Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2025, Volume 37, Issue 1, Pages 141–176 (Mi aa1956)  

Research Papers

The Baer–Suzuki width of a complete class of finite group is finite

D. O. Revinab

a Novosibirsk State University
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: Let $\mathscr{X}$ be a nonempty class of finite groups closed under the taking subgroups, homomorphic images and extensions. According to Gordeev, Grunewald, Kunyavskiĭ, and Plotkin, the Baer-Suzuki width $\mathrm{BS}(\mathscr{X})$ of $\mathscr{X}$ does not exceed a non-negative integer $m$ if, in any finite group $G$, the largest normal $\mathscr{X}$-subgroup coincides with the set of elements $x$ such that every $m$ elements conjugate to $x$ generate an $\mathscr{X}$-subgroup. If there are no $m$ for which ${\mathrm{BS}(\mathscr{X})\leqslant m}$, then by definition ${\mathrm{BS}(\mathscr{X})=\infty}$. In the paper, it is proved that ${\mathrm{BS}(\mathscr{X})<\infty}$ for every class $\mathscr{X}$ with the above properties. More precisely, if $\mathscr{X}$ is distinct from the class of all finite groups, then the value of $\mathrm{BS}(\mathscr{X})$ does not exceed $\max\{11,2\Upsilon+1\}$ where $\Upsilon$ is equal to the largest $n$ such that ${\mathrm{Sym}_n\in\mathscr{X}}$.
Keywords: complete class of finite groups, Baer–Suzuki width, theorem like Baer–Suzuki's, finite simple group, alternating group, classical simple group.
Funding agency Grant number
Russian Science Foundation 24-11-00127
Received: 16.08.2024
Document Type: Article
Language: Russian
Citation: D. O. Revin, “The Baer–Suzuki width of a complete class of finite group is finite”, Algebra i Analiz, 37:1 (2025), 141–176
Citation in format AMSBIB
\Bibitem{Rev25}
\by D.~O.~Revin
\paper The Baer--Suzuki width of a complete class of finite group is finite
\jour Algebra i Analiz
\yr 2025
\vol 37
\issue 1
\pages 141--176
\mathnet{http://mi.mathnet.ru/aa1956}
Linking options:
  • https://www.mathnet.ru/eng/aa1956
  • https://www.mathnet.ru/eng/aa/v37/i1/p141
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:262
    Full-text PDF :28
    References:79
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025