A Tale of Two Models for Random Graphs

Jeong Han Kim

Korea Institute for Advanced Study (KIAS)

- Random Graph G(n,p)
 - Component and Branching process
 - Emergence of Giant (connected) Component
 - Motivation for Poisson cloning
 - a. Poisson Cloning Model (PCM)
 - b. Cut-Off Line Algorithm (COLA)
 - c. New Results via PCM and COLA
- Random Graph G(n,m)
 - a. Graph Process G(n,1), G(n,2), ..., G(n,m),
 - b. Graph Process under constraints
 - c. Triangle-free Process and Ramsey Number R(3,t)

Complete Graph K_n

• When the edge set E of a graph G = (V, E) is the set of all pairs of distinct vertices, then the graph is called the complete graph on V, and denoted by K_V , or simply K_n , where n is the number of all vertices.

Notice that there are

$$\binom{n}{2}$$
: = $\frac{n(n-1)}{2}$ edges in K_n .

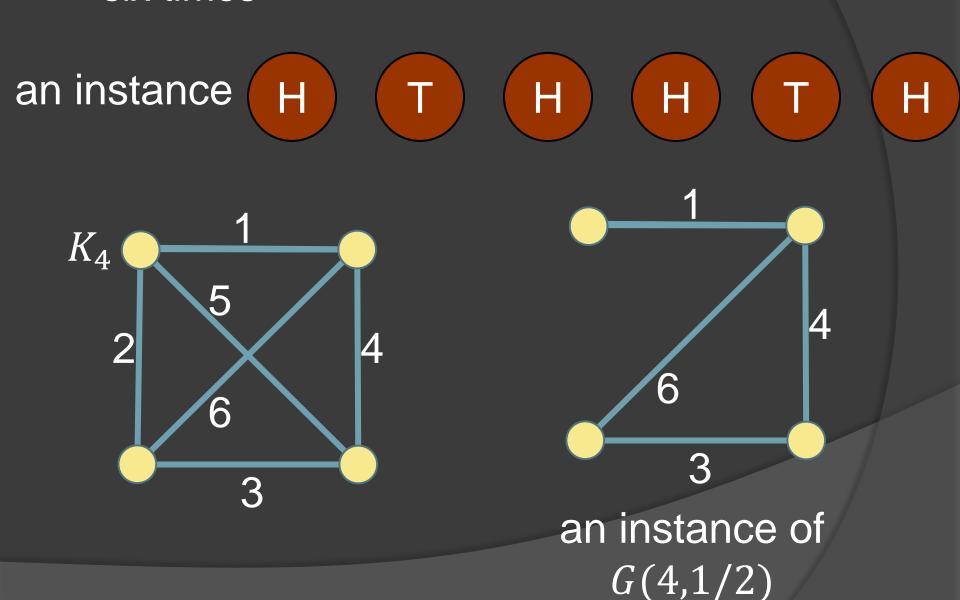
Random Graph G(n,p)

Each of $\binom{n}{2}$ edges is independently in G(n, p) with probability p,

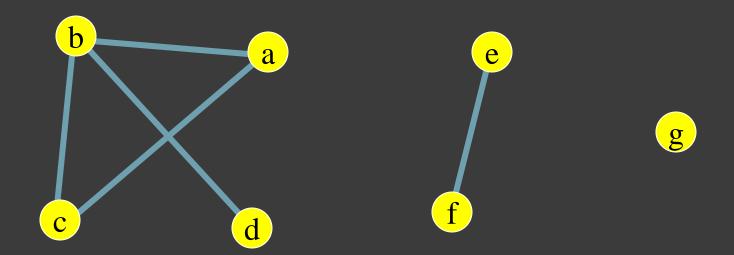
p=1 : complete graph

p = 0: empty graph

• For example, if n = 4, p = 1/2, toss a fair coin six times



For n = 7,



$$\Pr[G(7,p) = G] = p^{5}(1-p)^{21-5}$$

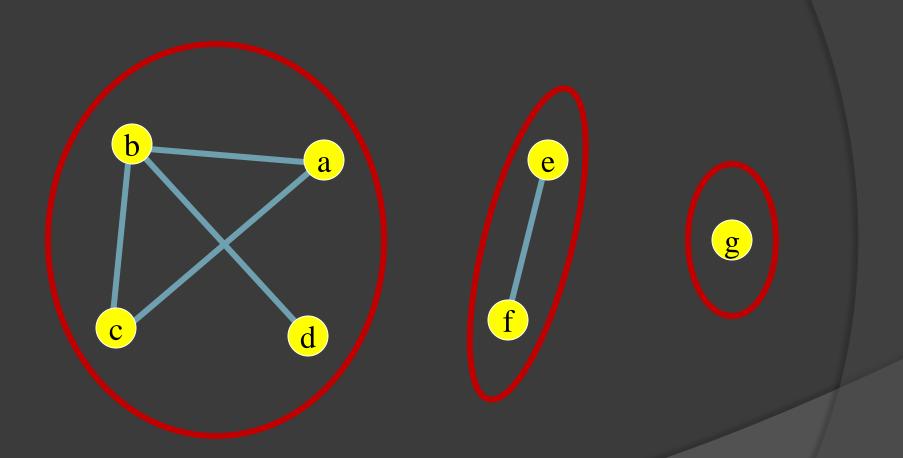
as
$$\binom{7}{2} = \frac{7 \cdot 6}{2} = 21$$

• Expected number of edges in G(n, p): $p\binom{n}{2}$

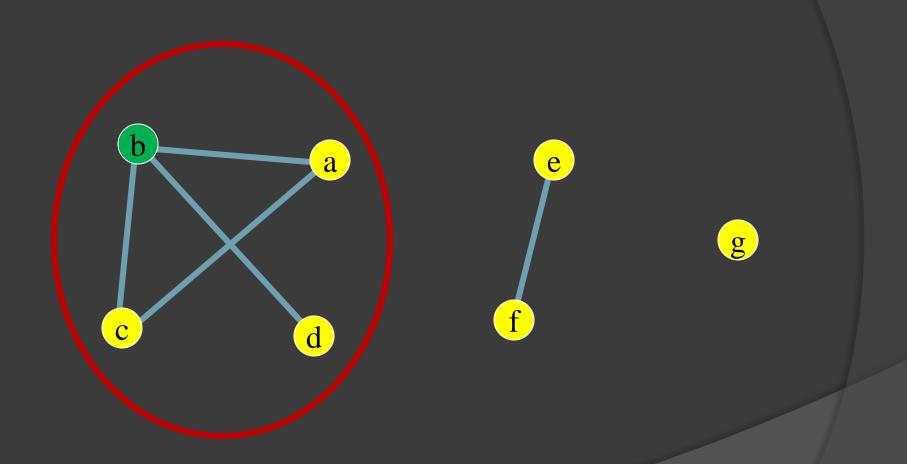
For a fixed graph G with n vertices and m edges,

$$\Pr[G(n,p) = G] = p^m (1-p)^{\binom{n}{2}-m}$$

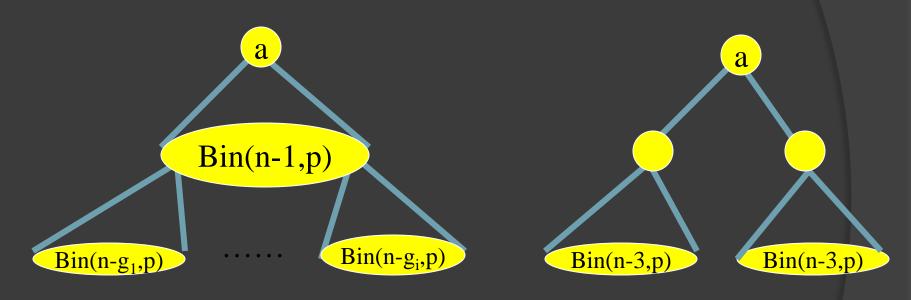
(Connected) Component



Component containing a vertex



Component containing a vertex in G(n,p)



where

$$\Pr[Bin(t,p) = k] = {t \choose k} p^k (1-p)^{t-k}$$

Emergence of Giant Component

ullet Erdős & Rényi ('60,'61): In G(n,p) with $pn=\lambda$ for a constant λ

there is a giant component if and only if $\lambda > 1$

Emergence of Giant Component

• Erdős & Rényi ('60,'61): For the size W = W(n, p) of a largest component of G(n, p),

$$W = \left\{ \begin{array}{l} < c_{\lambda} \log n \ if \ pn \rightarrow \lambda < 1 \\ \\ \theta_{\lambda} n \quad if \ pn \rightarrow \lambda > 1, \end{array} \right.$$

where θ_{λ} is the positive solution for

$$1 - \theta - e^{-\theta\lambda} = 0$$

• Łuczak ('90) In G(n,p) with $pn = \lambda$,

the giant component emerges when $\lambda - 1 \gg n^{-1/3}$

improving $\lambda - 1 \gg n^{-\frac{1}{3}} \log n$ due to Bollobás ('84).

Łuczak ('90)

In
$$G(n,p)$$
 with $\lambda = pn$ satisfying $\varepsilon \coloneqq \lambda - 1 \gg n^{-1/3}$,

$$W = (2 + O(\varepsilon)) \varepsilon n$$

and for the size W' of a second largest component

$$W' = \Theta(\varepsilon^{-2}\log(\varepsilon^3 n)) \ll \varepsilon n$$

Łuczak ('90)

Theorem (supercritical region) Let $\lambda:=pn=1+\epsilon$ with $\epsilon\gg n^{-1/3}$. Then with probability 1-O($(\epsilon^3 n)^{-1/9}$),

 $|W(n,p) - \theta_{\lambda} n| \le 0.2 n^{2/3}$.

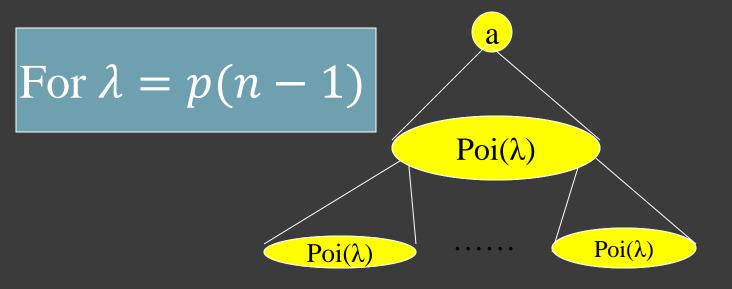
Emergence of Giant Component

• Erdős & Rényi ('60,'61): In G(n,p) with $pn=\lambda$ for a constant λ

There is a giant component if and only if $\lambda > 1$.

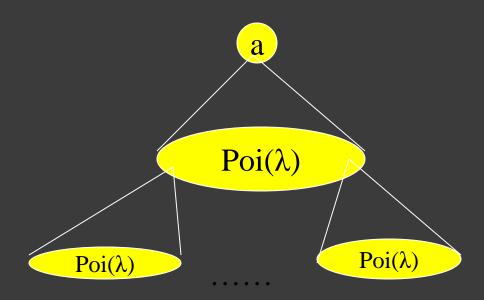
Why 1?

Component containing a vertex in G(n, p)



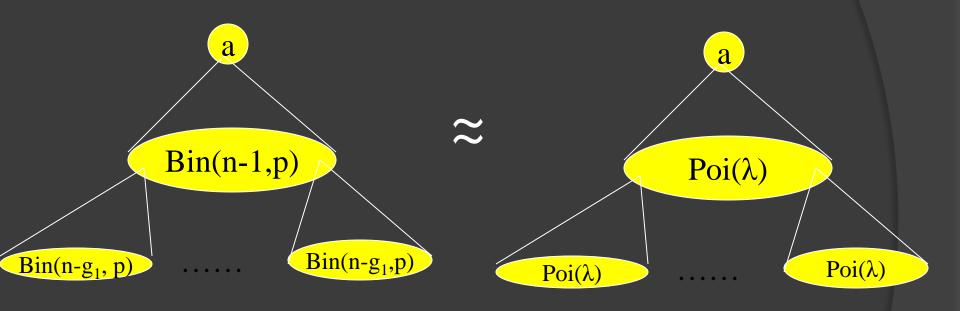
Pr[Poi(
$$\lambda$$
)= k] = $e^{-\lambda} \frac{\lambda^k}{k!}$

Poisson Branching Process



- If $\lambda < 1$, the process dies out with probability 1
- If $\lambda > 1$, the process survives forever with probability θ_{λ} (recall θ_{λ} is the positive solution for $1 \theta e^{-\theta \lambda} = 0$).

Two Obstacles



- The difference between Bin(n-1,p) and $Poi(\lambda)$.
- lacktriangle The drift : $p(n-g_i)$ keeps decreasing

Similar but more serious obstacles occur in the analyses of

- The k-core problem of the random graph (Pittel-Spencer-Wormald, ...)
- Giant strong component of the random directed graph (Karp,...)
- Pure literal algorithm for the random satisfiability problem (Broder-Frieze-Upfal, ...)
- Unit clause algorithm for the random satisfiability problem (Chao-Franco,...)
- Karp-Sipser Algorithm to find a large matching in the random graph (Karp-Sipser, ...)

The First Obstacle

The difference between

$$Bin(n-1,p)$$
 and $Poi(\lambda)$.

More generally, is there a random graph model $G_{new}(n,p)$, in which all degrees are i.i.d $Poi(\lambda)$ and

$$G_{new}(n,p) \approx G(n,p)$$
?

NO: The sum of degrees must be even.

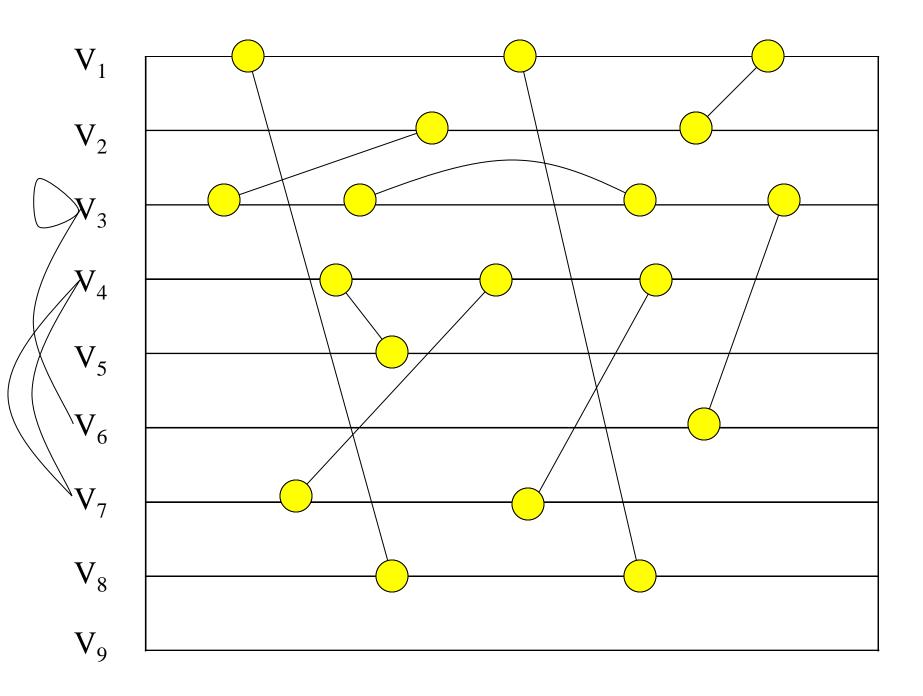
YES in an asymptotic sense

Is it possible to define a random graph model in which all degrees are i.i.d $Poi(\lambda)$?

Jusque ?!

Poisson Cloning Model $G_{PC}(n,p)$: Definition

- Take i.i.d Poisson random variables d(v)'s, v in V, with mean $\lambda = p(n-1)$.
- For each vertex v in V, take d(v) copies, or clones, of v.
- If $\Sigma d(v)$ is even, generate a uniform random perfect matching on all clones and then contract clones of the same vertex.



• If $\Sigma d(v)$ is odd, generate a perfect matching excluding a clone. The excluded clone induces a loop.

(When d(v) = d for all v, this is the configuration model for random regular graphs due to B. Bolloás ('84).)

$$G(n,p) \approx G_{PC}(n,p)$$

Theorem (K) If pn = O(1), then, for any event A regarding G(n, p),

$$Pr[A] \ge c_1 Pr_{PC}[A] - e^{-(pn^2)}$$

and

$$Pr[A] \le c_2 Pr_{PC}[A]^{1/2} + e^{-\Omega(pn^2)}$$

In particular,

$$Pr[A] o 0$$
 iff $Pr_{PC}[A] o 0$ and $Pr[A] o 1$ iff $Pr_{PC}[A] o 1$

The Second Obstacle

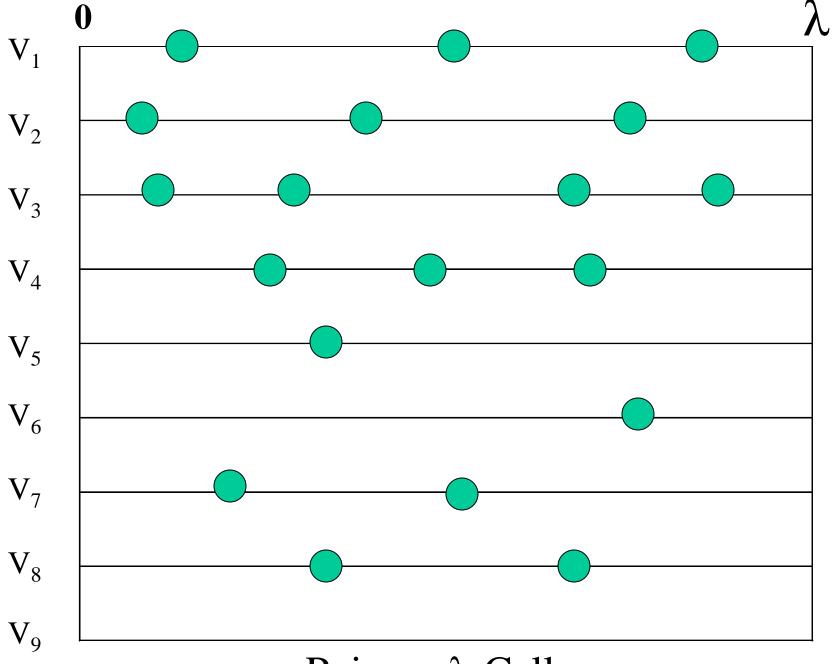
We introduce

the cut-off line algorithm (COLA)

Poisson λ-cell

For each clone w, assign a uniform random (real) number between
0 and λ, independently of all others.

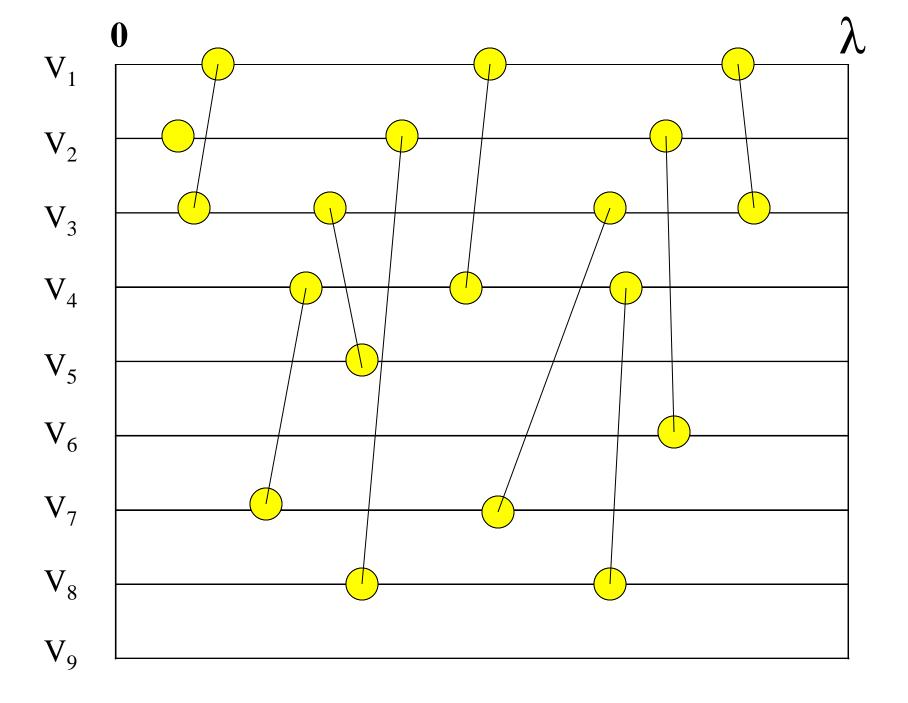
 A clone is larger than another clone if so are the assigned numbers.



Poisson λ-Cell

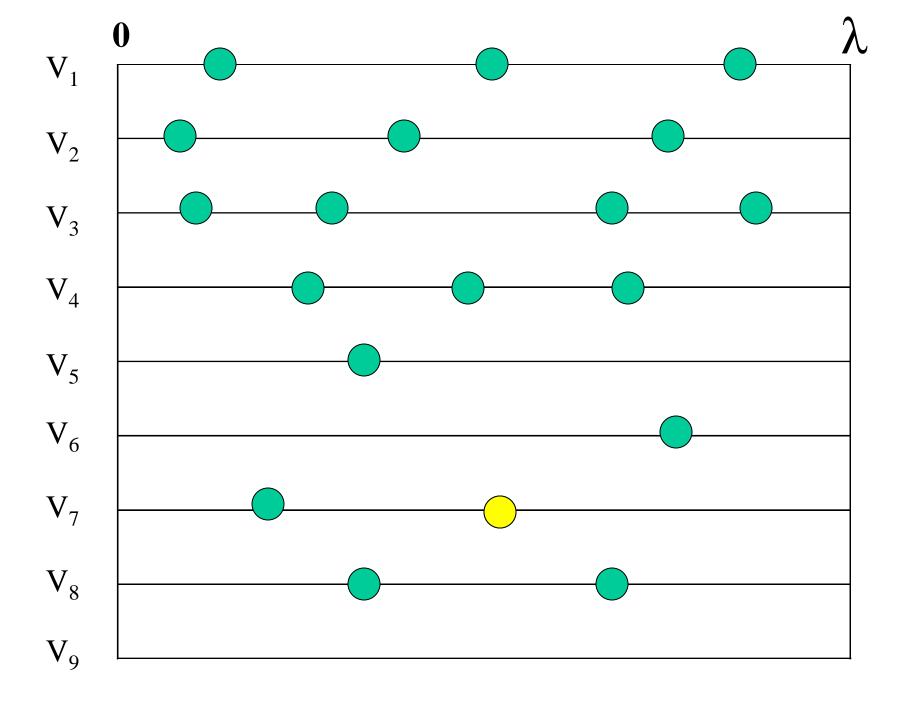
A way to generate the random perfect matching

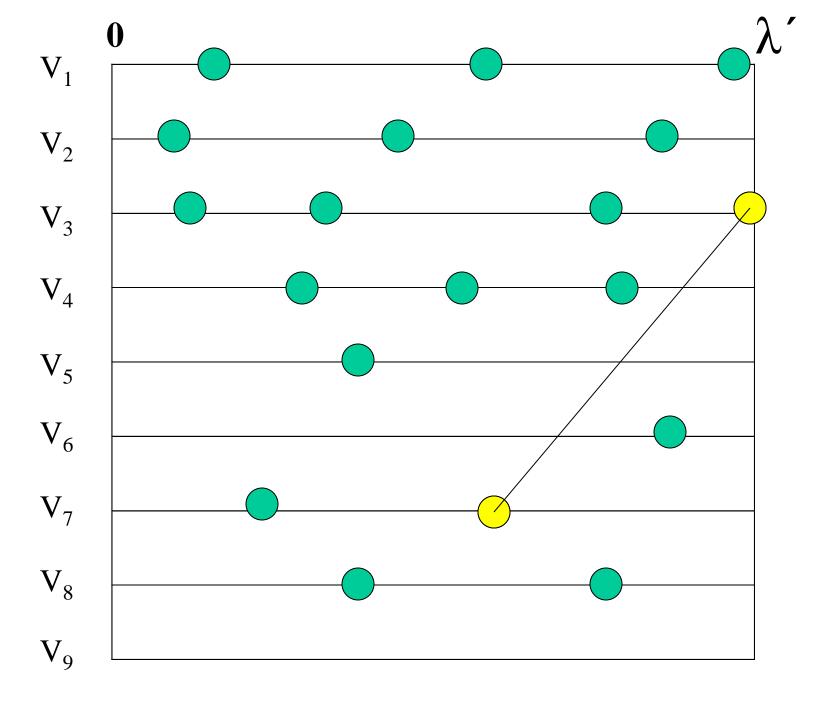
Take two largest clones and match them. Repeat this for the remaining unmatched clones



Cut-Off Line Algorithm (COLA)

Choose the first unmatched clone according to a certain selection rule independently of assigned numbers and match it to the largest unmatched clone



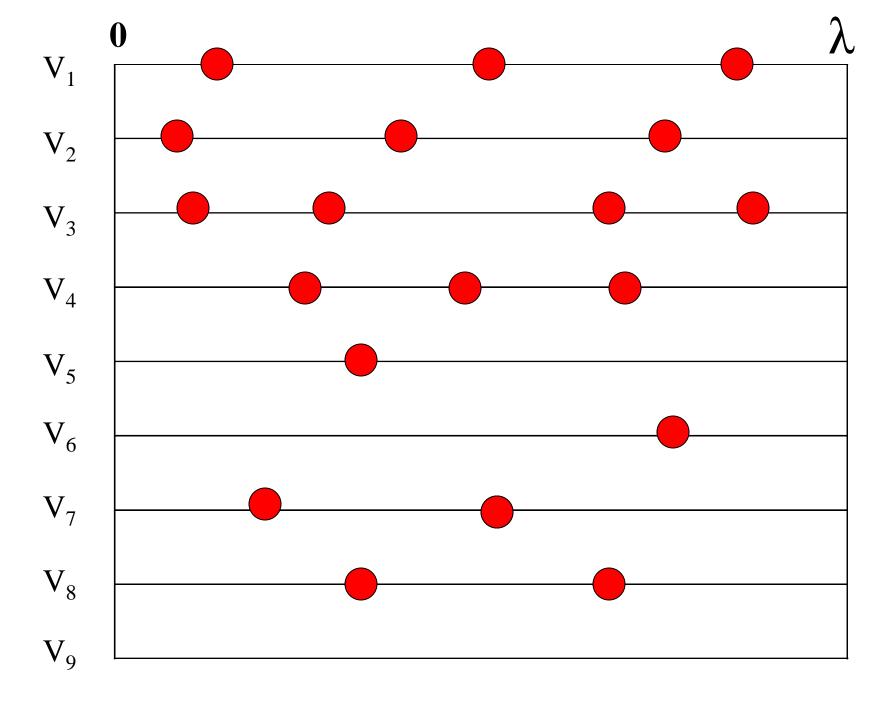


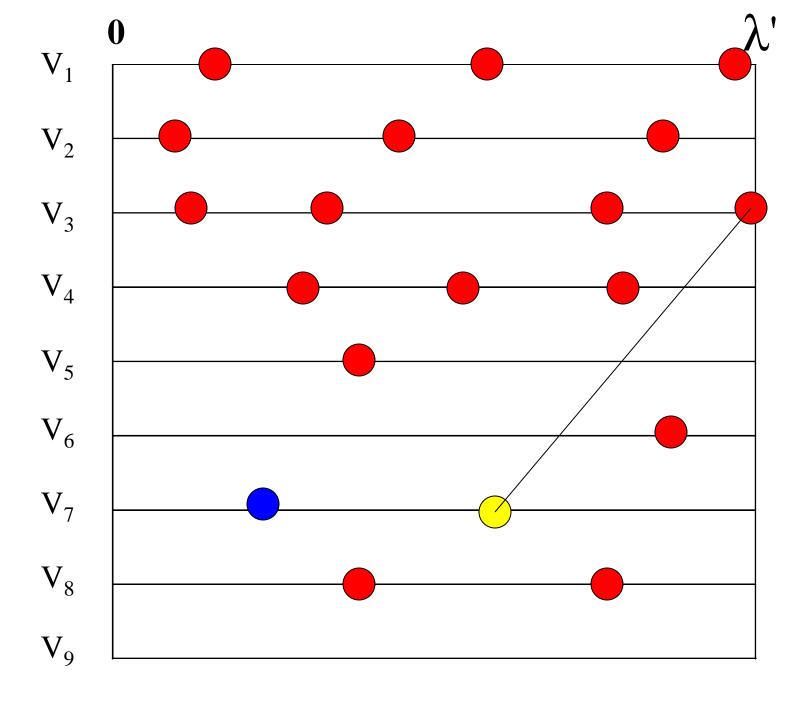
Cut-Off Line Algorithm (COLA)

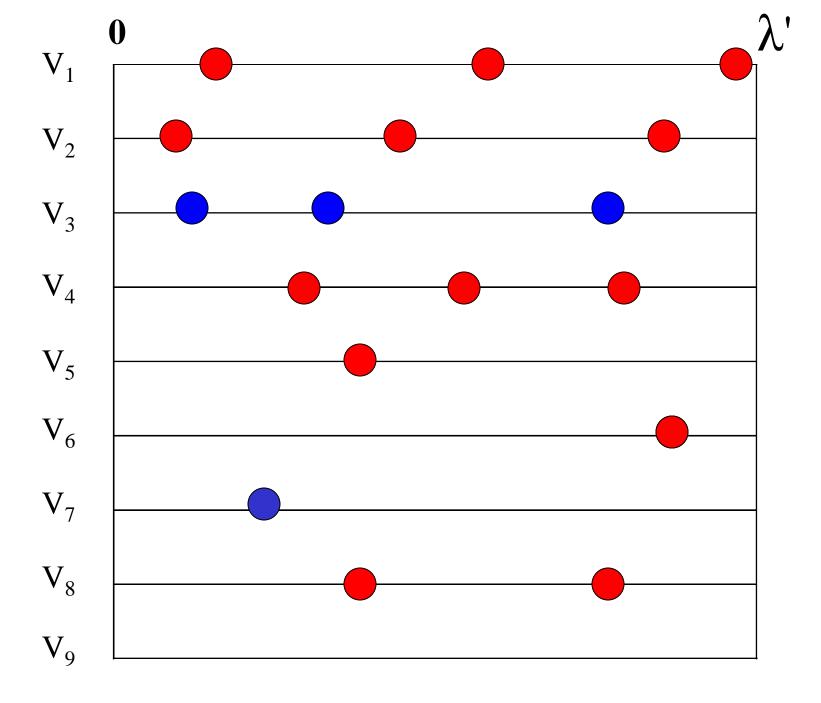
- Initially, the cut-off value $\Lambda = \lambda$. The cut-off line is the vertical line containing $(\Lambda, 0)$.
- After one step, the cut-off value $\Lambda = \lambda'$. The cut-off line is the vertical line containing $(\Lambda, 0)$.

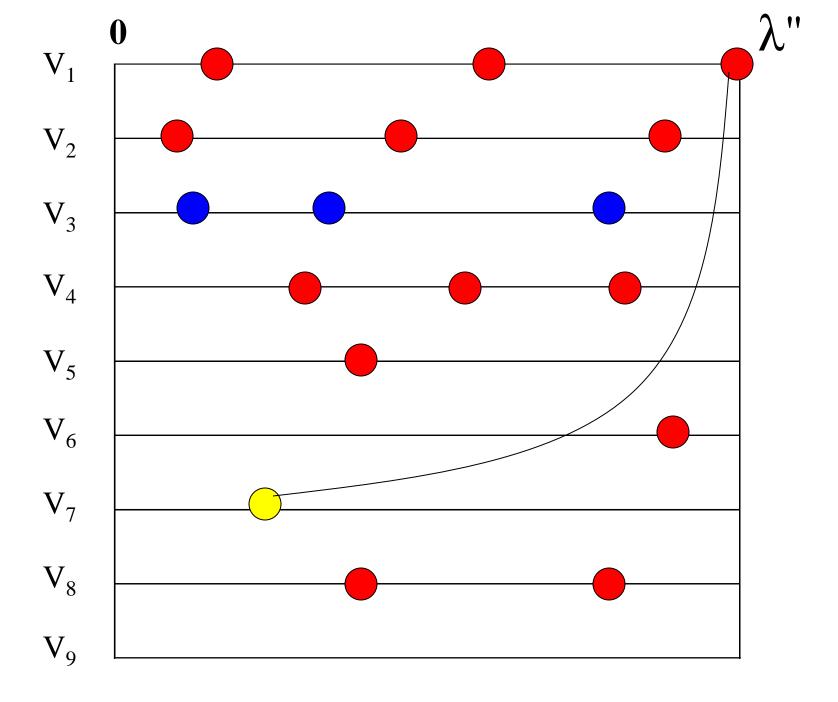
Notice that λ' is the largest number among N-1 independent uniform random numbers between 0 and λ .

Cut-Off Line Algorithm for Component









New Results

Random Graph G(n, m)

 For a fixed vertex set V of n elements, consider all graphs on V with m edges.
There are

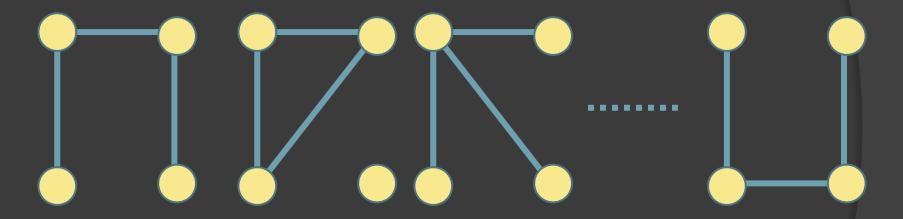
$$\binom{\binom{n}{2}}{m}$$
 such graphs

- Choose a graph uniformly at random from all such graphs.
- Easy

$$G(n,m) \approx G(n,p)$$

provided
$$p\binom{n}{2} = m$$
.

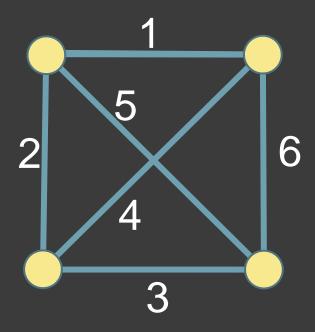
• For example, if n = 4 m = 3, then each of $\binom{\binom{4}{2}}{3} = \binom{6}{3} = 20$ graphs



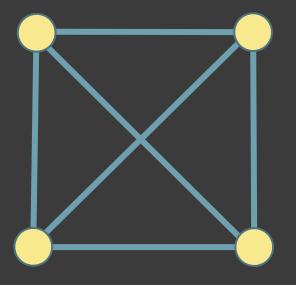
is equally likely to be G(4,3).

Graph Process G(n, 1), ..., G(n, m), ...

- Randomly order all $\binom{n}{2}$ edges of K_n so that each of $\binom{n}{2}$! ordereings is equally likely.
- The graph G(n,m) is the graph consisting of the first m edges in the random ordering.
- Notice that G(n,m) in the graph process has the same distribution as G(n,m) defined earlier.

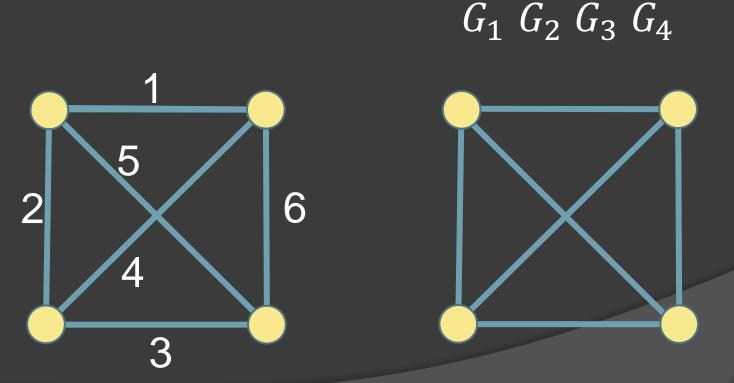


 G_1 G_2 G_3 G_4 G_5 G_6



Graph process under constraint

Triangle Free Process: no triangle is allowed

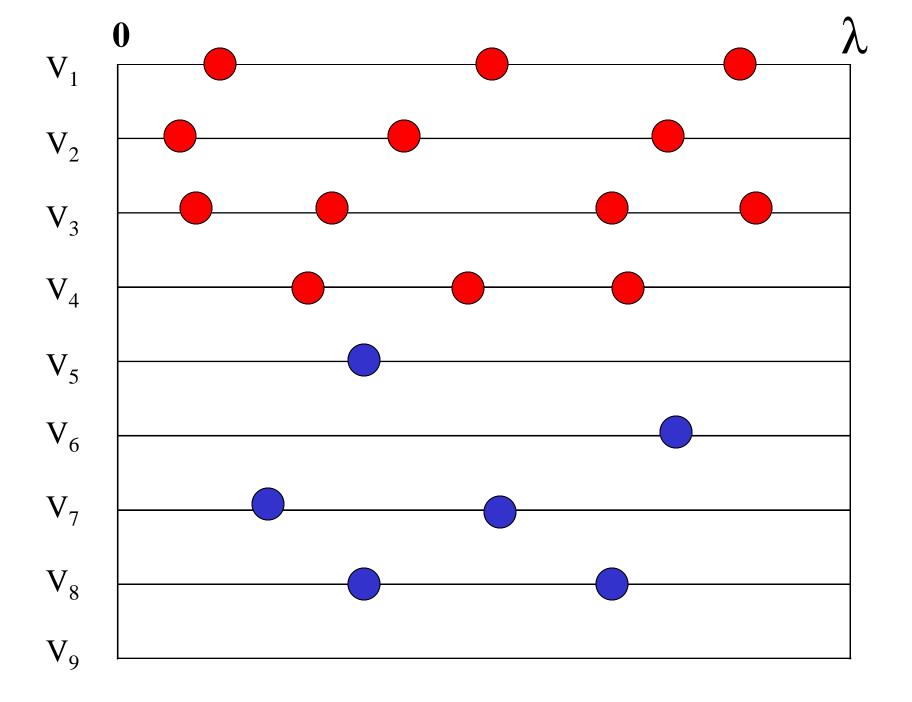


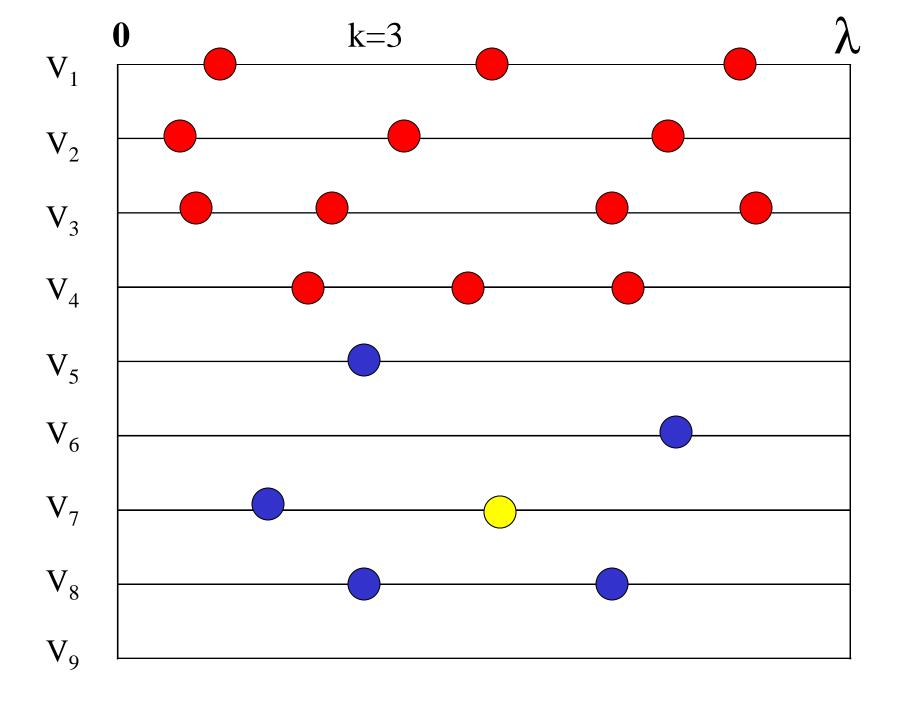
This is called the triangle-free process.

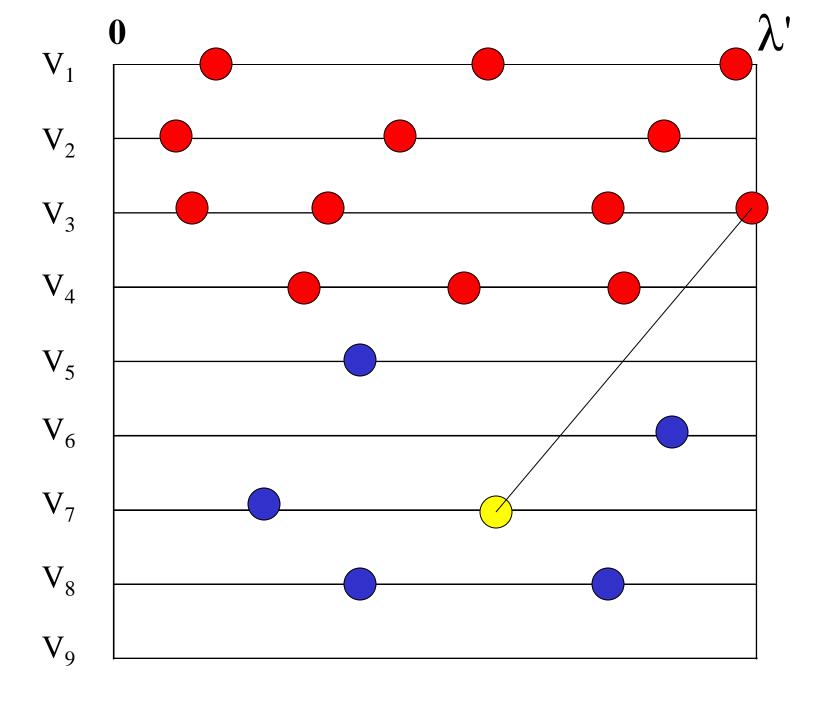
Graph process under constraint

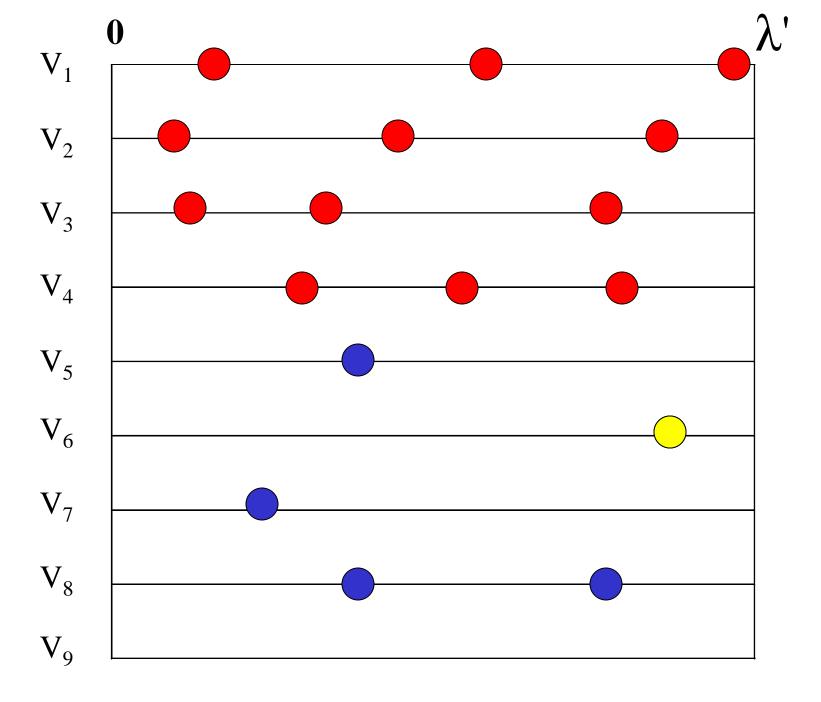
- Many applications to construct graphs satisfying certain properties.
- It is generally not easy to analyze the process
- Studied by many researchers including Ajtai, Komlós, Szemerédi, Rodl, Kahn, and more.

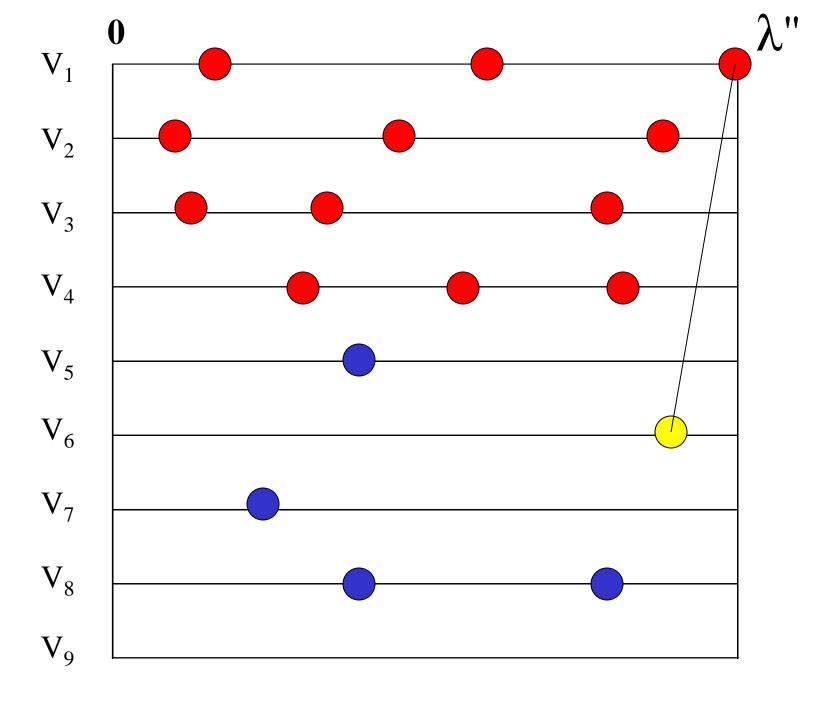
Application: Ramsey number R(3, t)

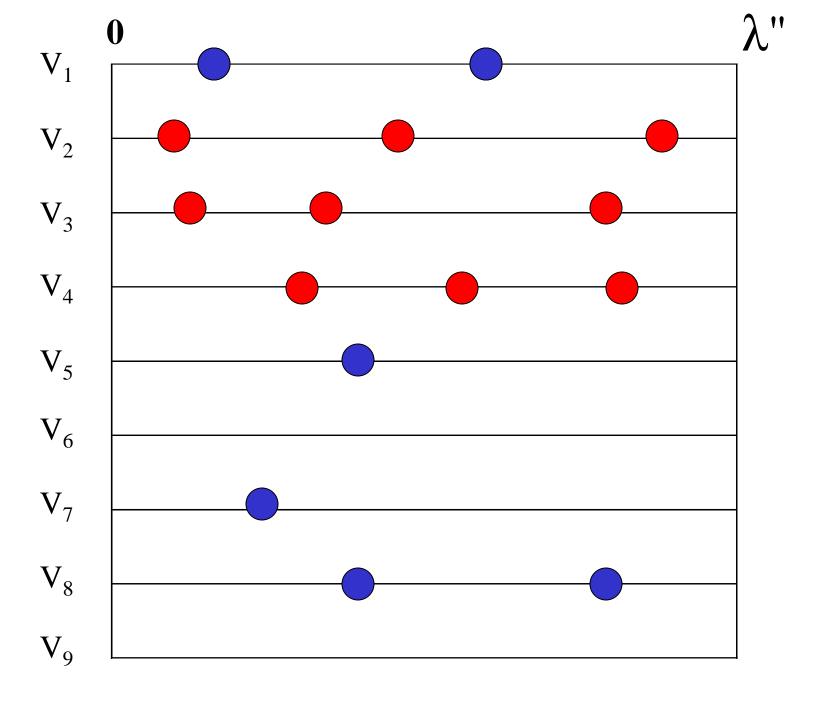


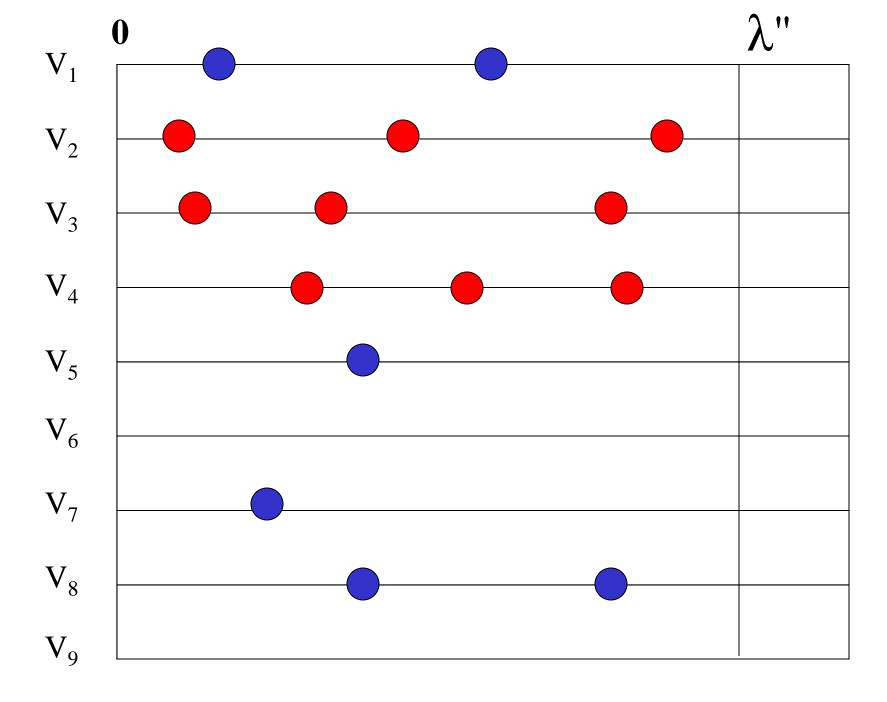








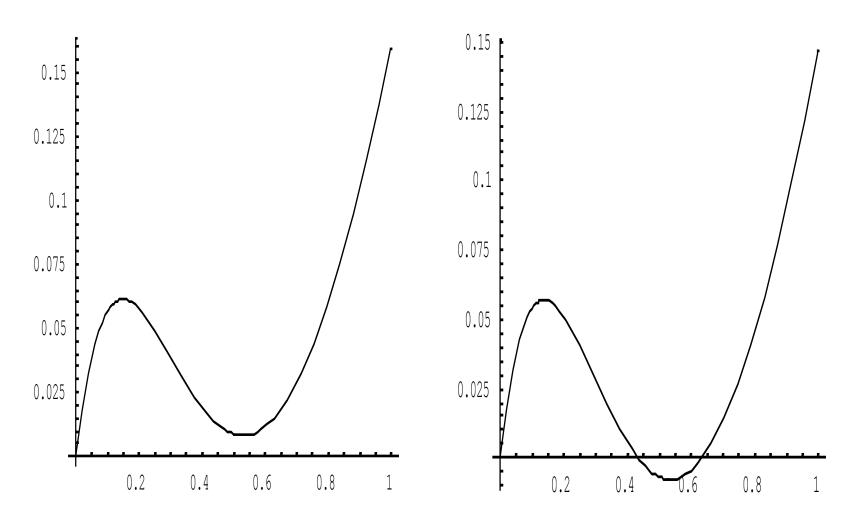




Number of light clones

$$k=3, \lambda=3.3$$

$$k=3, \lambda=3.4$$



$k=3, \lambda=3.35$

