APPROXIMATION OF MINIMUM WEIGHT k-SIZE CYCLE COVER PROBLEM

 $\begin{array}{c} {\rm Michael~Khachay^1} \\ {\it mkhachay@imm.uran.ru} \end{array}$

¹Krasovsky Institute of Mathematics and Mechanics S.Kovalevskoy, 16, Ekaterinburg, 620990, Russia

> PreMoLab, Moscow October 15, 2014

- For a given natural k, a problem of k collaborating salesmen sharing the same set of cities (nodes of graph) to serve is studied.
- We call it Minimum Weight k-Size Cycle Cover Problem (Min-k-SCCP).
- Related problems
 - Min-1-SCCP is Travelling Salesman Problem (TSP)
 - Vertex-Disjoint Cycle Cover Problem
 - k-Peripatetic Salesmen Problem
 - Min-L-CCP
- Min-k-SCCP can be considered as a special case of Vehicle Routing Problem (VRP)

- For a given natural k, a problem of k collaborating salesmen sharing the same set of cities (nodes of graph) to serve is studied.
- We call it Minimum Weight k-Size Cycle Cover Problem (Min-k-SCCP).
- Related problems
 - Min-1-SCCP is Travelling Salesman Problem (TSP)
 - Vertex-Disjoint Cycle Cover Problem
 - k-Peripatetic Salesmen Problem
 - Min-L-CCP
- Min-k-SCCP can be considered as a special case of Vehicle Routing Problem (VRP)

- For a given natural k, a problem of k collaborating salesmen sharing the same set of cities (nodes of graph) to serve is studied.
- We call it Minimum Weight k-Size Cycle Cover Problem (Min-k-SCCP).
- Related problems
 - Min-1-SCCP is Travelling Salesman Problem (TSP)
 - Vertex-Disjoint Cycle Cover Problem
 - k-Peripatetic Salesmen Problem
 - \bullet Min-L-CCP
- Min-k-SCCP can be considered as a special case of Vehicle Routing Problem (VRP)

- For a given natural k, a problem of k collaborating salesmen sharing the same set of cities (nodes of graph) to serve is studied.
- We call it Minimum Weight k-Size Cycle Cover Problem (Min-k-SCCP).
- Related problems
 - Min-1-SCCP is Travelling Salesman Problem (TSP)
 - Vertex-Disjoint Cycle Cover Problem
 - k-Peripatetic Salesmen Problem
 - Min-L-CCP
- Min-k-SCCP can be considered as a special case of Vehicle Routing Problem (VRP)

Abstract — Motivation

• Nuclear Power Plant dismantling problem

Abstract — Motivation

• Nuclear Power Plant dismantling problem

• high-precision metal shape cutting problem

Abstract - ctd.

Results

- ullet Min-k-SCCP is strongly NP-hard and hardly approximable in the general case
- 2 Metric and Euclidean cases are intractable as well
- **3** 2-approximation algorithm for Metric Min-k-SCCP is proposed
- Polynomial-time approximation scheme (PTAS) for Min-2-SCCP on the plane is constructed

Contents

- Problem statement
- 2 Complexity and Approximability
- Metric Min-k-SCCP
 - Preliminary results
 - Algorithm
- 4 PTAS for Euclidean Min-2-SCCP on the plane
 - Preprocessing
 - PTAS sketch
 - Structure Theorem
 - Dynamic Programming
 - Derandomization
- 6 Conslusion

Definitions and Notation

Standard notation is used

- \bullet \mathbb{R} field of real numbers
- N field of rational numbers
- \mathbb{N}_m integer segment $\{1, ..., m\}$,
- \mathbb{N}_m^0 segment $\{0,...,m\}$.
- G = (V, E, w) is a simple complete weighted (di)graph with loops, edge-weight function $w : E \to \mathbb{R}$

Minimum Weight k-Size Cycle Cover Problem (Min-k-SCCP)

Input: graph G = (V, E, w).

Find: a minimum-cost collection $C = C_1, ..., C_k$ of vertex-disjoint cycles

such that $\bigcup_{i \in \mathbb{N}_k} V(C_i) = V$.

4D > 4A > 4B > 4B > B 990

Minimum Weight k-Size Cycle Cover Problem (Min-k-SCCP)

Input: graph G = (V, E, w).

 $i \in \mathbb{N}_k$

Find: a minimum-cost collection $C = C_1, ..., C_k$ of vertex-disjoint cycles such that $\bigcup V(C_i) = V$.

min
$$\sum_{i=1}^{k} W(C_i) \equiv \sum_{i=1}^{k} \sum_{e \in E(C_i)} w(e)$$
s.t.
$$C_1, \dots, C_k \text{ are cycles in } G$$

$$C_i \cap C_j = \emptyset$$

$$V(C_1) \cup \dots \cup V(C_k) = V$$

Metric and Euclidean Min-k-SCCP

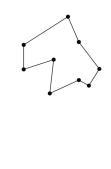
Metric Min-k-SCCP

- $w_{ij} \geqslant 0$
- $\bullet \ w_{ii} = 0$
- $w_{ij} = w_{ji}$
- $w_{ij} + w_{jk} \geqslant w_{ik} \ (\{i, j, k\})$

Euclidean Min-k-SCCP

- For some d > 1, $V = \{v_1, \ldots, v_n\} \subset \mathbb{R}^d$
- $w_{ij} = ||v_i v_j||_2$

Instance of Euclidean Min-2-SCCP



Known facts

- (Karp, 1972) TSP is strongly NP-hard
- (Sahni and Gonzales, 1976) TSP can not be approximated within $O(2^n)$ (unless P=NP)
- (Papadimitriou, 1977) Euclidean TSP is NP-hard

Theorem 1

For any $k \geqslant 1$, Min-k-SCCP is strongly NP-hard.

Theorem 1

For any $k \geqslant 1$, Min-k-SCCP is strongly NP-hard.

Proof idea

- Reduce TSP to Min-k-SCCP by cloning the instance
- Spread them apart
- Show that any optimal solution of Min-k-SCCP consists of cheapest Hamiltonian cycles for the initial TSP

Theorem 1

For any $k \geqslant 1$, Min-k-SCCP is strongly NP-hard.

Proof idea

- Reduce TSP to Min-k-SCCP by cloning the instance
- Spread them apart
- Show that any optimal solution of Min-k-SCCP consists of cheapest Hamiltonian cycles for the initial TSP

Corollary

- Min-k-SCCP also can not be approximated within $O(2^n)$ (unless P = NP)
- \bullet Metric Min-k-SCCP and Euclidean Min-k-SCCP are NP-hard as well

- k-forest is an acyclic graph with k connected components
- For any k-forest F, weight (cost)

$$W(F) = \sum_{e \in E(F)} w(e)$$

• k-Minimum Spanning Forest (k-MSF) Problem

Kruskal's algorithm for k-MSF

- Start from the empty n-forest F_0 .
- ② For each $i \in \mathbb{N}_{n-k}$ add the edge

$$e_i = \arg\min\{w(e) \colon F_{i-1} \cup \{e\} \text{ remains acyclic}\}$$

to the forest F_{i-1} .

3 Output k-forest F^* .

Kruskal's algorithm for k-MSF

- Start from the empty *n*-forest F_0 .
- ② For each $i \in \mathbb{N}_{n-k}$ add the edge

$$e_i = \arg\min\{w(e) \colon F_{i-1} \cup \{e\} \text{ remains acyclic}\}\$$

to the forest F_{i-1} .

3 Output k-forest F^* .

Theorem 2

 F^* is k-Minimum Spanning Forest.

2-approximation algorithm for Metric Min-k-SCCP

Following to the scheme of well-known 2-approx. algorithm for Metric TSP.

Wlog. assume k < n.

Algorithm:

- lacktriangle Build a k-MSF F
- For any non-trivial connected component, find a Eulerian cycle
- Transform them into Hamiltonian cycles
- Output collection of these cycles adorned by some number of isolated vertices

Assertion

Approximation ratio:

$$2(1-2/n) \leqslant \frac{APP}{OPT} \leqslant 2(1-1/n)$$

Running-time:

$$O(n^2 \log n)$$
.

Proof sketch

Consider optimal cycle cover \mathcal{C} (with weight OPT).

Removing the most heavy edge from any non-empty cycle transform it into some spanning forest $F(\mathcal{C})$ with cost SF.

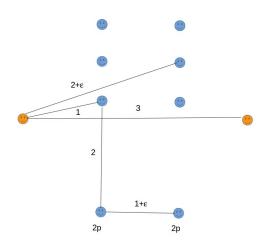
Then

$$MSF \leqslant SF \leqslant OPT(1-1/n),$$

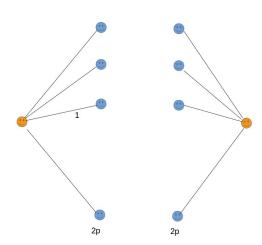
where

$$APP \leq 2 \cdot MSF \leq 2(1 - 1/n)OPT.$$

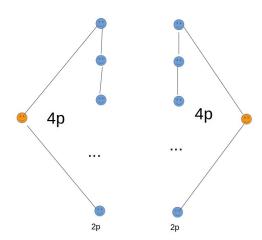
Lower bound - instance



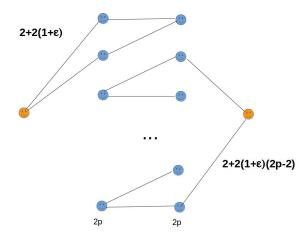
Lower bound - 2-forest



Lower bound - approximation



Lower bound - better approximation



- number of nodes n = 4p + 2
- APP = 8p
- $OPT \le 4p + 2 + 2\varepsilon(2p 1)$
- \bullet for approximation ratio r we have

$$r \ge \sup_{\varepsilon \in (0,1)} \frac{8p}{4p+2+2\varepsilon(2p-1)} = \frac{4p}{2p+1} = 2(1-2/n)$$

PTAS for Euclidean Min-2-SCCP on the plane

Definition

For a combinatorial optimization problem, Polynomial-Time Approximation Scheme (PTAS) is a collection of algorithms such that for any fixed c > 1 there is an algorithm finding a (1+1/c)-approximate solution in a polynomial time depending on c.

Instance preprocessing

For an arbitrary instance of Min-2-SCCP, there exists one of the following alternatives (each of them can be verified in polynomial time)

- The instance in question can be decomposed into 2 independent TSP instances;
- ② Inter-node distance can be overestimated using some function that depends on OPT linearly.

Young's inequality

Consider a set S of diameter D in d-dimensional Euclidean space, let R be a radius of the smallest containing sphere. Then

$$\frac{1}{2}D \leqslant R \leqslant \left(\frac{d}{2d+2}\right)^{\frac{1}{2}}D.$$

In particular, in the plane:

$$\frac{1}{2}D \leqslant R \leqslant \frac{\sqrt{3}}{3}D. \tag{1}$$

Instance preprocessing - ctd.

• Construct 2-MSF consisting of trees T_1 and T_2 .

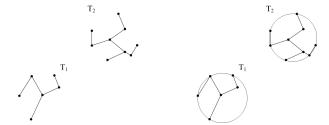
• let D_1 , D_2 be diameters of T_1 and T_2 , and R_1 , R_2 be radia of the smallest circles $B(T_1)$ and $B(T_2)$ containing the trees T_1 and T_2 . Denote $D = \max\{D_1, D_2\}$ and $R = \max\{R_1, R_2\}$.

• Construct 2-MSF consisting of trees T_1 and T_2 .

• let D_1 , D_2 be diameters of T_1 and T_2 , and R_1 , R_2 be radia of the smallest circles $B(T_1)$ and $B(T_2)$ containing the trees T_1 and T_2 . Denote $D = \max\{D_1, D_2\}$ and $R = \max\{R_1, R_2\}$.

Instance preprocessing - ctd.

• Construct 2-MSF consisting of trees T_1 and T_2 .



• let D_1 , D_2 be diameters of T_1 and T_2 , and R_1 , R_2 be radia of the smallest circles $B(T_1)$ and $B(T_2)$ containing the trees T_1 and T_2 . Denote $D = \max\{D_1, D_2\}$ and $R = \max\{R_1, R_2\}$.

Problem decomposition

Define $\rho(T_1, T_2)$ as a distance between centers of circles $B(T_1)$ and $B(T_2)$.

Assertion

If $\rho(T_1, T_2) > 5R$ then the considered instance Min-2-SCCP can be decomposed into two TSP instances for $G(T_1)$ and $G(T_2)$.

Problem decomposition

Define $\rho(T_1, T_2)$ as a distance between centers of circles $B(T_1)$ and $B(T_2)$.

Assertion

If $\rho(T_1, T_2) > 5R$ then the considered instance Min-2-SCCP can be decomposed into two TSP instances for $G(T_1)$ and $G(T_2)$.

Proof sketch

Suppose, on the contrary, that there is an optimal 2-SCC $\mathcal{C} = \{C_1, C_2\}$ such that $C_1 \cap T_1 \neq \emptyset$ and $C_1 \cap T_2 \neq \emptyset$.

Define $\rho(T_1, T_2)$ as a distance between centers of circles $B(T_1)$ and $B(T_2)$.

Assertion

If $\rho(T_1, T_2) > 5R$ then the considered instance Min-2-SCCP can be decomposed into two TSP instances for $G(T_1)$ and $G(T_2)$.

Proof sketch

Suppose, on the contrary, that there is an optimal 2-SCC $\mathcal{C} = \{C_1, C_2\}$ such that $C_1 \cap T_1 \neq \emptyset$ and $C_1 \cap T_2 \neq \emptyset$.

Define $\rho(T_1, T_2)$ as a distance between centers of circles $B(T_1)$ and $B(T_2)$.

Assertion

If $\rho(T_1, T_2) > 5R$ then the considered instance Min-2-SCCP can be decomposed into two TSP instances for $G(T_1)$ and $G(T_2)$.

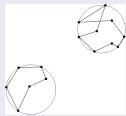
Proof sketch

Suppose, on the contrary, that there is an optimal 2-SCC $C = \{C_1, C_2\}$ such that $C_1 \cap T_1 \neq \emptyset$ and $C_1 \cap T_2 \neq \emptyset$.

Then C_1 contains at least two edges, spanning T_1 and T_2

Proof (ctd.)

- \bullet By the condition, the weight of each of them is greater than 3R
- Remove them and close the cycles inside $B(T_1)$ and $B(T_2)$



• Obtain the lighter 2-SCC

Statement

If $\rho(T_1, T_2) \leq 5R$ then the maximum inter-node distance D(G) for the graph G is no more than $\frac{7\sqrt{3}}{3}OPT$.

Statement

If $\rho(T_1, T_2) \leq 5R$ then the maximum inter-node distance D(G) for the graph G is no more than $\frac{7\sqrt{3}}{3}OPT$.

Proof sketch

- In our case $D(G) \leq 7R$
- Due to Young's inequality and $D \leq MSF \leq OPT$ we have

$$R \leqslant \frac{\sqrt{3}}{3}D \leqslant \frac{\sqrt{3}}{3} \cdot OPT,$$

• i.e. $D(G) \leqslant \frac{7\sqrt{3}}{3} \cdot OPT$.

Statement

If $\rho(T_1, T_2) \leq 5R$ then the maximum inter-node distance D(G) for the graph G is no more than $\frac{7\sqrt{3}}{3}OPT$.

Proof sketch

- In our case $D(G) \leq 7R$
- Due to Young's inequality and $D \leq MSF \leq OPT$ we have

$$R \leqslant \frac{\sqrt{3}}{3}D \leqslant \frac{\sqrt{3}}{3} \cdot OPT,$$

• i.e. $D(G) \leqslant \frac{7\sqrt{3}}{2} \cdot OPT$.

In this case Min-2-SCCP instance can be enclosed into some axis-aligned square S of size $7/\sqrt{3} \cdot OPT$

Rounding

Definition

Instance of Min-2-SCCP is called rounded if

- every vertex of the graph G has integral coordinates $x_i, y_i \in \mathbb{N}_{O(n)}^0$
- for any edge $e, w(e) \ge 4$

Lemma 3

PTAS for rounded Min-2-SCCP implies PTAS for Min-2-SCCP (in the general case)

- partition the surrounding square by axis-alined lines with step of L/(2nc)
- move any node to nearest line-crossing point; inter-node distance change is bounded by L/(nc); cycle cover weight change bound is L/c
- shift the origin to left-bottom corner of the square; by scaling coordinates by 8nc/L obtain a 4-step integer grid

- partition the surrounding square by axis-alined lines with step of L/(2nc)
- move any node to nearest line-crossing point; inter-node distance change is bounded by L/(nc); cycle cover weight change bound is L/c
- shift the origin to left-bottom corner of the square; by scaling coordinates by 8nc/L obtain a 4-step integer grid

- partition the surrounding square by axis-alined lines with step of L/(2nc)
- move any node to nearest line-crossing point; inter-node distance change is bounded by L/(nc); cycle cover weight change bound is L/c
- shift the origin to left-bottom corner of the square; by scaling coordinates by 8nc/L obtain a 4-step integer grid

Rounding: proof sketch - ctd.

• for weights W and W' of any corresponding cycle covers in the initial and the rounded instances

• For optimum values OPT and OPT' and weights W and W' of the

$$\frac{8nc}{L}\Big(W-\frac{L}{c}\Big)\leqslant W'\leqslant \frac{8nc}{L}\Big(W+\frac{L}{c}\Big)$$

$$OPT' \leqslant W' \leqslant \left(1 + \frac{1}{c}\right) OPT' \text{ and } \frac{8nc}{L} \left(OPT - \frac{L}{c}\right) \leqslant OPT' \leqslant \frac{8nc}{L} \left(OPT + \frac{L}{c}\right)$$

• Then.

$$\frac{8nc}{L}\left(W-\frac{L}{c}\right)\leqslant W'\leqslant \left(1+\frac{1}{c}\right)OPT'\leqslant \left(1+\frac{1}{c}\right)\frac{8nc}{L}\left(OPT+\frac{L}{c}\right),$$

• Therefore.

$$W - \frac{L}{c} \leqslant \left(1 + \frac{1}{c}\right) \left(OPT + \frac{L}{c}\right)$$

$$OPT \leq W \leq \left(\frac{7\sqrt{3}}{3c^2} + \frac{17\sqrt{3}}{3c} + 1\right)OPT$$

• for weights W and W' of any corresponding cycle covers in the initial and the rounded instances

ullet For optimum values OPT and OPT' and weights W and W' of the

$$\frac{8nc}{L}\Big(W-\frac{L}{c}\Big)\leqslant W'\leqslant \frac{8nc}{L}\Big(W+\frac{L}{c}\Big)$$

approximate solutions

$$OPT' \leqslant W' \leqslant \left(1 + \frac{1}{c}\right)OPT'$$
 and $\frac{8nc}{L}\left(OPT - \frac{L}{c}\right) \leqslant OPT' \leqslant \frac{8nc}{L}\left(OPT + \frac{L}{c}\right)$,

• Then,

$$\frac{8nc}{L}\Big(W-\frac{L}{c}\Big)\leqslant W'\leqslant \Big(1+\frac{1}{c}\Big)\,OPT'\leqslant \Big(1+\frac{1}{c}\Big)\frac{8nc}{L}\Big(OPT+\frac{L}{c}\Big),$$

Therefore.

$$W - \frac{L}{c} \leqslant \left(1 + \frac{1}{c}\right) \left(OPT + \frac{L}{c}\right)$$

$$OPT \leqslant W \leqslant \left(\frac{7\sqrt{3}}{3c^2} + \frac{17\sqrt{3}}{3c} + 1\right)OPT$$

ullet for weights W and W' of any corresponding cycle covers in the initial and the rounded instances

ullet For optimum values OPT and OPT' and weights W and W' of the

$$\frac{8nc}{L}\Big(W-\frac{L}{c}\Big)\leqslant W'\leqslant \frac{8nc}{L}\Big(W+\frac{L}{c}\Big)$$

approximate solutions 8nc(a-b) = 8nc(a-b) = 8nc(a-b)

$$OPT' \leqslant W' \leqslant \left(1 + \frac{1}{c}\right)OPT'$$
 and $\frac{8nc}{L}\left(OPT - \frac{L}{c}\right) \leqslant OPT' \leqslant \frac{8nc}{L}\left(OPT + \frac{L}{c}\right)$,

• Then,

$$\frac{8nc}{L} \Big(W - \frac{L}{c} \Big) \leqslant W' \leqslant \Big(1 + \frac{1}{c} \Big) \, OPT' \leqslant \Big(1 + \frac{1}{c} \Big) \frac{8nc}{L} \Big(OPT + \frac{L}{c} \Big),$$

• Therefore,

$$W - \frac{L}{c} \leqslant \left(1 + \frac{1}{c}\right) \left(OPT + \frac{L}{c}\right)$$

$$OPT \leqslant W \leqslant \left(\frac{7\sqrt{3}}{3c^2} + \frac{17\sqrt{3}}{3c} + 1\right)OPT$$

Rounding: proof sketch - ctd.

• for weights W and W' of any corresponding cycle covers in the initial and the rounded instances

ullet For optimum values OPT and OPT' and weights W and W' of the

$$\frac{8nc}{L}\left(W - \frac{L}{c}\right) \leqslant W' \leqslant \frac{8nc}{L}\left(W + \frac{L}{c}\right)$$

approximate solutions

$$OPT' \leqslant W' \leqslant \left(1 + \frac{1}{c}\right)OPT'$$
 and $\frac{8nc}{L}\left(OPT - \frac{L}{c}\right) \leqslant OPT' \leqslant \frac{8nc}{L}\left(OPT + \frac{L}{c}\right)$,

• Then,

$$\frac{8nc}{L}\left(W - \frac{L}{c}\right) \leqslant W' \leqslant \left(1 + \frac{1}{c}\right)OPT' \leqslant \left(1 + \frac{1}{c}\right)\frac{8nc}{L}\left(OPT + \frac{L}{c}\right),$$

• Therefore,

$$W - \frac{L}{c} \leqslant \left(1 + \frac{1}{c}\right) \left(OPT + \frac{L}{c}\right)$$

$$OPT \leqslant W \leqslant \left(\frac{7\sqrt{3}}{3c^2} + \frac{17\sqrt{3}}{3c} + 1\right)OPT$$

Rounding: proof sketch - ctd.

ullet for weights W and W' of any corresponding cycle covers in the initial and the rounded instances

ullet For optimum values OPT and OPT' and weights W and W' of the

$$\frac{8nc}{L}\left(W - \frac{L}{c}\right) \leqslant W' \leqslant \frac{8nc}{L}\left(W + \frac{L}{c}\right)$$

approximate solutions 8nc(a-b) = 8nc(a-b)

$$OPT' \leqslant W' \leqslant \left(1 + \frac{1}{c}\right)OPT' \text{ and } \frac{8nc}{L}\left(OPT - \frac{L}{c}\right) \leqslant OPT' \leqslant \frac{8nc}{L}\left(OPT + \frac{L}{c}\right),$$

• Then,

$$\frac{8nc}{L}\Big(W-\frac{L}{c}\Big)\leqslant W'\leqslant \Big(1+\frac{1}{c}\Big)\,OPT'\leqslant \Big(1+\frac{1}{c}\Big)\frac{8nc}{L}\Big(OPT+\frac{L}{c}\Big),$$

• Therefore,

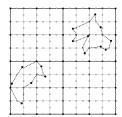
$$W - \frac{L}{c} \leqslant \left(1 + \frac{1}{c}\right) \left(OPT + \frac{L}{c}\right)$$

$$OPT \leqslant W \leqslant \left(\frac{7\sqrt{3}}{3c^2} + \frac{17\sqrt{3}}{3c} + 1\right)OPT.$$

Main idea: construct PTAS for rounded instances

Randomized partitioning of the square S into smaller subsquares and subsequent search for minimum 2-SCC of special kind

- 1) every inter-node segment of its cycles is piece-wise linear and intersects all squares' borders at special points (portals) only;
- 2) portals number and locations together with maximum number of intersections (for each border) are defined in advance and depend on accuracy parameter c;



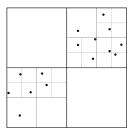
Quad-trees for rounded Min-2-SCCP

Set up a regular 1-step axis-aligned grid on the square S with side-length of L = O(n).



We are using the concept of quad-tree

Root is the square S. For every square (including the root), make a partition of the square into 4 child subsquares. Repeat it until all child squares will contain no more than 1 node of the instance.

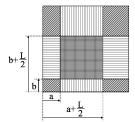


Definition

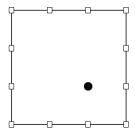
Suppose, $a, b \in \mathbb{N}_L^0$, we call the Quad-tree T(a, b) shifted Quad-tree, if coordinates of its center is

$$((L/2+a) \mod L, (L/2+b) \mod L).$$

Child squares of T(a, b), as its center, is considered modulo L



- Consider fixed values $m, r \in \mathbb{N}$.
- For any square S, assign regular partition of its border, including vertices of the square and consisting of 4(m+1) points.
- Such a partition is called m-regular partition, and all its elements
 — portals.



Definitions

m-regular portal set

Union of m-regular partitions for all borders of not-a-leaf nodes of Quadro-tree T(a,b) is called m-regular portal set. Denote it P(a,b,m).

(m,r)-approximation

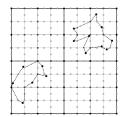
Suppose, π is a simple cycle in the Min-2-SCCP instance graph G (on the plane), $V(\pi)$ is its node-set. Closed piece-wise linear route $l(\pi)$ is called (m, r)-approximation (of the cycle π) if

- 1) node-set of the route $l(\pi)$ is a some subset of $V(\pi) \cup P(a, b, m)$,
- 2) π and $l(\pi)$ visit the nodes from $V(\pi)$ in the same order,
- 3) for any square (being a node of T(a,b)), $l(\pi)$ intersects its arbitrary edge no more than r times, and exclusively in the points of P(a,b,m).

(k, m, r)-cycle cover

k-scc consisting of (m,r)-approximations is called (k,m,r)-cycle cover

Obviously, an arbitrary (1, m, r)-cycle cover contains the only (m, r)-approximation which is a Hamiltonian cycle. Let us consider (2, m, r)-cycle covers...



Theorem 4

- Suppose c > 0 is fixed,
- L is size of square S for a given instance of rounded 2-MHC.
- Suppose discrete stochastic variables a, b are distributed uniformly on the set \mathbb{N}^0_I .
- Then for $m = O(c \log L)$ and r = O(c) with probability at least $\frac{1}{2}$ there is (2, m, r)-cycle cover which weight is no more than $(1+\frac{1}{6})OPT$.

(2, m, r, S)-segment

Let some (2, m, r)-cycle cover C and some node S of the tree T(a, b) be chosen. A family of partial routes $C \cap S$ is called (2, m, r, S)-segment (of the cover C).



Bellman equation

Task (S, R_1, R_2, κ)

Input.

- Node S of the tree T(a,b).
- Cortege $R_i: \mathbb{N}_{q_i} \to (P(a,b,m) \cap \partial S)^2$ defines a sequence of the start-finish pairs of portals (s_i^i, t_i^i) which are crossing-points of ∂S by (m,r)-approximation l_i .
- Number κ is equal to the number of cycles of the building (2, m, r)-cycle cover, intersecting the interior of S.

Output minimum-cost (2, m, r, S)-segment.

Denote by $W(S, R_1, R_2, \kappa)$ value of the task (S, R_1, R_2, κ) .

$$W(S, R_1, R_2, \kappa) = \min_{\tau} \sum_{i=I}^{IV} W(S^i, R_1^i(\tau), R_2^i(\tau), \kappa^i(\tau)),$$

Denote by APP(a,b) a weight of the approximate solution constructed by DP for the tree T(a, b).

$$P\left(APP(a,b) \leqslant (1+\frac{1}{c})OPT\right) \geqslant 1/2,$$

Hence, there is a pair $(a^*, b^*) \in \mathbb{N}^0_L$, for which the equation

$$OPT \leqslant APP(a^*, b^*) \leqslant (1 + 1/c)OPT$$

is valid.

Theorem 5

Euclidean Min-2-SCCP has a Polynomial-Time Approximation Scheme with complexity bound $O(n^3(\log n)^{O(c)})$.

Conclusion and Open Problems

- The proposed PTAS seems to be easily extendable onto Min-k-SCCP in d-dimensional Euclidean space
- Due to well-known PCP theorem there is no PTAS for Metric Min-k-SCCP. But, what about approximation threshold value for this problem?

Thank you for your attention!