex set,

m all functional components are closed convex functions.

Lagrangian dual problem:

e {W) = minlfo) + (0 f(x)>]} L

Main assumption: Q, fy and f are so simple, that ¢()\).
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Dual Lagrangian methods

Problem: f* = mig{fo(x) . f(x) <0m}, where
xe

m convex set Q C E is closed convex set,

m all functional components are closed convex functions.
Lagrangian dual problem:

max {w) L minff () + (1 f(x)>]}

def
= f.

Main assumption: Q, fy and f are so simple, that ¢(\). Then
Vo(A) = f(x(A),  x(A) € Argminlfo(x) + (A, F(x))].
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Dual Lagrangian methods

Problem: f* = mig{fo(x) . f(x) <0m}, where
xe

m convex set Q C E is closed convex set,

m all functional components are closed convex functions.
Lagrangian dual problem:

max {w) L minff () + (1 f(x)>]}

def
= f.

Main assumption: Q, fy and f are so simple, that ¢(\). Then
Vo(A) = f(x(A),  x(A) € Argminlfo(x) + (A, F(x))].

Dual lem: .
ual problem /\n;%ﬁ d(A)
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Dual Lagrangian methods

Problem: f* = mig{fo(x) . f(x) <0m}, where
xe

m convex set Q C E is closed convex set,

m all functional components are closed convex functions.

Lagrangian dual problem:

max {w) L minffo(x) + (1 f(x)>]}

def
= f.

Main assumption: Q, fy and f are so simple, that ¢(\). Then
Vo) = F(x(N), x(\) € Argminlf(x) + (A, F())L
Dual lem: .
ual problem max d(N)
Prox-function: d(\) = ||A|3, Ao = Op.
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Analysis

Note that
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Analysis

Note that
P(Ae) + (VO(Ae), A — Ar)
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Analysis

Note that
P(Ae) + (VA(Ae), A — Ae)
= fo(x(Ae)) + (A, F(x(Ae)) + (F(x(Ae)), A = )
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Note that

P(Ae) + (Vo(Ae), A = Ae)

= fo(x(Ae)) + (Ae, F(x(Ae))) + (F(x(Ae)), A = Ae)
= fo(x(Ae)) + (F(x(Ae)), A)-
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Note that
P(Ae) + (Vo(Ae), A = Ae)
= fo(x(Ae)) + (Ae, F(x(Ae))) + (F(x(Ae)), A = Ae)
= fo(x(Ae)) + (F(x(Ae)), A)-

t
Denote x; = A% > akx(Ak))-
k=0
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Analysis

Note that
P(Ae) + (Vo(Ae), A = Ae)
= fo(x(Ae)) + (Ae, F(x(Ae))) + (F(x(Ae)), A = Ae)
= fo(x(Ae)) + (F(x(Ae)), A)-

Denote x; = A% Z ax(Ak)). Then

folxe) + 5 | (F(xe)) 1 13 — 6(Ae) < 2B,
where (a)+ = max{a,0}.
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Analysis

Note that
P(Ae) + (Vo(Ae), A = Ae)
= fo(x(Ae)) + (Ae, F(x(Ae))) + (F(x(Ae)), A = Ae)
= fo(x(Ae)) + (F(x(Ae)), A)-

Denote x; = A% Z ax(Ak)). Then
k=0

folxe) + 5 | (F(xe)) 1 13 — 6(Ae) < 2B,
where (a)1 = max{a, 0}.

Boundedness of subgradients:
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Analysis

Note that
P(Ae) + (Vo(Ae), A = Ae)
= fo(x(Ae)) + (Ae, F(x(Ae))) + (F(x(Ae)), A = Ae)
= fo(x(Ae)) + (F(x(Ae)), A)-

Denote x; = A% Z ax(Ak)). Then
k=0

folxe) + 5 | (F(xe)) 1 13 — 6(Ae) < 2B,
where (a)1 = max{a, 0}.

Boundedness of subgradients: ||f(x)|> <L, x € Q.
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Analysis

Note that
P(Ae) + (Vo(Ae), A = Ae)
= fo(x(Ae)) + (Ae, F(x(Ae))) + (F(x(Ae)), A = Ae)
= fo(x(Ae)) + (F(x(Ae)), A)-

Denote x; = A% Z ax(Ak)). Then
k=0

folxe) + 5 | (F(xe)) 1 13 — 6(Ae) < 2B,
where (a)1 = max{a, 0}.

Boundedness of subgradients: ||f(x)|> <L, x € Q.

NB: This is difficult to get by primal methods.

Yu. Nesterov Convergent Subgradient Methods 17/24



Privacy-respecting taxation
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Goal: bound pollution produced by industry.

Producer /: chooses production volume uj € Ui CRY, i=1...n.
Utility function: concave function ¢;(u;), u; € U;.

NB: It is usually unknown to the coordination center.

Social goal:
max {Z oi(ui) : > Piup < b, uj €U, i = 1,...,n}, where
{uit, Uizt i=1

m b € RT is the upper limits on pollution,

m P; transforms the production u; into the generated pollution.
Coordination tool: taxes p € R
Reaction of producers: fi(p) = max|[¢i(ui) — (p, Piui) : u;j € Uj].
uj
Denote by uj(p) its optimal solution. Then —P;u;(p) € Of;(p).
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Coordination problem

We assume that coordinator is solving the problem

mi {f(p) “(bp)+ 3 f,-(p)}.

(It is dual to the socially optimal distribution.)
n
Gradient: Vf(p) =b—v(p), v(p) & 3 Pui(p).
i=1

Interpretation: —Vf(p) is the excessive pollution.
Optimality condition: (Vf(p.),p —ps) >0, p € RT.
m Positive optimal tax = no excessive pollution.

m Zero tax = excessive pollution is non-positive.

Main difficulty: utility functions of producers are hidden.
We can observe only the aggregated pollution v(p).

Yu. Nesterov Convergent Subgradient Methods 19/24
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Double Simple Averaging for Taxation

Prox-function: d(p) = i pr L (pl))2, where
»; > 0 are scaling coeff|C|ents (Hence p[O] = po =0.)

Denote s[t] = t+1 Z Vi(plk]) = b— t+1 kz::o v(p[k]), and

t
S[t] = —(t+ 1)s[t] = >_ (v(p[k]) — b), the aggregated pollution.
k=0
1. Measure the total pollution volume v(p[k]), and update
aggregate excessive pollution S[t] = S[t — 1] + v(p[k]) —
2. Compute the tax predictions p(j [t] = %f (S(J [t]) L j=1,.
3. Define new vector of taxes p[t + 1] = t“p[t] + t+2p+[t]

t42
Theorem. Let 7 = O(y/t). Then:
m Taxes p[t] converge to the optimal solution of dual problem.

m Historical averages of personal production tj%l S h—o ui(plK]),
converge to the socially optimal solution.
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Can we do this by another scheme?

1. Best value. p,[t] = in f(p[k]). No!
est value. p.[t] = arg min f(p[k]). No

m We cannot compute the objective function.

m We need to stop the process and use a tax from the past.

t
2. Average value. p.[t] = tJ%l > p[k]. No!
k=0

m We know the good taxes, but we never use them in the real
life.
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2<i<n

It is a homogeneous convex function of degree one.

Thus, f, = )I(‘T€1]IRI{'1n f(x) =0 and x, = 0,,.

Condition number. Consider x € R":
V=1 x(+) =250 41 j=1,...,n—1.

Then x() =2+1 —1 j=1,... n. Therefore f(x) = f(1,) = 1.
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Numerical experiments: Test function

Problem: f(x) = max{|x(1)|, max |x() — 2x(’—1)|}_

2<i<n

It is a homogeneous convex function of degree one.

Thus, f, = )I(‘T€1]IRI{'1n f(x) =0 and x, = 0,,.

Condition number. Consider x € R":
V=1 x(+) =250 41 j=1,...,n—1.

Then x() =2+1 —1 j=1,... n. Therefore f(x) = f(1,) = 1.

Thus, keo(f) > 2" — 1.

Let us choose xo = 1,. Then R % |xo — X«||]2 = +/n and
IVF()[l < L VB, x e R,

We assume R and L be known for the methods.
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Numerical experiments: Results for ¢ = 27 = 0.0156

DiM. PGM SDA SA> SA»(%) [?R? /e
10 51204 9254 586 0.29 204 800
20 102405 65536 1587 0.39 409 600
40 204805 131072 4094 0.50 819200
80 409616 262144 6 655 0.41 1638400

160 819209 524288 16484 0.50 3276800
320 1638409 1048576 35184 0.54 6553600

640 3276807 2097152 73390 0.56 13107200
1280 6553612 4194304 143475 0.55 26214400
2560 13107205 8388608 309681 0.59 52428800
5120 26214405 16777216 579893 0.55 104857600

10240 52428810 33554432 1181849 0.56 209715200
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Numerical experiments: Results for ¢ = 27 = 0.0156

DiM. PGM SDA SA> SA»(%) [?R? /e
10 51204 9254 586 0.29 204 800
20 102405 65536 1587 0.39 409 600
40 204805 131072 4094 0.50 819200
80 409616 262144 6 655 0.41 1638400

160 819209 524288 16484 0.50 3276800
320 1638409 1048576 35184 0.54 6553600

640 3276807 2097152 73390 0.56 13107200
1280 6553612 4194304 143475 0.55 26214400
2560 13107205 8388608 309681 0.59 52428800
5120 26214405 16777216 579893 0.55 104857600

10240 52428810 33554432 1181849 0.56 209715200

NB: SA, is a clear winner.
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Conclusion
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Some questions are not clear:

m Stochastic version.
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THANK YOU FOR YOUR ATTENTION!
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