Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2025, Volume 37, Issue 5, Pages 198–216 (Mi aa1979)  

Research Papers

Full and elementary nets over the field of fractions of a Dedekind domain

V. A. Koibaevab

a North Ossetian State University after Kosta Levanovich Khetagurov
b Southern Mathematical Institute of the Vladikavkaz Scientific Center of the Russian Academy of Sciences
References:
Abstract: The set $\sigma=(\sigma_{ij}), 1\leq{i, j}\leq{n},$ of additive subgroups $\sigma_{ij}$ of the field $K$ is called a net (carpet) over $K$ of order $n$ if $\sigma_{ir} \sigma_{rj} \subseteq{\sigma_{ij}}$ for all values of the indices $i, r, j.$ A net considered without a diagonal is called an elementary net. Based on the elementary net $\sigma$, an elementary net subgroup $E(\sigma)$ is determined, which is generated by elementary transvections $t_{ij}(\alpha) = e+\alpha e_{ij}$. An elementary net $\sigma$ is called closed if the elementary net subgroup $E(\sigma)$ does not contain new elementary transvections. Let $R$ be a Dedekind domain, $K$ be the field of fractions of the ring $R$, $\sigma=(\sigma_ {ij})$ be a complete (elementary) net of order $n\geq 2$ (respectively $n\geq 3$) over $K$, where the additive subgroups $\sigma_{ij}$ are non-zero $R$-modules. It is proved that, up to conjugation by a diagonal matrix, all $\sigma_{ij}$ are fractional ideals of a fixed intermediate subring $P$, $R\subseteq P \subseteq K$, and for all $i<j$ inclusions are performed $\pi_{ij}\pi_{ji}\subseteq P, \ \pi_{ij}\subseteq P\subseteq \pi_{j i}$. In particular, the elementary net $\sigma$ is closed.
Keywords: general and special linear groups, full and elementary nets (carpets) of additive subgroups, net subgroup.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2025-1530
Received: 20.12.2024
Document Type: Article
Language: Russian
Citation: V. A. Koibaev, “Full and elementary nets over the field of fractions of a Dedekind domain”, Algebra i Analiz, 37:5 (2025), 198–216
Citation in format AMSBIB
\Bibitem{Koi25}
\by V.~A.~Koibaev
\paper Full and elementary nets over the field of fractions of a Dedekind domain
\jour Algebra i Analiz
\yr 2025
\vol 37
\issue 5
\pages 198--216
\mathnet{http://mi.mathnet.ru/aa1979}
Linking options:
  • https://www.mathnet.ru/eng/aa1979
  • https://www.mathnet.ru/eng/aa/v37/i5/p198
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:52
    References:21
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025