Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2006, Volume 18, Issue 2, Pages 80–116 (Mi aa69)  

Research Papers

Classification of simple multigerms of curves in the contact space

P. A. Kolgushkin
References:
Abstract: Stably simple singularities of curves (both reducible and irreducible) in the contact complex space are classified up to formal stable contact equivalence.The classification widens the one obtained by V. I. Arnold in 1999 for the simple contact space singularities that are $RL$-equivalent to the singularity $A_2$ (a semicubical parabola). The proofs involve the homotopy method and the Darboux-Givental theorem on contact structures.
Received: 10.03.2005
English version:
St. Petersburg Mathematical Journal, 2007, Volume 18, Issue 2, Pages 241–267
DOI: https://doi.org/10.1090/S1061-0022-07-00950-8
Bibliographic databases:
Document Type: Article
MSC: 58K40
Language: Russian
Citation: P. A. Kolgushkin, “Classification of simple multigerms of curves in the contact space”, Algebra i Analiz, 18:2 (2006), 80–116; St. Petersburg Math. J., 18:2 (2007), 241–267
Citation in format AMSBIB
\Bibitem{Kol06}
\by P.~A.~Kolgushkin
\paper Classification of simple multigerms of curves in the contact space
\jour Algebra i Analiz
\yr 2006
\vol 18
\issue 2
\pages 80--116
\mathnet{http://mi.mathnet.ru/aa69}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2244937}
\zmath{https://zbmath.org/?q=an:1144.58021}
\elib{https://elibrary.ru/item.asp?id=9194121}
\transl
\jour St. Petersburg Math. J.
\yr 2007
\vol 18
\issue 2
\pages 241--267
\crossref{https://doi.org/10.1090/S1061-0022-07-00950-8}
Linking options:
  • https://www.mathnet.ru/eng/aa69
  • https://www.mathnet.ru/eng/aa/v18/i2/p80
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025