Recent Results on the Moment Determinacy of Probability Distributions

Jordan Stoyanov

Newcastle University, UK

e-mail: stoyanovj@gmail.com

The Great Departmental Seminar in Theory of Probability
Mechanics and Mathematics Faculty, Moscow State University
12 March 2014

PLAN:

Discussion on recent works on probability distributions and their characterization as being unique (**M-determinate**) or non-unique (**M-indeterminate**) in terms of the moments.

- 1. Basics. Most famous Example: LogN.
- 2. Carleman's condition. Krein's condition.
- 3. Cramér's condition. Hardy's condition.
- 4. Criteria based on the rate of growth of the moments.
- 5. Moment problem for Multivariate distributions.
- 6. Powers and products of r.v.s and their M-determinacy.
- 7. Open questions.

Basics: $\mathcal{M} = \text{all } X \sim F$, f, finite moments $m_k = \mathbf{E}[X^k]$, k = 1, 2, ...

Question: Knowing that $\{m_k\}$ is the moment sequence of F, we ask: Is F the only d.f. with these moments?

If "Yes", F is M-determinate, unique with these moments (M-det).

If "No", F is M-indet, there are G, $G \neq F$, same moments.

General: Given $F \in \mathcal{M}$, either F is M-det, or F is M-indet. How?

There are conditions for uniqueness, difficult to check.

Rational approach: Find Easy Conditions, sufficient or necessary.

Criteria depend on the supp(F): [0,1] (Hausdorff); $\mathbb{R}^+ = [0,\infty)$ (Stieltjes); $\mathbb{R}^1 = (-\infty,\infty)$ (Hamburger).

Fundamental Result: For any M-indet F, there are infinitely many distributions, continuous and discrete, all with the same moments as F.

Log-normal distribution: $Z \sim \mathcal{N}(0,1), X = e^Z \sim LogN(0,1)$

$$f(x) = \frac{1}{\sqrt{2\pi}} \frac{1}{x} \exp\left[-\frac{1}{2}(\ln x)^2\right], \ x > 0; \ f(x) = 0, \ x \le 0.$$

About X: No m.g.f., HT, $X \in \mathcal{M}$, $m_k = \mathbf{E}[X^k] = e^{k^2/2}$, k = 1, 2, ...

Two infinite sets of r.v.s, one absolutely continuous, one discrete:

$$X_{\varepsilon}, \varepsilon \in [-1, 1]$$
: density $f_{\varepsilon}(x) = f(x) [1 + \varepsilon \sin(2\pi \ln x)], x > 0$ (JRSS'63)

$$Y_a$$
, $a > 0$: $\mathbf{P}[Y_a = ae^n] = a^{-n} e^{-n^2/2}/A$, $n = 0, \pm 1, \pm 2, \dots$ (TPA'81)

Shocking property:
$$\mathbf{E}[X_{\varepsilon}^k] = \mathbf{E}[Y_a^k] = \mathbf{E}[X^k] = e^{k^2/2}, \ k = 1, 2, \dots$$

Conclusion: LogN is M-indet! So 'many' others, the same moments.

More: Similar statement is valid for Log-SkewN. L&S JAP 2009.

Carleman: Known are all moments $m_k = \mathbf{E}[X^k], k = 1, 2, ...$ For X in \mathbb{R}^1 or \mathbb{R}^+ , define the following **Carleman quantity**:

$$\mathsf{C} = \sum_{k=1}^{\infty} \frac{1}{(m_{2k})^{1/2k}}, \qquad \qquad \mathsf{C} = \sum_{k=1}^{\infty} \frac{1}{(m_k)^{1/2k}}.$$

In both cases, $C = \infty$ is sufficient for F to be M-det.

Krein: Let $X \sim F$, $F \in \mathcal{M}$ with density f > 0. For X in \mathbb{R}^1 or \mathbb{R}^+ , define the logarithmic normalized integral, **Krein quantity**:

$$\mathsf{K}[f] \equiv \int_{-\infty}^{\infty} \frac{-\ln f(y)}{1+y^2} \mathrm{d}y, \qquad \mathsf{K}[f] \equiv \int_{a}^{\infty} \frac{-\ln f(y^2)}{1+y^2} \mathrm{d}y, \ a \ge 0.$$

In both cases, $K[f] < \infty$ is sufficient for F to be M-indet.

Remark: There are converses to the above criteria: A. Pakes, G.D. Lin.

Cramér: For a r.v. $X \sim F$ on \mathbb{R}^1 , let the m.g.f. $M(t) = \mathbf{E}[e^{tX}]$ exist, i.e. M(t) is well-defined for $t \in (-t_0, t_0)$, $t_0 > 0$ (**light tails**). Then:

- $X \in \mathcal{M}$ (finite all moments);
- *X*, i.e. *F*, is M-det.

'Good' distributions: Any X, F with finite support; Exp, \mathcal{N} ,, Laplace

If F has **heavy tail(s)** (no m.g.f.), two possibilities:

- (a) $F \notin \mathcal{M}$, not all moments are finite. Not our case! Many!
- (b) $F \in \mathcal{M}$, then either F is M-det, or it is M-indet.

Question: When is a heavy tailed *F* unique? And when nonunique?

Answer: Suppose F has f, e.g. $f(x) \sim a \exp(-b|x|^c)$, a, b, c > 0. If F is on \mathbb{R}^1 , c = 1 is the boundary; if F is on \mathbb{R}^+ , the boundary is $c = \frac{1}{2}$.

"New" Criterion: G. Hardy (1917/1918). The Math. Messenger Statement (Hardy): r.v. X > 0, $X \sim F$. Suppose \sqrt{X} has m.g.f.:

 $\mathbf{E}\big[\mathrm{e}^{t\sqrt{X}}\big]<\infty \ \ \text{for} \ \ t\in \big[0,t_0\big), \ t_0>0 \qquad \text{(H)=Hardy's condition; } \ \tfrac{1}{2}\text{-Cram\'er}.$

Then $X \in \mathcal{M}$ and X is M-det: all moments $m_k = \mathbf{E}[X^k], k = 1, 2, ...$ are finite and F is the only d.f. with the moment sequence $\{m_k\}$.

Proofs: (a) The original. (b) Titchmarch's book. (c) S&L TPA (2012) Condition (H) $\iff m_k(X) \le c^k (2k)! \implies C[\{m_k\}] = \infty \implies X$ is M-det.

Notice: The condition is on \sqrt{X} but the conclusion is for X.

Corollary: If a r.v. X > 0 has a m.g.f., then its square X^2 is M-det.

Result: In (H), $\frac{1}{2}$ is the best possible constant for X to be M-det. For each $\rho \in (0, \frac{1}{2})$ there is a r.v. Y with $\mathbf{E}[e^{tY^{\rho}}] < \infty$ s.t. Y is M-indet.

Comment: Hardy's condition is sufficient but not necessary for M-det.

Rate of growth of the moments and (in)determinacy

Given a r.v. X > 0 with moments m_k , k = 1, 2, ...

Assume $m_1 \ge 1$. Then m_k increase in k. Define the ratio

$$\Delta_k = \frac{m_{k+1}}{m_k}$$
 and let $\Delta_k = \mathcal{O}((k+1)^{\gamma})$ as $k \to \infty$.

The number $\gamma = \text{rate of growth of the moments of } X$.

Statement 1: If $\gamma \le 2$, then *X* is M-det.

Statement 2: $\gamma = 2$ is the best possible constant for which X is M-det.

Equiv: If $\Delta_k = \mathcal{O}((k+1)^{2+\delta}), \ \delta > 0$, there is a r.v. Y which is M-indet.

Remark 1: Similar statements hold for r.v.s on \mathbb{R}^1 , with $m_{2(k+1)}/m_{2k}$...

Remark 2: If $\gamma > 2$, add one condition and show that X is M-indet.

Example: $\xi \sim Exp(1)$, density e^{-x} , x > 0, m.g.f.

Result: ξ^r is M-det for $0 \le r \le 2$ and M-indet for r > 2.

Proofs: (1) Use Krein for r > 2 and Krein-Lin techniques for $0 \le r \le 2$.

(2) Take r = 2, $X = \xi^2$, $m_k(X) = (2k)! \Rightarrow X$ is M-det by Carleman.

Also, since $\sqrt{X} = \xi$ is Cramér $\Rightarrow X = (\sqrt{X})^2$ is M-det, by Hardy.

More, $X^{r/2}$ is Cramér for $r \in (0,2) \Rightarrow X^r$ is M-det for $r \in (0,2]$.

(3) Write $\mathbf{E}[\xi^r]$ via gamma-function and use the rate growth results.

Case $\mathbf{r} = 3$: For $X = \xi^3$, $m_k = \mathbf{E}[X^k] = (3k)!$, fast \nearrow ; density f of X is

$$f(x) = \frac{1}{3} x^{-2/3} e^{-x^{1/3}}; \text{ take perturbation } h(x) = \sin\left(\frac{\pi}{6} - \sqrt{3}x^{1/3}\right), \ x > 0.$$

Stieltjes class $\mathbf{S}(f,h) = \{f_{\varepsilon} = f[1+\varepsilon h], \varepsilon \in [-1,1]\}$, with these f,h. In $\mathbf{S}, f_{\varepsilon}$ is density \Rightarrow r.v. $X_{\varepsilon} \sim f_{\varepsilon}$: $\mathbf{E}[X_{\varepsilon}^{k}] = m_{k} = (3k)!$.

Remark: Stieltjes classes can be written for any power ξ^r , r > 2.

Example: $Z \sim \mathcal{N}(0,1), \ Z^2, \ Z^3, \ Z^4, \ |Z|^r.$

Easy: Z is Cramér $\Rightarrow Z$ is M-det. More, Z^2 is M-det, by Hardy. However, $Z^2 = \chi_1^2$ (light tail) is also Cramér $\Rightarrow Z^4$ is M-det, by Hardy.

Comment: To apply twice Cramér, and twice Hardy, is the shortest way to prove that power 4 of the normal r.v. Z, Z^4 is M-det.

General Result: $|Z|^r$ is M-det for $0 \le r \le 4$, and M-indet for r > 4.

Proof: Use Krein for r > 4 and Krein-Lin techniques for $0 \le r \le 4$. Alternatively, use the rate growth conditions.

Delicate Case: The cube, $X = Z^3$, on \mathbb{R}^1 , two heavy tails, $m_{2k-1} = 0$, $m_{2k} = (6k-1)!!$, $C < \infty(?)$ Density g of Z^3 , by Krein $\Rightarrow Z^3$ is M-indet. Same conclusion by using our rate growth result.

Stieltjes class: For some h, $\mathbf{S}(g,h) = \{g_{\varepsilon} = g[1 + \varepsilon h], \varepsilon \in [-1,1]\}.$

Shocking Fact: $X = Z^3$ is M-indet, however |X| is M-det. Why?

Multidimensional Moment Problem: Work Going ... [full of traps]

Picture Today: Not too much done for multivariate distributions ... analytic: Petersen (1982), Berg-Thill (1991), Schmüdgen-Putinar (2008) probability/statistics: K&S (2011–2013) + a few references therein.

Random vector $X = (X_1, ..., X_n) \in \mathbb{R}^n$ with arbitrary distribution F. Finite are all multi-indexed moments

$$m_{k_1,\ldots,k_n} = \mathbf{E}[X_1^{k_1}\cdots X_n^{k_n}], \ k_j \ge 0, \ k_1+\ldots+k_n=k, \ k=1,2,\ldots$$

Same kind of questions and terminology as in dim. 1.

Tools: Cramér, *n*-dim. m.g.f.; Carleman, next slide; but ... no Krein.

Result: $X = (X_1, ..., X_n) \sim F$, finite multi-indexed moments; $F_1, ..., F_n$ the marginals, marginal moment seq. $\{m_{k_1}^{(1)}\}, ..., \{m_{k_n}^{(1)}\}$.

There are many n-dim. d.f.s F with these marginal moment sequences.

Carleman Condition in Dimension n

We need the numbers M_{2k} and M_k , for F on \mathbb{R}^n and \mathbb{R}^n_+ :

$$M_{2k} = m_{2k,0,...,0} + m_{0,2k,0...,0} + ... + m_{0,0,...,0,2k}$$
 (Hamburger),
 $M_k = m_{k,0,...,0} + m_{0,k,0,...,0} + ... + m_{0,0,...,0,k}$ (Stieltjes).

Now the n-Carleman quantity is defined, respectively, as follows:

$$C = \sum_{k=1}^{\infty} \frac{1}{(M_{2k})^{1/2k}}$$
 and $C = \sum_{k=1}^{\infty} \frac{1}{(M_k)^{1/2k}}$.

 $C = \infty$ \Rightarrow the vector X, or equiv. its n-dimensional d.f. F, is M-det.

If n-Carleman holds for X, then 1-Carleman holds for each X_j . Converse not in general true. There are c.e.s; related to Müntz theorem.

Known Result: Given $X \sim F$ in \mathbb{R}^n , marginals F_1, \ldots, F_n .

- (a) If each of F_1, \ldots, F_n is M-det, then the *n*-dim. d.f. F is M-det.
- (b) If X_1, \ldots, X_n are independent, and F is M-det, then each F_j is M-det.

Comments:

- In (a) we do not say in which way F_j are M-det.
- In (b), $F = F_1 \cdots F_n$, this is used for the converse.
- There are M-det *n*-dim. d.f.s with M-indet marginals. [Illustrate!] Strange, counter-intuitive, but true. Quite analytic.

New Result: Again, $X \sim F$ in \mathbb{R}^n , marginals F_1, \ldots, F_n with densities f_1, \ldots, f_n which are positive. Assume for each j, Krein condition and Lin condition hold for f_j , $j = 1, \ldots, n$.

Then for any indep/dep structure of X, the n-dim. d.f. F is M-det.

Recent Result: S&L, TPA (2012).

Given is a random vector $X \sim F$ with arbitrary distribution in \mathbb{R}^n and finite all multi-indexed moments $m_{k_1,\dots,k_n} = \mathbf{E}[X_1^{k_1} \cdots X_n^{k_n}],\dots$ Consider the length of $X: ||X|| = \sqrt{||X||^2} = \sqrt{X_1^2 + \dots + X_n^2}$.

Suppose: 1-dim. non-neg. r.v. ||X|| is Cramér: $\mathbf{E}[e^{c||X||}] < \infty$, c > 0. Then the *n*-dim. Hamburger moment problem for *F* has a unique

solution. Or, we say, the random vector $X \in \mathbb{R}^n$ is M-det, also that F is the only n-dim. d.f. with the set of multi-indexed moments $\{m_{k_1,...,k_n}\}$.

Proof: We follow two steps.

Step 1: Cramér for $||X|| \Rightarrow ||X||^2$ is M-det, by Hardy (Stieltjes case).

Step 2: Amazing statement by Putinar-Schmüdgen: If $||X||^2$ is M-det (1-dim. Stieltjes), then F is M-det (n-dim. Hamburger).

Related Topic: Asymmetry and M-indeterminacy

Easy: $X \sim F$, symmetric: $(-X) \stackrel{d}{=} X$, f(-x) = f(x), real ch.f. If $X \in \mathcal{M}$, then $\Rightarrow \mathbf{E}[X^{2k-1}] = 0$, k = 1, 2, ...

Converse Question: We know $X \in \mathcal{M}$, and $\mathbf{E}[X^{2k-1}] = 0, k = 1, 2, ...$ Does this imply that X is symmetric?

Answer: 'Yes', if X is M-det, 'No', if X is M-indet.

Statement: If F is M-indet, there are 'many' d.f.s on \mathbb{R}^1 , same moments as F, one is symmetric, 'center', all others are asymmetric.

Idea: Think of $S(f,h) = \{f_{\varepsilon} = f[1+\varepsilon h], \ \varepsilon \in [-1,1]\}.$

More: If η is Laplace, $\frac{1}{2}e^{-|x|}$, $x \in \mathbb{R}^1$, $Y = \eta^3$ is M-indet and symmetric, but Y_{ε} , $\varepsilon \neq 0$ is not! How 'much' is the asymmetry in the class $\mathbf{S}(f,h)$?

Answer: $\frac{1}{2}D(f,h)$ (= max total variation distance from the center).

Another Interesting Question: Let $X \in \mathcal{M}$, $\mathbf{E}[X^{2k-1}] = 0$, k = 1, 2, ... and we know that X is M-det. Is it true that X is symmetric?

Answer: No.

Statement: Let a r.v. $X \sim \chi_n^2$, n = 1, 2, ... and Y = X - n. Then: $Y \in \mathcal{M}, \ \mathbf{E}[Y^{2k-1}] = 0, \ k = 1, 2, ..., \ Y \text{ is M-det}, \ Y \text{ is not symmetric.}$

Proof: With W a standard BM, we have

$$J = \int_0^1 W_s \, dW_s = \frac{1}{2} (W_1^2 - 1) \implies \xi = W_1^2 \sim \chi_1^2.$$

Hence $\xi - 1 = 2J$, $\mathbf{E}[J^{2k-1}] = 0 \Rightarrow \mathbf{E}[(\xi - 1)^{2k-1}] = 0$, k = 1, 2, ... Use this with n independent BMs. Done.

Comment: The ch.f. of Y, $\psi(z) = \mathbf{E}[e^{zY}] = e^{-inz}(1-2iz)^{-n/2}$, real z. Show that all odd order derivatives of $\psi(z)$ at zero are equal to zero.

Question: Are there other ch.f.s with such a property? Perhaps yes.

Products and Powers of Random Variables: ξ and $\mathbb{1}$ ξ_1, \dots, ξ_n

When are $Y_n = \xi_1 \cdots \xi_n$ and $X_n = \xi^n$ M-det, and when M-indet? Same?

Stieltjes case: The moments of X_n dominate those of Y_n ; we 'expect':

M-det of $X_n \Rightarrow$ M-det of Y_n , M-indet of $Y_n \Rightarrow$ M-indet of X_n .

Strangely enough, in general this is not true; there are counterexamples.

Generalized gamma-distributions: GG(a,b,c), a,b,c>0. Density $f(x) = Kx^{a-1}e^{-bx^c}$, x>0. Here: Exp, gamma, half-normal, χ^2 , half-Bessel.

Result 1: $\xi \sim Exp(1)$. Then Y_2 is M-det, $Y_n = \xi_1 \cdots \xi_n$ for $n = 3, 4, \dots$, are all M-indet. Recall ξ^2 is M-det, while ξ^n for $n = 3, 4, \dots$, are all M-indet.

Result 2: |Z|, half-normal. The product of 2, 3 or 4 \perp half-normals is M-det, while the product of 5 or more \perp half-normals is M-indet.

Result 3: Half-logistic, $2e^{-x}/(1+e^{-x})^2$, x > 0. Product of 3 or more half-logistic r.v.s is M-indet.

Result 4: Product of 2 or more χ^2 r.v.s is M-indet.

Hamburger case: r.v. ξ on \mathbb{R}^1 and \mathbb{I} copies ξ_1, \ldots, ξ_n

Result 1: $Z \sim \mathcal{N}$. Then, Z_1Z_2 is M-det, while $Y_n = Z_1 \cdots Z_n$ for $n = 3, 4, \ldots$, are all M-indet. Recall, Z^2 is M-det, Z^3 is M-indet, Z^4 is M-det, any next power, $5, 6, \ldots$, is M-indet.

Result 2: The product of two \perp Laplace r.v. $(\frac{1}{2}e^{-|x|})$ is M-indet. (Above: product of two Exp is M-det.) Square of Laplace r.v. is M-det.

Result 3: Logistic: $1/(2 + e^x + e^{-x})$. Products of 3 or more is M-indet.

Result 4: Product of Laplace r.v. and logistic r.v. is M-indet.

Result 5: Symmetric X on \mathbb{R}^1 and Y > 0, T = XY. If X or Y is M-indet, T is M-indet. If X and Y have rates of growth of moments a and b, and $a + 2b \le 2$, T is M-det. If a + 2b > 2 + cond get M-indet T.

Result 6: N = r.v. in \mathbb{N}_0 , $\tilde{X} = \xi^N$, $\tilde{Y} = \xi_1 \cdots \xi_N$. All $\text{r.v.s } \bot$.

We have conditions for M-det and M-indet. E.g., if $N \sim \text{Poisson}$, $Z \sim \mathcal{N}$, both \tilde{X} and \tilde{Y} are M-indet.

- **Q1:** How to construct discr. distr. with moments $\{(3k)!, k = 1, 2, ...\}$?
- **Q2:** How to define Krein integral in dimension 2 or more? $(K[f] = \int \frac{-\ln f(x)}{1+y^2} dx < \infty \text{ or } -\ln f(x^2)...)$
- **Q3:** How to define Lin's condition for discrete distributions? (Smooth continuous case: $-xf'(x)/f(x) \to \infty$, large x.)
- **Q4:** $X \sim F, F' = f$, finite moments, inf.div., M-indet. Stieltjes class $\mathbf{S}(f,h) = \{f_{\varepsilon} = f(1+\varepsilon h), \ \varepsilon \in [-1,1]\}$, any perturbation h. **Conjecture:** f_{ε} with $\varepsilon \neq 0$ is not inf.div.
- **Q5:** Continuous r.v. $X \Rightarrow$ discrete (rounded) r.v. $\lfloor X \rfloor$ or $\lfloor X + \frac{1}{2} \rfloor$. **Conjecture:** X and $\lfloor X \rfloor$ share the same M-det/indet property.
- **Q6:** $X \sim F$ on \mathbb{R}^+ with $\mathbf{E}[X^k] = e^{k^2/2}, \ k = 1, 2,$ **Conjecture:** If F is unimodal, F is unique and F = LogN(0, 1).
- **Q7:** F inf.div. d.f., L the Lévy measure in the Lévy-Khintchine formula for the ch.f. of F. Known: F and L have the same number of moments: F finite moments $\iff L$ finite moments. **Conjecture:** F is M-det $\iff L$ is M-det.

References: Books by Shohat-Tamarkin, Akhiezer

Hardy, GH (1917/1918): The Mathematical Messenger 46/47.

Lin, GD (1997): Statist. Probab. Letters 35 85-90.

Stoyanov, J (2004): J. Appl. Probab. **41A** 281–294.

Stoyanov, J, Tolmatz, L (2005): Appl. Math. Comput. 165 669–685.

Putinar, M, Schmüdgen, K (2008): Indiana Univ. Math. J. 57 2931–68.

Lin, GD, Stoyanov, J. (2009): J. Appl. Probab. 46 909-916.

Kleiber, C, Stoyanov, J (2011/2013): *J. Multivar. Analysis* 113 7–18.

Stoyanov, J, Lin, GD (2012): Theory Probab. Appl. 57, no. 4, 811-820.

Lin, GD, Stoyanov, J (2013/2014): Two papers. JSPI and JOTP

See: arXiv: 1403.0301 [math.PR] 3 Mar 2014;

Doi: http://dx.doi.org/10.1016/j.jspi.2013.11.02

Stoyanov, J (2013): Counterexamples in Probability. 3rd edn.

Dover Publications, New York. (John Wiley & Sons, 1987, 1997)

