On the Moment (In)Determinacy of Probability Distributions

Jordan Stoyanov

Newcastle University, UK

e-mail: stoyanovj@gmail.com

St Petersburg Seminar in Probability 10 October 2014, 18:00

PLAN:

Discussion on recent works on probability distributions and their characterization as being unique (**M-determinate**) or non-unique (**M-indeterminate**) in terms of the moments.

- 1. Basics. Best known examples.
- 2. Briefly on Cramér's, Carleman's and Krein's conditions.
- 3. Hardy's condition.
- 4. Criteria based on the rate of growth of the moments.
- 5. Moment problem for Multivariate distributions.
- 6. Powers and products of r.v.s and their M-determinacy.
- 7. Open questions.

Standard Notations and Terminology

Basics: $\mathcal{M} = \text{all } X \sim F$, f, finite moments $m_k = \mathbf{E}[X^k]$, k = 1, 2, ...

 $\{m_k\}$ is the moment sequence of F and of X

X, or F is either **M-determinate**, unique with these moments (**M-det**) or it is **M-indet**, there are many with the same moments.

$$\begin{split} \text{supp}(\textit{F}) \colon & \left[0,1\right] \text{ (Hausdorff)}; \\ & \mathbb{R}^+ = \left[0,\infty\right) \text{ (Stieltjes)}; \\ & \mathbb{R}^1 = \left(-\infty,\infty\right) \text{ (Hamburger)}. \end{split}$$

Best known M-indet distributions?

Log-normal distribution: $Z \sim \mathcal{N}(0,1), X = e^Z \sim LogN(0,1)$

$$f(x) = \frac{1}{\sqrt{2\pi}} \frac{1}{x} \exp\left[-\frac{1}{2}(\ln x)^2\right], \ x > 0; \ f(x) = 0, \ x \le 0.$$

No m.g.f., heavy tail, $m_k = \mathbf{E}[X^k] = e^{k^2/2}, k \in \mathbb{N}$. X is M-indet.

Powers of Normal r.v.: $Z \sim \mathcal{N}(0,1)$; Z, Z^2 are M-det, Z^3 is M-indet.

Logarithmic skew normal: $Y_{\lambda} \sim LSN(\lambda)$, $g_{\lambda}(y) = \frac{1}{y}\varphi(\ln y)\Phi(\lambda \ln y)$, y > 0, or $Y_{\lambda} = e^{X_{\lambda}}$, $X_{\lambda} \sim SN(\lambda)$, $f_{\lambda}(x) = 2\varphi(x)\Phi(\lambda x)$, $x \in \mathbb{R}^1$ (Azzalini). L&S JAP 2009: All $LSN(\lambda)$, $\lambda \in \mathbb{R}^1$ are M-indet. What if $\lambda \to \pm \infty$?

Powers of Exp r.v.: $\xi \sim Exp(1)$, density $e^{-x}, x > 0$; ξ is M-det. Then: ξ^2 , heavy tail, $m_k = (2k)!$, M-det; ξ^3 , more heavy, $m_k = (3k)!$, M-indet.

Cramér: For a r.v. $X \sim F$ on \mathbb{R}^1 , let the m.g.f. $M(t) = \mathbf{E}[e^{tX}]$ exist, i.e. M(t) is well-defined for $t \in (-t_0, t_0)$, $t_0 > 0$ (**light tails**). Then:

• $X \in \mathcal{M}$ (finite all moments); • X, i.e. F, is M-det. If no m.g.f., **heavy tails**, either M-det, or M-indet. How heavy?

Carleman: Depending on the support, \mathbb{R}^1 or \mathbb{R}^+ ,

$$C = \sum_{k=1}^{\infty} \frac{1}{(m_{2k})^{1/2k}}, \quad C = \sum_{k=1}^{\infty} \frac{1}{(m_k)^{1/2k}}; \quad C = \infty \implies F \text{ is M-det.}$$

Krein: Assume density f > 0; $K[f] < \infty \Rightarrow F$ is M-indet. Here

$$\mathsf{K}[f] \equiv \int_{-\infty}^{\infty} \frac{-\ln f(y)}{1+y^2} \mathrm{d}y, \qquad \mathsf{K}[f] \equiv \int_{a}^{\infty} \frac{-\ln f(y^2)}{1+y^2} \mathrm{d}y, \ a \ge 0.$$

Remark: Converses to Carleman and Krein (A. Pakes, G.D. Lin) and a discrete version of Krein (H. Pedersen).

How does Carleman's condition imply M-uniqueness?

Carleman (1926), ..., Koosis (1979) use quasi-analytic functions ...

Idea: Zolotarev metric approch. Work by Klebanov et al. ~ 1982.

 $\mathcal{D} = \text{all d.f.s}$ (on the real line), metric, d(F, G) between $F, G \in \mathcal{D}$. Then:

- (a) d(F,G) is symmetric; (b) d(F,G) satisfies the triangle inequality;
- (c) $d(F,G) = 0 \iff F = G$.

Assume d(F,G) is the Lévy metric, or the Kolmogorov (uniform) metric.

Result: Let F and G have finite all moments and the first 2n coincide:

$$m_k(F) = m_k(G) = m_k, \ k = 1, 2, ..., 2n.$$
 Denote $C_n = \sum_{k=1}^n (m_{2k})^{-1/2k}$.

$$d(F,G) \le K_2 \frac{\log(1+C_{n-1})}{(C_{n-1})^{1/4}}$$
 (here $K_2 = K_2(m_1,m_2)$).

Corollary: If $C = \sum_{k=1}^{\infty} (m_{2k})^{-1/2k} = \infty$ (Carleman, (H)), then $C_n \to \infty$, as $n \to \infty$, and, see (c), $d(F, G) \to 0 \Rightarrow F = G$.

Stieltjes Class: Given $X \sim F$, $F \in \mathcal{M}$, f, M-indet.

$$\mathbf{S} = \mathbf{S}(f,h) = \{f_{\varepsilon}(x) = f(x)[1 + \varepsilon h(x)], \ x \in \mathbb{R}^1, \ \varepsilon \in [-1,1]\}.$$

Here h is a **perturbation function:** $|h(x)| \le 1$ for all $x \in \mathbb{R}^1$ and the product $f(x)h(x), x \in \mathbb{R}^1$, has **vanishing moments**,

$$\int x^k f(x)h(x) dx = 0, \ k = 0, 1, 2, \dots$$

 $L^2[f] = \text{Hilbert space}$, 'weight' f, $h \perp \text{all polynomials } \mathcal{P}$.

If h is proper, for any $\varepsilon \in [-1,1]$, f_ε is density. If $X_\varepsilon \sim F_\varepsilon$, f_ε , and

$$\mathbf{E}[X_{\varepsilon}^{k}] = \mathbf{E}[X^{k}], \ k = 1, 2, ...; \ \varepsilon \in [-1, 1]; \ X_{0} = X.$$

Remark: If F is M-det $\Rightarrow h = 0$ and **S** consists only of F, F' = f.

Index of dissimilarity in S: $D(f,h) = \int |h(x)|f(x)dx$, in [0,1].

"New" Criterion: G. Hardy (1917/1918). The Math. Messenger Statement (Hardy): r.v. X > 0, $X \sim F$. Suppose \sqrt{X} has m.g.f.:

 $\mathbf{E}\big[\mathrm{e}^{t\sqrt{X}}\big]<\infty \ \ \text{for} \ \ t\in \big[0,t_0\big), \ t_0>0 \qquad \text{(H)=Hardy's condition; } \ \tfrac{1}{2}\text{-Cram\'er}.$

Then $X \in \mathcal{M}$ and X is M-det: all moments $m_k = \mathbf{E}[X^k], k = 1, 2, ...$ are finite and F is the only d.f. with the moment sequence $\{m_k\}$.

Proofs: (a) Original, Titchmarch's book. (b) Our S&L TPA (2012). Condition (H) $\iff m_k(X) \le c^k(2k)! \Rightarrow C[\{m_k\}] = \infty \Rightarrow X$ is M-det.

Notice: The condition is on \sqrt{X} but the conclusion is for X.

Corollary: If a r.v. X > 0 has a m.g.f., then its square X^2 is M-det.

Result: In (H), $\frac{1}{2}$ is the best possible constant for X to be M-det. For each $\rho \in (0, \frac{1}{2})$ there is a r.v. Y with $\mathbf{E}[e^{tY^{\rho}}] < \infty$ s.t. Y is M-indet.

Comment: Hardy's condition is sufficient but not necessary for M-det.

Rate of growth of the moments and (in)determinacy

Stieltjes: r.v. $X \in \mathbb{R}_+$, moments $m_k = \mathbf{E}[X^k]$, k = 1, 2, ... Define:

$$\Delta_k = \frac{m_{k+1}}{m_k}$$
. It increases in k and let $\Delta_k = \mathcal{O}((k+1)^{\gamma})$ as $k \to \infty$.

The number $\gamma = \text{rate of growth of the moments}$ of X.

Statement 1: If $\gamma \le 2$, then *X* is M-det.

Statement 2: $\gamma = 2$ is the best possible constant for which X is M-det.

Equiv: If $\Delta_k = \mathcal{O}((k+1)^{2+\delta}), \ \delta > 0$, there is a r.v. Y which is M-indet.

Statement 3: If $\gamma > 2$, we add one condition, Lin's condition, and show that X is M-indet.

Hamburger: Similar statements hold for r.v.s on \mathbb{R}^1 , with $m_{2(k+1)}/m_{2k}$...

Use Hardy's and Rate of Growth: new proofs of known results:

Exp Example: $\xi \sim Exp(1)$, density e^{-x} , x > 0, m.g.f.

Result: ξ^r is M-det for $0 \le r \le 2$ and M-indet for r > 2. By Krein-Lin.

Now, if $X = \xi^2$, $\sqrt{X} = \xi$ is Cramér $\Rightarrow X = (\sqrt{X})^2$ is M-det, by Hardy.

Similarly, $X^{r/2}$ is Cramér for $r \in (0,2] \Rightarrow X^r$ is M-det for $r \in (0,2]$.

Write $\mathbf{E}[\xi^r]$ via $\Gamma(\cdot)$, rate growth $\gamma \le 2$ for $r \in (0,2] \Rightarrow \xi^r$ is M-det

For $X = \xi^3$, $m_k = \mathbf{E}[X^k] = (3k)!$, fast \nearrow . Rate $\gamma > 2$. Density of ξ^3 is $g(x) = \frac{1}{3} x^{-2/3} e^{-x^{1/3}}$; it satisfies Lin's condition $\Rightarrow \xi^3$ is M-indet.

Stieltjes class: use g(x) and perturbation $h(x) = \sin(\sqrt{3}x^{1/3} - \pi/3)$

 $\mathbf{S}(g,h) = \{g_{\varepsilon}(x) = g(x)[1 + \varepsilon h(x)], \ x > 0, \ \varepsilon \in [-1,1]\}.$

Similarly for any r > 2 by using properties of $\Gamma(\cdot)$.

Normal Example: $Z \sim \mathcal{N}(0,1), Z^2, Z^3, Z^4, |Z|^r$.

Z is Cramér $\Rightarrow Z$ is M-det. |Z| is Cramér $\Rightarrow Z^2$ is M-det, by Hardy. However, $Z^2 = \chi_1^2$ (light tail) is also Cramér $\Rightarrow Z^4$ is M-det, by Hardy.

Comment: To apply twice Cramér, and twice Hardy, is the shortest way to prove that power 4 of the normal r.v. Z, Z^4 is M-det.

General Result: $|Z|^r$ is M-det for $0 \le r \le 4$, and M-indet for r > 4.

- 1. Proof by CB, AP 1988. Explicit families, Stieltjes classes.
- 2. Use Krein for r > 4 and Krein and Lin condition for $0 \le r \le 4$.
- 3. Use rate of growth of moments conditions.

Case: Z^n , n = 3, 5, ..., on \mathbb{R}^1 , $C < \infty$. By Krein \Rightarrow all are M-indet. Same conclusion by using our rate growth result.

Strange Fact: $X = Z^3$ is M-indet, however $|X| = |Z|^3$ is M-det. Why? **Hint:** X on \mathbb{R}^1 and |X| on \mathbb{R}_+ have different rate of growth of moments.

Multidimensional Moment Problem: Work Going ... [full of traps]

Picture Today: Not too much done for multivariate distributions ... analytic: Petersen (1982), Berg-Thill (1991), Schmüdgen-Putinar (2008) probability/statistics: K&S (2011–2013) + a few references therein.

Random vector $X = (X_1, ..., X_n) \in \mathbb{R}^n$ with arbitrary distribution F. Finite are all multi-indexed moments

$$m_{k_1,\ldots,k_n} = \mathbf{E}[X_1^{k_1} \cdots X_n^{k_n}], \ k_j \ge 0, \ k_1 + \ldots + k_n = k, \ k = 1,2,\ldots$$

Same kind of questions and terminology as in dim. 1.

Tools: Cramér, *n*-dim. m.g.f.; Carleman, next slide; but ... **no Krein**.

Carleman Condition in Dimension n

We need the numbers M_{2k} and M_k , for F on \mathbb{R}^n and \mathbb{R}^n_+ :

$$M_{2k} = m_{2k,0,...,0} + m_{0,2k,0...,0} + ... + m_{0,0,...,0,2k}$$
 (Hamburger),
 $M_k = m_{k,0,...,0} + m_{0,k,0,...,0} + ... + m_{0,0,...,0,k}$ (Stieltjes).

Now the n-Carleman quantity is defined, respectively, as follows:

$$C = \sum_{k=1}^{\infty} \frac{1}{(M_{2k})^{1/2k}}$$
 and $C = \sum_{k=1}^{\infty} \frac{1}{(M_k)^{1/2k}}$.

 $C = \infty$ \Rightarrow the vector X, or equiv. its n-dimensional d.f. F, is M-det.

If n-Carleman holds for X, then 1-Carleman holds for each X_j . Converse not in general true. There are c.e.s; related to Müntz theorem.

Known Result: Given $X \sim F$ in \mathbb{R}^n , marginals F_1, \ldots, F_n .

- (a) If each of F_1, \ldots, F_n is M-det, then the *n*-dim. d.f. F is M-det.
- (b) If X_1, \ldots, X_n are independent, and F is M-det, then each F_j is M-det.

Comments:

- In (a) we do not say in which way F_j are M-det.
- In (b), $F = F_1 \cdots F_n$, this is used for the converse.
- There are M-det *n*-dim. d.f.s with M-indet marginals. [Illustrate!] The last claim is strange, counter-intuitive, but true. Quite analytic.

New Result: Again, $X \sim F$ in \mathbb{R}^n , marginals F_1, \ldots, F_n with densities f_1, \ldots, f_n which are positive and smooth. Assume that for each j, Krein condition (= ∞) and Lin condition hold for f_j , $j = 1, \ldots, n$. Then for any indep/dep structure of X, the n-dim. d.f. F is M-det.

Recent Result: SL, TPA (2012).

Given is a random vector $X \sim F$ with arbitrary distribution in \mathbb{R}^n and finite all multi-indexed moments $m_{k_1,\dots,k_n} = \mathbf{E}[X_1^{k_1} \cdots X_n^{k_n}],\dots$ Consider the length of $X: ||X|| = \sqrt{||X||^2} = \sqrt{X_1^2 + \dots + X_n^2}$.

Suppose: 1-dim. non-neg. r.v. ||X|| is Cramér: $\mathbf{E}[e^{c||X||}] < \infty$, c > 0. Then the *n*-dim. Hamburger moment problem for *F* has a unique

solution. Or, we say, the random vector $X \in \mathbb{R}^n$ is M-det, also that F is the only n-dim. d.f. with the set of multi-indexed moments $\{m_{k_1,...,k_n}\}$.

Proof: We follow two steps.

Step 1: Cramér for $||X|| \Rightarrow ||X||^2$ is M-det, by Hardy (Stieltjes case).

Step 2: Amazing statement by Putinar-Schmüdgen: If $||X||^2$ is M-det (1-dim. Stieltjes), then F is M-det (n-dim. Hamburger).

Products and Powers of Random Variables: ξ and $\mathbb{1}$ ξ_1, \dots, ξ_n

When are $Y_n = \xi_1 \cdots \xi_n$ and $X_n = \xi^n$ M-det, and when M-indet? Same?

Stieltjes case: $\xi > 0$, moments of X_n dominate those of Y_n ; 'expect': M-det of $X_n \Rightarrow$ M-det of Y_n , M-indet of $Y_n \Rightarrow$ M-indet of $X_n \Rightarrow$ M-indet of $X_$

Generalized gamma-distributions: GG(a,b,c), a,b,c>0. Density $f(x) = Kx^{a-1}e^{-bx^c}$, x>0. Here: Exp, gamma, half-normal, χ^2 , half-Bessel.

Result 1: $\xi \sim Exp(1)$. Then Y_2 is M-det, $Y_n = \xi_1 \cdots \xi_n$, $n = 3, 4, \ldots$, are all M-indet. Recall ξ^2 is M-det, ξ^n for $n = 3, 4, \ldots$, are all M-indet.

Result 2: $Z \sim \mathcal{N}$, |Z|, half-normal. Product of 2, 3 or 4 \perp half-normals is M-det, while product of 5 or more \perp half-normals is M-indet.

Result 3: Half-logistic, $2e^{-x}/(1+e^{-x})^2$, x > 0. Product of 3 or more half-logistic r.v.s is M-indet.

Result 4: Product of 3 or more χ^2 r.v.s is M-indet.

Hamburger case: r.v. ξ on \mathbb{R}^1 and \mathbb{I} copies ξ_1, \ldots, ξ_n

Result 1: $Z \sim \mathcal{N}$. Then, Z_1Z_2 is M-det, while $Y_n = Z_1 \cdots Z_n$ for $n = 3, 4, \ldots$, are all M-indet. Recall, Z^2 is M-det, Z^3 is M-indet, Z^4 is M-det, any next power, $5, 6, \ldots$, is M-indet. Compare Z^4 and $Z_1 \cdots Z_4$.

Result 2: The product of two \bot Laplace r.v. $(\frac{1}{2}e^{-|x|})$ is M-indet. (Above: product of two Exp is M-det.) Square of Laplace r.v. is M-det.

Result 3: Logistic: $1/(2 + e^x + e^{-x})$. Products of 3 or more is M-indet.

Result 4: Product of Laplace r.v. and logistic r.v. is M-indet.

Result 5: Symmetric X on \mathbb{R}^1 and Y > 0, T = XY. If X or Y is M-indet, T is M-indet. If X and Y have rates of growth of moments a and b, and $a + 2b \le 2$, T is M-det. If a + 2b > 2 + cond get M-indet T.

Result 6: N = r.v. in \mathbb{N}_0 , $\tilde{X} = \xi^N$, $\tilde{Y} = \xi_1 \cdots \xi_N$. All r.v.s \perp .

We have conditions for M-det and M-indet. E.g., if $N \sim \text{Poisson}$, $Z \sim \mathcal{N}$, both \tilde{X} and \tilde{Y} are M-indet.

- **Q1:** How to construct discr. distr. with moments $\{(3k)!, k = 1, 2, ...\}$?
- **Q2:** How to define Krein's condition in dimension 2 or more? $\left(K[f] = \int \frac{-\ln f(x)}{1+x^2} dx < \infty \text{ or } -\ln f(x^2)...\right)$
- **Q3:** $X \sim F, F' = f$, finite moments, inf.div., M-indet. Stieltjes class $\mathbf{S}(f,h) = \{f_{\varepsilon} = f(1+\varepsilon h), \ \varepsilon \in [-1,1]\}$, any perturbation h. **Conjecture:** f_{ε} with $\varepsilon \neq 0$ is not inf.div.
- **Q4:** Continuous r.v. $X \Rightarrow$ discrete (rounded) r.v. $\lfloor X \rfloor$ or $\lfloor X + \frac{1}{2} \rfloor$. **Conjecture:** X and $\lfloor X \rfloor$ share the same M-det/indet property.
- **Q5:** $X \sim F$ on \mathbb{R}^+ , $\mathbf{E}[X^k] = e^{k^2/2}$, $k \in \mathbb{N}$ (LogN(0,1) moments!)

 Conjecture: If F is unimodal, F is unique and F = LogN(0,1).
- **Q6:** Conjecture: If X is a positive r.v., then for any n, the power X^n and the product $X_1 \cdots X_n$ share the same determinacy property. If X is on \mathbb{R}^1 , then X^{2n+1} and $X_1 \cdots X_{2n+1}$ share the same determinacy.

References: Books (ST, A, BC)

```
Hardy, GH (1917/1918): The Mathematical Messenger 46/47
Berg, C (1988): Ann. Probab. 16 910-913
Pedersen, HL (1988): J. Approx. Theory 95 90–100
Lin, GD (1997): Statist. Probab. Letters 35 85–90
De Jeu, M (2003): Ann. Probab. 31 1205–1227
Putinar, M, Schmüdgen, K (2008): Indiana Univ. Math. J. 57 2931–68
Kleiber, C, Stoyanov, J (2011/2013): J. Multivar. Analysis 113 7–18
Stoyanov, J, Lin, GD (2012): Theory Probab. Appl. 57, no. 4, 811–820
Lin, GD, Stoyanov, J (2013): JOTP doi 10.1007/s10959-014-0546-z
Stoyanov, J, Lin, GD, DasGupta, A (2014) JSPI 154 166-177
Lin, GD, Stoyanov, J (2014): arXiv: 1406.1654v1 [mathPR] 6 Jun 2014
Stoyanov, J (2013): Counterexamples in Probability. 3rd edn.
     Dover Publications, New York. (1st ed, 2nd ed: Wiley 1987, 1997)
```